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A great discovery solves a great problem but there is a grain of discovery in the
solution of any problem. Your problem may be modest; but if it challenges your
curiosity and brings into play your inventive faculties, and if you solve it by your
own means, you may experience the tension and enjoy the triumph of discovery.

G E O R G E P O L Y A

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried to
write a book that assists students in discovering calculus—both for its practical power and
its surprising beauty. In this edition, as in the first six editions, I aim to convey to the stu-
dent a sense of the utility of calculus and develop technical competence, but I also strive
to give some appreciation for the intrinsic beauty of the subject. Newton undoubtedly
experienced a sense of triumph when he made his great discoveries. I want students to
share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that
this should be the primary goal of calculus instruction. In fact, the impetus for the current
calculus reform movement came from the Tulane Conference in 1986, which formulated
as their first recommendation: 

Focus on conceptual understanding.

I have tried to implement this goal through the Rule of Three: “Topics should be presented
geometrically, numerically, and algebraically.” Visualization, numerical and graphical exper-
imentation, and other approaches have changed how we teach conceptual reasoning in fun-
damental ways. The Rule of Three has been expanded to become the Rule of Four by
emphasizing the verbal, or descriptive, point of view as well.

In writing the seventh edition my premise has been that it is possible to achieve con-
ceptual understanding and still retain the best traditions of traditional calculus. The book
contains elements of reform, but within the context of a traditional curriculum.

I have written several other calculus textbooks that might be preferable for some instruc-
tors. Most of them also come in single variable and multivariable versions.

■ Calculus, Seventh Edition, Hybrid Version, is similar to the present textbook in 
content and coverage except that all end-of-section exercises are available only in
Enhanced WebAssign. The printed text includes all end-of-chapter review material.

■ Calculus: Early Transcendentals, Seventh Edition, is similar to the present textbook
except that the exponential, logarithmic, and inverse trigonometric functions are cov-
ered in the first semester.

Alternative Versions

Preface
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viii PREFACE

■ Calculus: Early Transcendentals, Seventh Edition, Hybrid Version, is similar to Cal-
culus: Early Transcendentals, Seventh Edition, in content and coverage except that all
end-of-section exercises are available only in Enhanced WebAssign. The printed text
includes all end-of-chapter review material.

■ Essential Calculus is a much briefer book (800 pages), though it contains almost all
of the topics in Calculus, Seventh Edition. The relative brevity is achieved through
briefer exposition of some topics and putting some features on the website.

■ Essential Calculus: Early Transcendentals resembles Essential Calculus, but the
exponential, logarithmic, and inverse trigonometric functions are covered in Chapter 3.

■ Calculus: Concepts and Contexts, Fourth Edition, emphasizes conceptual understand-
ing even more strongly than this book. The coverage of topics is not encyclopedic 
and the material on transcendental functions and on parametric equations is woven
throughout the book instead of being treated in separate chapters. 

■ Calculus: Early Vectors introduces vectors and vector functions in the first semester
and integrates them throughout the book. It is suitable for students taking Engineering
and Physics courses concurrently with calculus.

■ Brief Applied Calculus is intended for students in business, the social sciences, and
the life sciences.

The changes have resulted from talking with my colleagues and students at the University
of Toronto and from reading journals, as well as suggestions from users and reviewers.
Here are some of the many improvements that I’ve incorporated into this edition:

■ Some material has been rewritten for greater clarity or for better motivation. See, for
instance, the introduction to series on page 727 and the motivation for the cross prod-
uct on page 832.

■ New examples have been added (see Example 4 on page 1045 for instance), and the
solutions to some of the existing examples have been amplified.

■ The art program has been revamped: New figures have been incorporated and a sub-
stantial percentage of the existing figures have been redrawn.

■ The data in examples and exercises have been updated to be more timely.

■ One new project has been added: Families of Polar Curves (page 688) exhibits the
fascinating shapes of polar curves and how they evolve within a family.

■ The section on the surface area of the graph of a function of two variables has been
restored as Section 15.6 for the convenience of instructors who like to teach it after
double integrals, though the full treatment of surface area remains in Chapter 16. 

■ I continue to seek out examples of how calculus applies to so many aspects of the 
real world. On page 933 you will see beautiful images of the earth’s magnetic field
strength and its second vertical derivative as calculated from Laplace’s equation. I
thank Roger Watson for bringing to my attention how this is used in geophysics and
mineral exploration.

■ More than 25% of the exercises are new. Here are some of my favorites: 11.2.49–50,
11.10.71–72, 12.1.44, 12.4.43–44, 12.5.80, 14.6.59–60, 15.8.42, and Problems 4, 5,
and 8 on pages 861–62.

What’s New in the Seventh Edition?
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PREFACE ix

■ The media and technology to support the text have been enhanced to give professors
greater control over their course, to provide extra help to deal with the varying levels
of student preparedness for the calculus course, and to improve support for conceptual
understanding. New Enhanced WebAssign features including a customizable Cengage
YouBook, Just in Time review, Show Your Work, Answer Evaluator, Personalized
Study Plan, Master Its, solution videos, lecture video clips (with associated questions),
and Visualizing Calculus (TEC animations with associated questions) have been
developed to facilitate improved student learning and flexible classroom teaching.

■ Tools for Enriching Calculus (TEC) has been completely redesigned and is accessible
in Enhanced WebAssign, CourseMate, and PowerLecture. Selected Visuals and 
Modules are available at www.stewartcalculus.com.

CONCEPTUAL EXERCISES The most important way to foster conceptual understanding is through the problems that
we assign. To that end I have devised various types of problems. Some exercise sets begin
with requests to explain the meanings of the basic concepts of the section. (See, for
instance, the first few exercises in Sections 11.2, 14.2, and 14.3.) Similarly, all the review
sections begin with a Concept Check and a True-False Quiz. Other exercises test concep-
tual understanding through graphs or tables (see Exercises 10.1.24–27, 11.10.2, 13.2.1–2,
13.3.33–39, 14.1.1–2, 14.1.32–42, 14.3.3–10, 14.6.1–2, 14.7.3–4, 15.1.5–10, 16.1.11–18,
16.2.17–18, and 16.3.1–2).

Another type of exercise uses verbal description to test conceptual understanding. I par-
ticularly value problems that combine and compare graphical, numerical, and algebraic
approaches.

GRADED EXERCISE SETS Each exercise set is carefully graded, progressing from basic conceptual exercises and skill-
development problems to more challenging problems involving applications and proofs.

REAL-WORLD DATA My assistants and I spent a great deal of time looking in libraries, contacting companies and
government agencies, and searching the Internet for interesting real-world data to intro-
duce, motivate, and illustrate the concepts of calculus. As a result, many of the examples
and exercises deal with functions defined by such numerical data or graphs. Functions of
two variables are illustrated by a table of values of the wind-chill index as a function of air
temperature and wind speed (Example 2 in Section 14.1). Partial derivatives are intro-
duced in Section 14.3 by examining a column in a table of values of the heat index (per-
ceived air temperature) as a function of the actual temperature and the relative humidity.
This example is pursued further in connection with linear approximations (Example 3 in
Section 14.4). Directional derivatives are introduced in Section 14.6 by using a tempera-
ture contour map to estimate the rate of change of temperature at Reno in the direction of
Las Vegas. Double integrals are used to estimate the average snowfall in Colorado on
December 20–21, 2006 (Example 4 in Section 15.1). Vector fields are introduced in Sec-
tion 16.1 by depictions of actual velocity vector fields showing San Francisco Bay wind
patterns.

PROJECTS One way of involving students and making them active learners is to have them work (per-
haps in groups) on extended projects that give a feeling of substantial accomplishment
when completed. I have included four kinds of projects: Applied Projects involve applica-
tions that are designed to appeal to the imagination of students. The project after Section

Technology Enhancements

Features
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14.8 uses Lagrange multipliers to determine the masses of the three stages of a rocket so
as to minimize the total mass while enabling the rocket to reach a desired velocity. Labo-
ratory Projects involve technology; the one following Section 10.2 shows how to use
Bézier curves to design shapes that represent letters for a laser printer. Discovery Projects
explore aspects of geometry: tetrahedra (after Section 12.4), hyperspheres (after Section
15.7), and intersections of three cylinders (after Section 15.8). The Writing Project after
Section 17.8 explores the historical and physical origins of Green’s Theorem and Stokes’
Theorem and the interactions of the three men involved. Many additional projects can be
found in the Instructor’s Guide.

TEC is a companion to the text and is intended to enrich and complement its contents. (It
is now accessible in Enhanced WebAssign, CourseMate, and PowerLecture. Selected
Visuals and Modules are available at www.stewartcalculus.com.) Developed by Harvey
Keynes, Dan Clegg, Hubert Hohn, and myself, TEC uses a discovery and exploratory
approach. In sections of the book where technology is particularly appropriate, marginal
icons direct students to TEC modules that provide a laboratory environment in which they
can explore the topic in different ways and at different levels. Visuals are animations of
figures in text; Modules are more elaborate activities and include exercises. Instruc-
tors can choose to become involved at several different levels, ranging from simply
encouraging students to use the Visuals and Modules for independent exploration, to
assigning specific exercises from those included with each Module, or to creating addi-
tional exercises, labs, and projects that make use of the Visuals and Modules.

HOMEWORK HINTS Homework Hints presented in the form of questions try to imitate an effective teaching
assistant by functioning as a silent tutor. Hints for representative exercises (usually odd-
numbered) are included in every section of the text, indicated by printing the exercise 
number in red. They are constructed so as not to reveal any more of the actual solution than
is minimally necessary to make further progress, and are available to students at 
stewartcalculus.com and in CourseMate and Enhanced WebAssign.

ENHANCED WE BAS S I G N Technology is having an impact on the way homework is assigned to students, particularly
in large classes. The use of online homework is growing and its appeal depends on ease of
use, grading precision, and reliability. With the seventh edition we have been working with
the calculus community and WebAssign to develop a more robust online homework sys-
tem. Up to 70% of the exercises in each section are assignable as online homework, includ-
ing free response, multiple choice, and multi-part formats.

The system also includes Active Examples, in which students are guided in step-by-step
tutorials through text examples, with links to the textbook and to video solutions. New
enhancements to the system include a customizable eBook, a Show Your Work feature, 
Just in Time review of precalculus prerequisites, an improved Assignment Editor, and an
Answer Evaluator that accepts more mathematically equivalent answers and allows for
homework grading in much the same way that an instructor grades.

www.stewartcalculus.com This site includes the following.
■ Homework Hints
■ Algebra Review
■ Lies My Calculator and Computer Told Me
■ History of Mathematics, with links to the better historical websites
■ Additional Topics (complete with exercise sets): Fourier Series, Formulas for the

Remainder Term in Taylor Series, Rotation of Axes
■ Archived Problems (Drill exercises that appeared in previous editions, together with

their solutions)

TOOLS FOR 
ENRICHING™ CALCULUS
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PREFACE xi

■ Challenge Problems (some from the Problems Plus sections from prior editions)
■ Links, for particular topics, to outside web resources

■ Selected Tools for Enriching Calculus (TEC) Modules and Visuals

This chapter introduces parametric and polar curves and applies the methods of calculus
to them. Parametric curves are well suited to laboratory projects; the three presented here
involve families of curves and Bézier curves. A brief treatment of conic sections in polar
coordinates prepares the way for Kepler’s Laws in Chapter 13.

11  Infinite Sequences and Series The convergence tests have intuitive justifications (see page 738) as well as formal proofs.
Numerical estimates of sums of series are based on which test was used to prove conver-
gence. The emphasis is on Taylor series and polynomials and their applications to physics.
Error estimates include those from graphing devices.

The material on three-dimensional analytic geometry and vectors is divided into two chap-
ters. Chapter 12 deals with vectors, the dot and cross products, lines, planes, and surfaces.

13  Vector Functions This chapter covers vector-valued functions, their derivatives and integrals, the length and
curvature of space curves, and velocity and acceleration along space curves, culminating
in Kepler’s laws.

14  Partial Derivatives Functions of two or more variables are studied from verbal, numerical, visual, and alge-
braic points of view. In particular, I introduce partial derivatives by looking at a specific
column in a table of values of the heat index (perceived air temperature) as a function of
the actual temperature and the relative humidity. 

15  Multiple Integrals Contour maps and the Midpoint Rule are used to estimate the average snowfall and average
temperature in given regions. Double and triple integrals are used to compute probabilities,
surface areas, and (in projects) volumes of hyperspheres and volumes of intersections of
three cylinders. Cylindrical and spherical coordinates are introduced in the context of eval-
uating triple integrals.

16  Vector Calculus Vector fields are introduced through pictures of velocity fields showing San Francisco Bay
wind patterns. The similarities among the Fundamental Theorem for line integrals, Green’s
Theorem, Stokes’ Theorem, and the Divergence Theorem are emphasized.

Since first-order differential equations are covered in Chapter 9, this final chapter deals
with second-order linear differential equations, their application to vibrating springs and
electric circuits, and series solutions.

Multivariable Calculus, Seventh Edition, is supported by a complete set of ancillaries
developed under my direction. Each piece has been designed to enhance student under-
standing and to facilitate creative instruction. With this edition, new media and technolo-
gies have been developed that help students to visualize calculus and instructors to
customize content to better align with the way they teach their course. The tables on pages
xiii–xiv describe each of these ancillaries.

Content

10  Parametric Equations 
and Polar Coordinates

12  Vectors and 
The Geometry of Space

17  Second-Order 
Differential Equations

Ancillaries
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highlighting, notes, and more! YouBook is available in
Enhanced WebAssign.
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CourseMate
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concepts to life with interactive learning, study, and exam
preparation tools that support the printed textbook. CourseMate
for Stewart’s Calculus includes: an interactive eBook, Tools 
for Enriching Calculus, videos, quizzes, flashcards, and more! 
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Maple CD-ROM
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ment environment. 

CengageBrain.com
To access additional course materials and companion resources,
please visit www.cengagebrain.com. At the CengageBrain.com
home page, search for the ISBN of your title (from the back
cover of your book) using the search box at the top of the page.
This will take you to the product page where free companion
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By Dan Clegg and Barbara Frank
ISBN 0-8400-4945-5

Provides completely worked-out solutions to all odd-numbered
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Study Guide
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By Richard St. Andre
ISBN 0-8400-5410-6

For each section of the text, the Study Guide provides students
with a brief introduction, a short list of concepts to master, as
well as summary and focus questions with explained answers.
The Study Guide also contains “Technology Plus” questions,
and multiple-choice “On Your Own” exam-style questions.

CalcLabs with Maple

Multivariable By Philip B. Yasskin and Robert Lopez
ISBN 0-8400-5812-8

CalcLabs with Mathematica

Multivariable By Selwyn Hollis
ISBN 0-8400-5813-6

Each of these comprehensive lab manuals will help students
learn to use the technology tools available to them. CalcLabs
contain clearly explained exercises and a variety of labs and
projects to accompany the text.
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by Konrad J. Heuvers, William P. Francis, John H. Kuisti, 
Deborah F. Lockhart, Daniel S. Moak, and Gene M. Ortner
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Parametric Equations and
Polar Coordinates10

So far we have described plane curves by giving as a function of or as a function 

of or by giving a relation between and that defines implicitly as a function of

. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in terms of a third 

variable called a parameter . Other curves, such as the cardioid, have their most

convenient description when we use a new coordinate system, called the polar coordinate system.

y x �y � f �x�� x
y �x � t�y�� x y y x

� f �x, y� � 0�
x y

t �x � f �t�, y � t�t��

659

© Dean Ketelsen

The Hale-Bopp comet, with its blue ion tail and white dust tail, appeared in
the sky in March 1997. In Section 10.6 you will see how polar coordinates
provide a convenient equation for the path of this comet.
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660 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to
describe C by an equation of the form because C fails the Vertical Line Test. But
the x- and y-coordinates of the particle are functions of time and so we can write
and . Such a pair of equations is often a convenient way of describing a curve and
gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a param -
eter) by the equations

(called parametric equations). Each value of determines a point , which we can 
plot in a coordinate plane. As varies, the point varies and traces out a
curve , which we call a parametric curve. The parameter t does not necessarily represent
time and, in fact, we could use a letter other than t for the parameter. But in many 
applications of parametric curves, t does denote time and therefore we can interpret

as the position of a particle at time t.

Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For instance,
if , then , and so the corresponding point is . In Figure 2 we plot
the points determined by several values of the parameter and we join them to pro-
duce a curve.

A particle whose position is given by the parametric equations moves along the curve
in the direction of the arrows as increases. Notice that the consecutive points marked
on the curve appear at equal time intervals but not at equal distances. That is because the
particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a parab ola.
This can be confirmed by eliminating the parameter as follows. We obtain
from the second equation and substitute into the first equation. This gives

and so the curve represented by the given parametric equations is the parabola
.

y � f �x�
x � f �t�

y � t�t�

x y t

x � f �t� y � t�t�

t �x, y�
t �x, y� � � f �t�, t�t��

C

�x, y� � � f �t�, t�t��

x � t2 � 2t y � t � 1

t
t � 0 x � 0 y � 1 �0, 1�

�x, y�

FIGURE 2 

0

t=0

t=1

t=2

t=3

t=4

t=_1
t=_2

(0, 1)

y

x

8

t

t

t t � y � 1

x � t 2 � 2t � �y � 1�2 � 2�y � 1� � y 2 � 4y � 3

EXAMPLE 1

x � y 2 � 4y � 3

10.1 Curves Defined by Parametric Equations

C

0

(x, y)={f(t), g(t)}

FIGURE 1

y

x

t x y

�2 8 �1
�1 3 0

0 0 1
1 �1 2
2 0 3
3 3 4
4 8 5

This equation in and describes where the
particle has been, but it doesn’t tell us when
the particle was at a particular point. The para-
metric equations have an advantage––they tell
us when the particle was at a point. They also
indicate the direction of the motion.

yx
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 661

No restriction was placed on the parameter in Example 1, so we assumed that t could
be any real number. But sometimes we restrict t to lie in a finite interval. For instance, the
parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point and
ends at the point . The arrowhead indicates the direction in which the curve is traced
as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm this
impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this example
the parameter can be interpreted as the angle (in radians) shown in Figure 4. As
increases from 0 to , the point moves once around the circle in
the counterclockwise direction starting from the point .

What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves twice
around the circle in the clockwise direction as indicated in Figure 5.

Examples 2 and 3 show that different sets of parametric equations can represent the same
curve. Thus we distinguish between a curve, which is a set of points, and a parametric curve,
in which the points are traced in a particular way.

Find parametric equations for the circle with center and radius .

SOLUTION If we take the equations of the unit circle in Example 2 and multiply the
expressions for and by , we get , . You can verify that these
equations represent a circle with radius and center the origin traced counterclockwise.
We now shift units in the -direction and units in the -direction and obtain para-

t

0 � t � 4y � t � 1x � t 2 � 2t

�0, 1�
�8, 5�

t

a � t � by � t�t�x � f �t�

� f �a�, t�a�� � f �b�, t�b��

EXAMPLE 2v

0 � t � 2�y � sin tx � cos t

t.

x 2 � y 2 � cos2t � sin2t � 1

x 2 � y 2 � 1�x, y�
tt

�x, y� � �cos t, sin t�2�
�1, 0�

EXAMPLE 3

0 � t � 2�y � cos 2tx � sin 2t

x 2 � y 2 � sin2 2t � cos2 2t � 1

tx 2 � y 2 � 1
�0, 1��x, y� � �sin 2t, cos 2t�2�

r�h, k�EXAMPLE 4

y � r sin tx � r cos tryx
r

ykxh

FIGURE 3 

0

(8, 5)

(0, 1)

y

x

FIGURE 4 

3π
2

t=

π
2

t=

0
t

t=0

(1, 0)

(cos t, sin t )

t=2π

t=π
x

y

0

t=0, π, 2π

FIGURE 5

x

y

(0, 1)
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metric equations of the circle (Figure 6) with center and radius :

Sketch the curve with parametric equations , .

SOLUTION Observe that and so the point moves on the parabola
. But note also that, since , we have , so the para-

metric equations represent only the part of the parabola for which . Since
is periodic, the point moves back and forth infinitely often

along the parabola from to . (See Figure 7.)

Graphing Devices
Most graphing calculators and computer graphing programs can be used to graph curves
defined by parametric equations. In fact, it’s instructive to watch a parametric curve being
drawn by a graphing calculator because the points are plotted in order as the corresponding
parameter values increase.

r�h, k�

0 � t � 2�y � k � r sin tx � h � r cos t

FIGURE 6
x=h+r cos t, y=k+r sin t 0

(h, k)

r

x

y

y � sin2tx � sin tEXAMPLE 5v

�x, y�y � �sin t�2 � x 2

�1 � x � 1�1 � sin t � 1y � x 2

�1 � x � 1
�x, y� � �sin t, sin2t�sin t

�1, 1���1, 1�

y=sin 2tx=cos t     y=sin 2t

x=
cos t

FIGURE 8

t

x

y

t

y

x
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FIGURE 7 

0

(1, 1)(_1, 1)

x

y

Module 10.1A gives an ani  ma tion of the
relationship between motion along a parametric
curve , and motion along the
graphs of and as functions of . Clicking on
TRIG gives you the family of parametric curves

If you choose and click 
on animate, you will see how the graphs of

and relate to the circle in
Example 2. If you choose ,

, you will see graphs as in Figure 8. By
clicking on animate or moving the -slider to 
the right, you can see from the color coding how
motion along the graphs of and

corresponds to motion along the para-
metric curve, which is called a Lissajous figure.

TEC

t

t

y � sin 2t

x � cos t

d � 2

a � b � c � 1

y � sin tx � cos t

a � b � c � d � 1

y � c sin dtx � a cos bt

tf

y � t�t�x � f �t�
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 663

Use a graphing device to graph the curve .

SOLUTION If we let the parameter be , then we have the equations

Using these parametric equations to graph the curve, we obtain Figure 9. It would be
possible to solve the given equation for y as four functions of x and
graph them individually, but the parametric equations provide a much easier method.

In general, if we need to graph an equation of the form , we can use the para-
metric equations

Notice also that curves with equations (the ones we are most familiar with—graphs
of functions) can also be regarded as curves with parametric equations

Graphing devices are particularly useful for sketching complicated curves. For instance,
the curves shown in Figures 10, 11, and 12 would be virtually impossible to produce by hand.

One of the most important uses of parametric curves is in computer-aided design (CAD).
In the Laboratory Project after Section 10.2 we will investigate special parametric curves,
called Bézier curves, that are used extensively in manufacturing, especially in the auto-
motive industry. These curves are also employed in specifying the shapes of letters and
other symbols in laser printers.

The Cycloid

The curve traced out by a point on the circumference of a circle as the
circle rolls along a straight line is called a cycloid (see Figure 13). If the circle has 
radius and rolls along the -axis and if one position of is the origin, find parametric
equations for the cycloid.

x � y 4 � 3y 2EXAMPLE 6

t � y

y � tx � t 4 � 3t 2

�x � y 4 � 3y 2 �

x � t�y�

y � tx � t�t�

y � f �x�

y � f �t�x � t

1.5

_1.5

_1.5 1.5

1

_1

_2 2

1.8

_1.8

_1.8 1.8

FIGURE 11
x=sin t-sin 2.3t  

y=cos t

FIGURE 10
x=sin t+   

y=cos t+

1
2

cos 5t+1
4

sin 13t
1
2

sin 5t+1
4

cos 13t

FIGURE 12
x=sin t+   

y=cos t+

1
2

sin 5t+1
4

cos 2.3t
1
2

cos 5t+1
4

sin 2.3t

PEXAMPLE 7

Pxr

FIGURE 13 P

P
P

3

_3

_3 3

FIGURE 9

An animation in Module 10.1B shows
how the cycloid is formed as the circle moves.
TEC
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664 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

SOLUTION We choose as parameter the angle of rotation of the circle when is
at the origin). Suppose the circle has rotated through radians. Because the circle has
been in contact with the line, we see from Figure 14 that the distance it has rolled from
the origin is

Therefore the center of the circle is . Let the coordinates of be . Then
from Figure 14 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 14, which illustrates the

case where , it can be seen that these equations are still valid for other
values of (see Exercise 39).

Although it is possible to eliminate the parameter from Equations 1, the resulting
Cartesian equation in and is very complicated and not as convenient to work with as
the parametric equations.

One of the first people to study the cycloid was Galileo, who proposed that bridges be
built in the shape of cycloids and who tried to find the area under one arch of a cycloid. Later
this curve arose in connection with the brachistochrone problem: Find the curve along
which a particle will slide in the shortest time (under the influence of gravity) from a point

to a lower point not directly beneath . The Swiss mathematician John Bernoulli, who
posed this problem in 1696, showed that among all possible curves that join to , as in
Figure 15, the particle will take the least time sliding from to if the curve is part of an
inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the solution to
the tautochrone problem; that is, no matter where a particle is placed on an inverted
cycloid, it takes the same time to slide to the bottom (see Figure 16). Huygens proposed that
pendulum clocks (which he invented) should swing in cycloidal arcs because then the pen-
dulum would take the same time to make a complete oscillation whether it swings through
a wide or a small arc.

Families of Parametric Curves

Investigate the family of curves with parametric equations

What do these curves have in common? How does the shape change as increases?

SOLUTION We use a graphing device to produce the graphs for the cases , ,
, , , , , and shown in Figure 17. Notice that all of these curves (except

the case ) have two branches, and both branches approach the vertical asymptote
as approaches from the left or right.

� OT � � arc PT � r�

�x, y�PC�r�, r�

x � � OT � � � PQ � � r� � r sin � � r�� � sin ��

y � � TC � � � QC � � r � r cos � � r �1 � cos ��

� � �y � r �1 � cos ��x � r �� � sin ��1

0 � � � 2�
0 � � � ��2

�
�

yx

ABA
BA

BA

P

EXAMPLE 8v

y � a tan t � sin tx � a � cos t

a

P�� � 0�
�

�1a � �2
210.50�0.2�0.5

a � 0
axx � a

FIGURE 14

xO

y

T

C(r¨, r )
r ¨

x
y

r¨

P Q

FIGURE 15

A

B

cycloid

P

P
P

P

P 

FIGURE 16
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 665

1–4 Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the curve is
traced as increases.

1. ,  ,  

2. ,  ,  

3. ,  ,  

4. ,  ,  

5–10
(a) Sketch the curve by using the parametric equations to plot

points. Indicate with an arrow the direction in which the curve
is traced as t increases.

(b) Eliminate the parameter to find a Cartesian equation of the
curve.

5. ,  

6. ,  ,  

7. ,  ,  

8. ,  ,  

t

x � t 2 � t y � t 2 � t �2 � t � 2

x � t 2 y � t 3 � 4t �3 � t � 3

x � cos2t y � 1 � sin t 0 � t � ��2

x � e�t � t y � e t � t �2 � t � 2

x � 3 � 4t y � 2 � 3t

x � 1 � 2t y � 1
2 t � 1 �2 � t � 4

x � 1 � t 2 y � t � 2 �2 � t � 2

�2 � t � 2y � t 3 � 1x � t � 1

9. ,  

10. ,  

11–18
(a) Eliminate the parameter to find a Cartesian equation of the

curve.
(b) Sketch the curve and indicate with an arrow the direction in

which the curve is traced as the parameter increases.

11. ,  ,  

12. ,  ,  

13. ,  ,  

14. ,  

15. ,  

16. ,  

17. ,  

18. ,  ,  

x � t 2 y � t 3

x � st y � 1 � t

x � sin 12� y � cos 12� �� � � � �

x � 1
2 cos � y � 2 sin � 0 � � � �

x � sin t y � csc t 0 � t � ��2

x � et � 1 y � e 2 t

x � e 2 t y � t � 1

y � st � 1y � st � 1

x � sinh t y � cosh t

x � tan2� y � sec � ���2 � � � ��2

10.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

When , both branches are smooth; but when reaches , the right branch
acquires a sharp point, called a cusp. For between and 0 the cusp turns into a loop,
which becomes larger as approaches 0. When , both branches come together and
form a circle (see Example 2). For between 0 and 1, the left branch has a loop, which
shrinks to become a cusp when . For , the branches become smooth again,
and as increases further, they become less curved. Notice that the curves with posi-
tive are reflections about the -axis of the corresponding curves with negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar
Nicomedes. He called them conchoids because the shape of their outer branches 
resembles that of a conch shell or mussel shell.

a=_2 a=_1 a=_0.5 a=_0.2

a=2a=1a=0.5a=0

a � �1 a �1
a �1

a a � 0
a

a � 1 a � 1
a a

y a

FIGURE 17 Members of the family
x=a+cos t, y=a tan t+sin t,
all graphed in the viewing rectangle
�_4, 4� by �_4, 4�
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666 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

19–22 Describe the motion of a particle with position as 
varies in the given interval.

19. ,  ,  

20. ,  ,  

21. ,  ,  

22. ,  ,  

23. Suppose a curve is given by the parametric equations ,
, where the range of is and the range of is

. What can you say about the curve?

24. Match the graphs of the parametric equations and
in (a)–(d) with the parametric curves labeled I–IV.

Give reasons for your choices.

�x, y�
t

x � 3 � 2 cos t y � 1 � 2 sin t ��2 � t � 3��2

x � 2 sin t y � 4 � cos t 0 � t � 3��2

x � 5 sin t y � 2 cos t �� � t � 5�

x � sin t y � cos2t �2� � t � 2�

x � f �t�
y � t�t� f �1, 4� t

�2, 3�

x � f �t�
y � t�t�

t

x

2

1

1

t

y

1

1

y

x

2

2

(a) I

(b) II
x

t

2

1 t

2

1

y y

x

2

2

(c) III

t

2

2

yx

t

2

2

(d) IV

t

2

2

yx

t

2

2

y

x

2

2

1

y

x

1

2

25–27 Use the graphs of and to sketch the para-
metric curve , . Indicate with arrows the direction
in which the curve is traced as increases.

25.

26.

27.

28. Match the parametric equations with the graphs labeled I-VI.
Give reasons for your choices. (Do not use a graphing device.)
(a) ,  

(b) ,  

(c) ,  

(d) ,  

(e) ,  

(f ) ,  

y � t�t�x � f �t�
y � t�t�x � f �t�

t

t

x

_1

1 t

y

1

1

t

x

1

1 t

y

1

1

t

y

1

1t

x

1

1

y � t 2x � t 4 � t � 1

y � stx � t 2 � 2t

y � sin�t � sin 2t�x � sin 2t

y � sin 2tx � cos 5t

y � t 2 � cos 3tx � t � sin 4t

y �
cos 2t

4 � t 2x �
sin 2t

4 � t 2

x

y

x

y

x

y

x

y

x

y

x

y

I II III

IV V VI
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 667

; 29. Graph the curve .

; 30. Graph the curves and and find
their points of intersection correct to one decimal place.

31. (a) Show that the parametric equations

where , describe the line segment that joins the
points and .

(b) Find parametric equations to represent the line segment
from to .

; 32. Use a graphing device and the result of Exercise 31(a) to
draw the triangle with vertices , , and .

33. Find parametric equations for the path of a particle that
moves along the circle in the manner
described.
(a) Once around clockwise, starting at 
(b) Three times around counterclockwise, starting at 
(c) Halfway around counterclockwise, starting at 

; 34. (a) Find parametric equations for the ellipse
. [Hint: Modify the equations of 

the circle in Example 2.]
(b) Use these parametric equations to graph the ellipse when

and b � 1, 2, 4, and 8.
(c) How does the shape of the ellipse change as b varies?

; 35–36 Use a graphing calculator or computer to reproduce the
picture.

35. 36.

37–38 Compare the curves represented by the parametric
equations. How do they differ?

37. (a) ,  (b) ,  
(c) ,  

38. (a) ,  (b) ,  
(c) ,  

39. Derive Equations 1 for the case .

40. Let be a point at a distance from the center of a circle of
radius . The curve traced out by as the circle rolls along a
straight line is called a trochoid. (Think of the motion of a
point on a spoke of a bicycle wheel.) The cycloid is the spe-
cial case of a trochoid with . Using the same parameter

as for the cycloid and, assuming the line is the -axis and 

x � y � 2 sin �y

x � y 3 � 4yy � x 3 � 4x

y � y1 � �y2 � y1�tx � x1 � �x 2 � x1�t

0 � t � 1
P2�x 2, y2 �P1�x1, y1�

�3, �1���2, 7�

C �1, 5�B �4, 2�A �1, 1�

x 2 � �y � 1�2 � 4

�2, 1�
�2, 1�

�0, 3�

x 2�a 2 � y 2�b 2 � 1

a � 3

0

y

x

2

3 8

4

0

2

y

x2

y � t 4x � t 6y � t 2x � t 3

y � e�2 tx � e�3 t

y � sec2tx � cos ty � t �2x � t
y � e�2 tx � e t

��2 � � � �

dP
Pr

d � r
x�

when is at one of its lowest points, show that para-
metric equations of the trochoid are

Sketch the trochoid for the cases and .

41. If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point
in the figure, using the angle as the parameter. Then elimi-
nate the param eter and identify the curve.

42. If and are fixed numbers, find parametric equations for
the curve that consists of all possible positions of the point
in the figure, using the angle as the parameter. The line
segment is tangent to the larger circle.

43. A curve, called a witch of Maria Agnesi, consists of all pos-
sible positions of the point in the figure. Show that para-
metric equations for this curve can be written as 

Sketch the curve.

P� � 0

y � r � d cos �x � r� � d sin �

d � rd � r

ba
P

�

O

y

x
¨

a
b P

ba
P

�
AB

O x

y

¨

a
b

A

B

P

P

y � 2a sin2�x � 2a cot �

O x

a

A P

y=2a

¨

y
C
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L A B O R AT O R Y  P R O J E C T ; RUNNING CIRCLES AROUND CIRCLES

In this project we investigate families of curves, called hypocycloids and epicycloids, that are
generated by the motion of a point on a circle that rolls inside or outside another circle.

1. A hypocycloid is a curve traced out by a fixed point P on a circle C of radius b as C rolls on the
inside of a circle with center O and radius a. Show that if the initial position of P is and
the parameter is chosen as in the figure, then parametric equations of the hypocycloid are

�a, 0�
�

y � �a � b� sin � � b sin�a � b

b
�	x � �a � b� cos � � b cos�a � b

b
�	

; Graphing calculator or computer required

668 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

44. (a) Find parametric equations for the set of all points as
shown in the figure such that . (This curve
is called the cissoid of Diocles after the Greek scholar
Diocles, who introduced the cissoid as a graphical
method for constructing the edge of a cube whose volume
is twice that of a given cube.)

(b) Use the geometric description of the curve to draw a
rough sketch of the curve by hand. Check your work by
using the parametric equations to graph the curve.

; 45. Suppose that the position of one particle at time is given by

and the position of a second particle is given by

(a) Graph the paths of both particles. How many points of
intersection are there?

(b) Are any of these points of intersection collision points? 
In other words, are the particles ever at the same place at
the same time? If so, find the collision points.

(c) Describe what happens if the path of the second particle
is given by

46. If a projectile is fired with an initial velocity of meters per
second at an angle above the horizontal and air resistance
is assumed to be negligible, then its position after seconds 

P

� OP � � � AB �

xO

y

A

P
x=2a

B

a

t

0 � t � 2�y1 � 2 cos tx1 � 3 sin t

0 � t � 2�y2 � 1 � sin tx 2 � �3 � cos t

x 2 � 3 � cos t y2 � 1 � sin t 0 � t � 2�

v0

	
t

is given by the parametric equations

where is the acceleration due to gravity ( m�s ).
(a) If a gun is fired with and m�s, when 

will the bullet hit the ground? How far from the gun will
it hit the ground? What is the maximum height reached 
by the bullet?

; (b) Use a graphing device to check your answers to part (a).
Then graph the path of the projectile for several other 
values of the angle to see where it hits the ground.
Summarize your findings.

(c) Show that the path is parabolic by eliminating the 
parameter.

; 47. Investigate the family of curves defined by the parametric
equations , . How does the shape change 
as increases? Illustrate by graphing several members of the
family.

; 48. The swallowtail catastrophe curves are defined by the para-
metric equations , . Graph
several of these curves. What features do the curves have in
common? How do they change when increases?

; 49. Graph several members of the family of curves with
parametric equations , , where

. How does the shape change as increases? For what
values of does the curve have a loop?

; 50. Graph several members of the family of curves
, where is a positive

integer. What features do the curves have in common? What
happens as increases?

; 51. The curves with equations , are
called Lissajous figures. Investigate how these curves vary
when , , and vary. (Take to be a positive integer.)

; 52. Investigate the family of curves defined by the parametric
equations , , where . Start 
by letting be a positive integer and see what happens to the
shape as increases. Then explore some of the possibilities
that occur when is a fraction.

	 � 30
 v0 � 500

	

x � t 2 y � t 3 � ct
c

x � 2ct � 4t 3 y � �ct 2 � 3t 4

c

x � t � a cos t y � t � a sin t
a � 0 a

a

x � sin t � sin nt ny � cos t � cos nt

n

x � a sin nt y � b cos t

a b n n

x � cos t y � sin t � sin ct c � 0
c

c
c

29.8t

y � �v0 sin 	�t �
1
2 tt 2x � �v0 cos 	�t

xO

y

a

C

Pb
(a, 0)¨

A
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 669

2. Use a graphing device (or the interactive graphic in TEC Module 10.1B) to draw the graphs of
hypocycloids with a positive integer and . How does the value of affect the graph?
Show that if we take , then the parametric equations of the hypocycloid reduce to

This curve is called a hypocycloid of four cusps, or an astroid.

3. Now try b � 1 and , a fraction where n and d have no common factor. First let n � 1
and try to determine graphically the effect of the denominator d on the shape of the graph. Then
let n vary while keeping d constant. What happens when ?

4. What happens if and is irrational? Experiment with an irrational number like or
. Take larger and larger values for and speculate on what would happen if we were to

graph the hypocycloid for all real values of .

5. If the circle rolls on the outside of the fixed circle, the curve traced out by is called an
epicycloid. Find parametric equations for the epicycloid.

6. Investigate the possible shapes for epicycloids. Use methods similar to Problems 2–4.

x � 4 cos3� y � 4 sin3�

a � n�d

n � d � 1

b � 1 a s2
e � 2 �

�

C P

a b � 1
a � 4

a
Look at Module 10.1B to see how 

hypocycloids and epi cycloids are formed by 
the motion of rolling circles.

TEC

Having seen how to represent curves by parametric equations, we now apply the methods
of calculus to these parametric curves. In particular, we solve problems involving tangents,
area, arc length, and surface area.

Tangents
Suppose and are differentiable functions and we want to find the tangent line at a point
on the curve where is also a differentiable function of . Then the Chain Rule gives

If , we can solve for :

Equation 1 (which you can remember by thinking of canceling the ’s) enables us 
to find the slope of the tangent to a parametric curve without having to eliminate 
the parameter . We see from that the curve has a horizontal tangent when
(provided that ) and it has a vertical tangent when (provided that

). This information is useful for sketching parametric curves.
As we know from Chapter 4, it is also useful to consider . This can be found by

replacing y by dy�dx in Equation 1:

f t

y x

dy

dt
�

dy

dx
�

dx

dt

dx�dt � 0 dy�dx

1
dy

dx
�

dy

dt

dx

dt

if  
dx

dt
� 0

dt
dy�dx

t dy�dt � 0
dx�dt � 0 dx�dt � 0

dy�dt � 0

1

d 2y�dx 2

d 2 y

dx 2 �
d

dx �dy

dx	 �

d

dt �dy

dx	
dx

dt

10.2 Calculus with Parametric Curves

If we think of the curve as being traced out by
a moving particle, then and are
the vertical and horizontal velocities of the par-
ticle and Formula 1 says that the slope of the
tangent is the ratio of these velocities. 

dx�dtdy�dt

| Note that
d 2y

dx2 �

d 2y

dt 2

d 2x

dt 2
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670 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

A curve is defined by the parametric equations , 
(a) Show that has two tangents at the point (3, 0) and find their equations.
(b) Find the points on where the tangent is horizontal or vertical.
(c) Determine where the curve is concave upward or downward.
(d) Sketch the curve.

SOLUTION
(a) Notice that when or . Therefore the
point on arises from two values of the parameter, and . This
indicates that crosses itself at . Since

the slope of the tangent when is , so the equa-
tions of the tangents at are

(b) has a horizontal tangent when , that is, when and .
Since , this happens when , that is, . The corresponding
points on are and (1, 2). has a vertical tangent when , that is,

.  (Note that there.) The corresponding point on is (0, 0).

(c) To determine concavity we calculate the second derivative:

Thus the curve is concave upward when and concave downward when .

(d) Using the information from parts (b) and (c), we sketch in Figure 1.

(a) Find the tangent to the cycloid , at the point
where .  (See Example 7 in Section 10.1.)
(b) At what points is the tangent horizontal? When is it vertical?

SOLUTION
(a) The slope of the tangent line is

When , we have

and

C x � t 2 y � t 3 � 3t.
C

C

y � t 3 � 3t � t�t 2 � 3� � 0 t � 0 t � �s3
�3, 0� C t � s3 t � �s3

C �3, 0�

dy

dx
�

dy�dt

dx�dt
�

3t 2 � 3

2t
�

3

2
 �t �

1

t �
t � �s3 dy�dx � �6�(2s3 ) � �s3

�3, 0�

y � s3 �x � 3� and y � �s3 �x � 3�

C dy�dx � 0 dy�dt � 0 dx�dt � 0
dy�dt � 3t 2 � 3 t 2 � 1 t � �1

C �1, �2� C dx�dt � 2t � 0
t � 0 dy�dt � 0 C

d 2 y

dx 2 �

d

dt � dy

dx�
dx

dt

�

3

2
 �1 �

1

t 2�
2t

�
3�t 2 � 1�

4t 3

t � 0 t � 0

C

x � r �� � sin �� y � r �1 � cos ��
� � ��3

dy

dx
�

dy�d�

dx�d�
�

r sin �

r �1 � cos ��
�

sin �

1 � cos �

EXAMPLE 1

v EXAMPLE 2

� � ��3

x � r��

3
� sin 

�

3 � � r��

3
�

s3

2 � y � r�1 � cos 
�

3 � �
r

2

dy

dx
�

sin���3�
1 � cos���3�

�
s3�2

1 �
1
2

� s3

0

y

x

(3, 0)

(1, _2)

(1, 2)

t=1

t=_1

y=œ„3(x-3)

y=_ œ„3(x-3)

FIGURE 1 
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 671

Therefore the slope of the tangent is and its equation is

The tangent is sketched in Figure 2.

(b) The tangent is horizontal when , which occurs when and
, that is, , an integer. The corresponding point on the

cycloid is .
When , both and are 0. It appears from the graph that there 

are vertical tangents at those points. We can verify this by using l’Hospital’s Rule as
follows:

A similar computation shows that as , so indeed there are verti-
cal tangents when , that is, when .

Areas
We know that the area under a curve from to is , where

. If the curve is traced out once by the parametric equations and ,
, then we can calculate an area formula by using the Sub stitution Rule for 

Definite Integrals as follows:

Find the area under one arch of the cycloid

(See Figure 3.)

SOLUTION One arch of the cycloid is given by . Using the Substitution Rule
with and , we have

s3

y �
r

2
� s3 �x �

r�

3
�

rs3

2 � or s3 x � y � r� �

s3
� 2�

FIGURE 2 0

y

x2πr 4πr

(πr, 2r)(_πr, 2r) (3πr, 2r) (5πr, 2r)

π
3¨=

dy�dx � 0 sin � � 0
1 � cos � � 0 � � �2n � 1�� n

��2n � 1��r, 2r�
� � 2n� dx�d� dy�d�

lim
� l2n��

dy

dx
� lim

� l2n��

sin �

1 � cos �
� lim

� l2n��

cos �

sin �
� 	

dy�dx l �	 � l 2n��

� � 2n� x � 2n�r

a b A � x
b
a

F�x� dx
F�x� 
 0 x � f �t� y � t�t�
� � t � 

A � y
b

a
y dx � y



�
t�t� f ��t� dt �or y

�


t�t� f ��t� dt�

x � r�� � sin �� y � r�1 � cos ��

0 � � � 2�
y � r�1 � cos �� dx � r�1 � cos � � d�

A � y
2�r

0
y dx � y

2�

0
r�1 � cos �� r�1 � cos �� d�

� r 2
y

2�

0
�1 � cos ��2 d� � r 2

y
2�

0
�1 � 2 cos � � cos2�� d�

� r 2
y

2�

0
[1 � 2 cos � �

1
2 �1 � cos 2��] d�

� r 2[ 3
2 � � 2 sin � �

1
4 sin 2�]0

2�

v EXAMPLE 3

� r 2( 3
2 � 2�) � 3�r 2

y � F�x�

The limits of integration for are found 
as usual with the Substitution Rule. When

, is either or . When , is
the remaining value.

 tx � b�tx � a

t

The result of Example 3 says that the area
under one arch of the cycloid is three times the
area of the rolling circle that generates the
cycloid (see Example 7 in Section 10.1). Galileo
guessed this result but it was first proved by
the French mathematician Roberval and the
Italian mathematician Torricelli.

FIGURE 3 

0

y

x2πr
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672 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Arc Length
We already know how to find the length of a curve given in the form ,

. Formula 8.1.3 says that if is continuous, then

Suppose that can also be described by the parametric equations and ,
, where . This means that is traversed once, from left to

right, as increases from to and , . Putting Formula 1 into Formula
2 and using the Substitution Rule, we obtain

Since , we have

Even if can’t be expressed in the form , Formula 3 is still valid but we obtain
it by polygonal approximations. We divide the parameter interval into n subintervals
of equal width . If , , , . . . , are the endpoints of these subintervals, then
and are the coordinates of points that lie on and the polygon with ver-
tices , , . . . , approximates . (See Figure 4.)

As in Section 8.1, we define the length of to be the limit of the lengths of these
approximating polygons as :

The Mean Value Theorem, when applied to on the interval , gives a number in
such that

If we let and , this equation becomes

Similarly, when applied to , the Mean Value Theorem gives a number in such
that

Therefore

and so

C y � F�x�
a � x � b F�

L � y
b

a
	1 � �dy

dx�2 

dx

C x � f �t� y � t�t�
� � t �  dx�dt � f ��t� � 0 C

t �  f ��� � a f �� � b

L � y
b

a
	1 � � dy

dx�2 

dx � y


�
	1 � � dy�dt

dx�dt�2 dx

dt
dt

dx�dt � 0

L � y


�
	�dx

dt �2

� �dy

dt �2 

dt

C y � F�x�

�, �

�t t0 t1 t2 tn xi � f �ti�
yi � t�ti� Pi�xi, yi � C
P0 P1 Pn C

L C
n l 	

L � lim
nl 	

�
n

i�1
 Pi�1Pi 

f 
ti�1, ti � ti*
�ti�1, ti �

f �ti� � f �ti�1� � f ��ti*��ti � ti�1�

�xi � xi � xi�1 �yi � yi � yi�1

�xi � f ��ti*� �t

2

3

ti** �ti�1, ti�

�yi � t��ti**� �t

 Pi�1Pi  � s��xi �2 � ��yi�2 � s
 f ��ti*��t�2 � 
t��ti
**��t�2 

� s
 f ��ti*��2 � 
t��ti
**��2 �t

t

L � lim
n l 	

�
n

i�1
s
 f ��ti*��2 � 
t��ti

**��2 �t4

L

0

y

x

P¸

P¡

P™ Pi _1

Pi

Pn

C

FIGURE 4 
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 673

The sum in resembles a Riemann sum for the function but it is not
exactly a Riemann sum because in general. Nevertheless, if and are contin-
uous, it can be shown that the limit in is the same as if and were equal, namely,

Thus, using Leibniz notation, we have the following result, which has the same form as For-
mula 3.

Theorem If a curve is described by the parametric equations ,
, , where and are continuous on and is traversed

exactly once as increases from to , then the length of is

Notice that the formula in Theorem 5 is consistent with the general formulas
and of Section 8.1.

If we use the representation of the unit circle given in Example 2 in Sec-
tion 10.1,

then and , so Theorem 5 gives

as expected. If, on the other hand, we use the representation given in Example 3 in Sec-
tion 10.1,

then , , and the integral in Theorem 5 gives

| Notice that the integral gives twice the arc length of the circle because as increases
from 0 to , the point traverses the circle twice. In general, when find-
ing the length of a curve from a parametric representation, we have to be careful to
ensure that is traversed only once as increases from to .

Find the length of one arch of the cycloid ,

SOLUTION From Example 3 we see that one arch is described by the parameter interval
. Since

s� f ��t��2 � �t��t��2 

ti* � ti** f � t�
ti* ti**

L � y
�

�
s� f ��t��2 � �t��t��2 dt

C x � f �t�
y � t�t� � � t � � f � t� ��, �� C

t � � C

L � y
�

�
��dx

dt �2

� �dy

dt �2 

dt

L � x ds
�ds�2 � �dx�2 � �dy�2

x � cos t y � sin t 0 � t � 2�

dx	dt � �sin t dy	dt � cos t

L � y
2�

0
��dx

dt �2

� �dy

dt �2 

dt � y
2�

0
ssin2t � cos2t dt � y

2�

0
 dt � 2�

x � sin 2t y � cos 2t 0 � t � 2�

dx	dt � 2 cos 2t dy	dt � �2 sin 2t

y
2�

0
�� dx

dt �2

� � dy

dt �2 

dt � y
2�

0
s4 cos2 2t � 4 sin2 2t dt � y

2�

0
2 dt � 4�

t
2� �sin 2t, cos 2t�

C
C t � �

5

4

4

EXAMPLE 4

x � r �	 � sin 	�
y � r�1 � cos 	�.

0 � 	 � 2�

v EXAMPLE 5

dy

d	
� r sin 	and

dx

d	
� r�1 � cos 	�
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674 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

we have

To evaluate this integral we use the identity with , which
gives . Since , we have and so

. Therefore

and so

Surface Area
In the same way as for arc length, we can adapt Formula 8.2.5 to obtain a formula for
surface area. If the curve given by the parametric equations , , ,
is rotated about the -axis, where , are continuous and , then the area of the
resulting surface is given by

The general symbolic formulas and (Formulas 8.2.7 and 8.2.8)
are still valid, but for parametric curves we use

Show that the surface area of a sphere of radius is .

SOLUTION The sphere is obtained by rotating the semicircle

about the -axis. Therefore, from Formula 6, we get

L � y
2�

0
	� dx

d��2

� � dy

d��2 

d�

� y
2�

0
sr 2�1 � 2 cos � � cos2� � sin2�� d�

sin2x � 1
2 �1 � cos 2x� � � 2x

1 � cos � � 2 sin2���2� 0 � � � 2� 0 � ��2 � �
sin���2� 
 0

s2�1 � cos �� � s4 sin2���2� � 2  sin���2�  � 2 sin���2�

L � 2r y
2�

0
sin���2� d� � 2r 
�2 cos���2�]0

2�

� 2r 
2 � 2� � 8r

� � t � y � t�t�x � f �t�
t�t� 
 0t�f �x

S � y


�
2�y	� dx

dt �2

� � dy

dt �2 

dt

S � x 2�x dsS � x 2�y ds

ds � 	� dx

dt �2

� �dy

dt �2 

dt

4�r 2r

0 � t � �y � r sin tx � r cos t

x

S � y
�

0
2�r sin t s��r sin t�2 � �r cos t�2 dt

� 2� y
�

0
r sin t � r dt� 2� y

�

0
r sin t sr 2�sin2t � cos2t� dt

� 2�r 2��cos t�]0

�

� 4�r 2� 2�r 2
y

�

0
sin t dt

6

EXAMPLE 6

� y
2�

0
sr 2�1 � cos ��2 � r 2 sin2� d�

� r y
2�

0
s2�1 � cos �� d�

The result of Example 5 says that the length of
one arch of a cycloid is eight times the radius of
the gener ating circle (see Figure 5). This was first
proved in 1658 by Sir Christopher Wren, who
later became the architect of St. Paul’s Cathedral
in London.

FIGURE 5

0

y

x2πr

r

L=8r

97817_10_ch10_p670-679.qk_97817_10_ch10_p670-679  11/3/10  4:12 PM  Page 674

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES 675

1–2 Find .

1. ,  2. ,  

3–6 Find an equation of the tangent to the curve at the point 
corresponding to the given value of the parameter.

3. ,  ;  

4. ,  ;  

5. ,  ;  

6. ,  ;  

7–8 Find an equation of the tangent to the curve at the given
point by two methods: (a) without eliminating the parameter and
(b) by first eliminating the parameter.

7. ,  ;  

8. ,  ;  

; 9–10 Find an equation of the tangent(s) to the curve at the given
point. Then graph the curve and the tangent(s).

9. ,  ;  

10. ,  ;  

11–16 Find and . For which values of is the
curve concave upward?

11. ,  12. ,  

13. ,  14. ,  

15. ,  ,  

16. ,  ,  

17–20 Find the points on the curve where the tangent is horizon-
tal or vertical. If you have a graphing device, graph the curve to
check your work.

17. ,  

18. ,  

19. ,  

20. ,  

; 21. Use a graph to estimate the coordinates of the rightmost point
on the curve , . Then use calculus to find the
exact coordinates.

; 22. Use a graph to estimate the coordinates of the lowest point
and the leftmost point on the curve , .
Then find the exact coordinates.

dy�dx

x � t sin t y � t 2 � t x � 1�t y � st e�t

x � 1 � 4t � t 2 y � 2 � t 3 t � 1

x � t � t�1 y � 1 � t 2 t � 1

x � t cos t y � t sin t t � �

x � sin3� y � cos3� � � ��6

x � 1 � ln t y � t 2 � 2 �1, 3�

x � 1 � st y � et2

�2, e�

x � 6 sin t y � t 2 � t �0, 0�

x � cos t � cos 2t y � sin t � sin 2t ��1, 1�

dy�dx d 2 y�dx 2 t

x � t 2 � 1 y � t 2 � t x � t 3 � 1 y � t 2 � t

x � e t y � te� t x � t 2 � 1 y � e t � 1

x � 2 sin t y � 3 cos t 0 � t � 2�

x � cos 2 t y � cos t 0 � t � �

x � t 3 � 3t y � t 2 � 3

x � t 3 � 3t y � t 3 � 3t 2

x � cos � y � cos 3�

x � e sin � y � e cos �

x � t � t 6 y � e t

x � t 4 � 2t y � t � t 4

; 23–24 Graph the curve in a viewing rectangle that displays all
the important aspects of the curve.

23. ,  

24. ,  

25. Show that the curve , has two
tangents at and find their equations. Sketch the curve.

; 26. Graph the curve , to
discover where it crosses itself. Then find equations of both
tangents at that point.

27. (a) Find the slope of the tangent line to the trochoid
, in terms of . (See

Exercise 40 in Section 10.1.)
(b) Show that if , then the trochoid does not have a 

vertical tangent.

28. (a) Find the slope of the tangent to the astroid ,
in terms of . (Astroids are explored in the

Laboratory Project on page 668.)
(b) At what points is the tangent horizontal or vertical?
(c) At what points does the tangent have slope 1 or ?

29. At what points on the curve , does
the tangent line have slope ?

30. Find equations of the tangents to the curve ,
that pass through the point .

31. Use the parametric equations of an ellipse, ,
, , to find the area that it encloses.

32. Find the area enclosed by the curve , and
the .

33. Find the area enclosed by the and the curve 
, .

34. Find the area of the region enclosed by the astroid
, . (Astroids are explored in the Labo-

ratory Project on page 668.)

35. Find the area under one arch of the trochoid of Exercise 40 in
Section 10.1 for the case .

x � t 4 � 2t 3 � 2t 2 y � t 3 � t

x � t 4 � 4t 3 � 8t 2 y � 2t 2 � t

x � cos t y � sin t cos t
�0, 0�

x � cos t � 2 cos 2t y � sin t � 2 sin 2t

x � r� � d sin � y � r � d cos � �

d � r

x � a cos3�
y � a sin3� �

�1

x � 2t 3 y � 1 � 4t � t 2

1

x � 3t 2 � 1
y � 2t 3 � 1 �4, 3�

x � a cos �
y � b sin � 0 � � � 2�

x � t 2 � 2t y � st
y-axis

x-axis
x � 1 � e t y � t � t 2

x � a cos3� y � a sin3�

y

x0 a_a

_a

a

d � r

10.2 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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676 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

36. Let be the region enclosed by the loop of the curve in
Example 1.
(a) Find the area of .
(b) If is rotated about the -axis, find the volume of the

resulting solid.
(c) Find the centroid of .

37–40 Set up an integral that represents the length of the curve.
Then use your calculator to find the length correct to four
decimal places.

37. ,  ,  

38. ,  ,  

39. ,  ,  

40. ,  ,  

41–44 Find the exact length of the curve.

41. ,  ,  

42. ,  ,  

43. ,  ,  

44. ,  ,  

; 45–46 Graph the curve and find its length.

45. ,  ,  

46. ,  ,  

; 47. Graph the curve , and find its
length correct to four decimal places.

48. Find the length of the loop of the curve ,
.

49. Use Simpson’s Rule with to estimate the length of the
curve , , .

50. In Exercise 43 in Section 10.1 you were asked to derive the
parametric equations , for the
curve called the witch of Maria Agnesi. Use Simpson’s Rule
with to estimate the length of the arc of this curve
given by .

51–52 Find the distance traveled by a particle with position
as varies in the given time interval. Compare with the length of
the curve.

51. ,  ,  

52. ,  ,  

53. Show that the total length of the ellipse ,
, , is

�
� x

�

x � t � e�t y � t � e�t 0 � t � 2

x � t 2 � t y � t 4 1 � t � 4

x � t � 2 sin t y � 1 � 2 cos t 0 � t � 4�

x � t � st y � t � st 0 � t � 1

�

0 � t � 1y � 4 � 2t 3x � 1 � 3t 2

0 � t � 3y � 5 � 2tx � et � e�t

0 � t � 1y � t cos tx � t sin t

0 � t � �y � 3 sin t � sin 3tx � 3 cos t � cos 3t

0 � t � �y � e t sin tx � e t cos t

��4 � t � 3��4y � sin tx � cos t � ln(tan 12 t)

x � sin t � sin 1.5t y � cos t

x � 3t � t 3

y � 3t 2

n � 6
�6 � t � 6y � t � e tx � t � e t

y � 2a sin2�x � 2a cot �

n � 4
��4 � � � ��2

�x, y�
t

0 � t � 3�y � cos2tx � sin2t

0 � t � 4�y � cos tx � cos2t

x � a sin �
a � b � 0y � b cos �

L � 4a y
��2

0
s1 � e 2 sin2� d�

where is the eccentricity of the ellipse , where
.

54. Find the total length of the astroid , ,
where 

55. (a) Graph the epitrochoid with equations

What parameter interval gives the complete curve?
(b) Use your CAS to find the approximate length of this

curve.

56. A curve called Cornu’s spiral is defined by the parametric
equations

where and are the Fresnel functions that were intro duced
in Chapter 4.
(a) Graph this curve. What happens as and as 

?
(b) Find the length of Cornu’s spiral from the origin to the

point with parameter value .

57–60 Set up an integral that represents the area of the surface
obtained by rotating the given curve about the -axis. Then use
your calculator to find the surface area correct to four decimal
places.

57. ,  ,  

58. ,  ,  

59. ,  ,  

60. ,  ,  

61–63 Find the exact area of the surface obtained by rotating the
given curve about the -axis.

61. ,  ,  

62. ,  ,  

63. ,  ,  

; 64. Graph the curve

If this curve is rotated about the -axis, find the area of the
resulting surface. (Use your graph to help find the correct 
parameter interval.)

65–66 Find the surface area generated by rotating the given curve
about the -axis.

65. ,  ,  

(e � c�ae
c � sa 2 � b 2 )

y � a sin3�x � a cos3�
a � 0.

CAS

x � 11 cos t � 4 cos�11t�2�

y � 11 sin t � 4 sin�11t�2�

CAS

x � C�t� � y
t

0
cos��u 2�2� du

y � S�t� � y
t

0
sin��u 2�2� du

SC

t l 	
t l �	

t

x

0 � t � ��2y � t cos tx � t sin t

0 � t � ��2y � sin 2tx � sin t

0 � t � 1y � �t 2 � 1�e tx � 1 � te t

0 � t � 1y � t � t 4x � t 2 � t 3

x

0 � t � 1y � t 2x � t 3

0 � t � 1y � 3t 2x � 3t � t 3

0 � � � ��2y � a sin3�x � a cos3�

y � 2 sin � � sin 2�x � 2 cos � � cos 2�

x

y

0 � t � 5y � 2t 3x � 3t 2
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LABORATORY PROJECT BÉZIER CURVES 677

66. ,  ,  

67. If is continuous and for , show that the
parametric curve , , , can be put in
the form . [Hint: Show that exists.]

68. Use Formula 2 to derive Formula 7 from Formula 8.2.5 for the
case in which the curve can be represented in the form

, .

69. The curvature at a point of a curve is defined as

where is the angle of inclination of the tangent line at , 
as shown in the figure. Thus the curvature is the absolute value
of the rate of change of with respect to arc length. It can be
regarded as a measure of the rate of change of direction of the
curve at and will be studied in greater detail in Chapter 13.
(a) For a parametric curve , , derive the 

formula

where the dots indicate derivatives with respect to , so
. [Hint: Use and Formula 2 to

find . Then use the Chain Rule to find .]
(b) By regarding a curve as the parametric curve

, , with parameter , show that the formula
in part (a) becomes

0 � t � 1y � 4e t�2x � e t � t

a � t � bf ��t� � 0f �
a � t � by � t�t�x � f �t�
f �1y � F�x�

a � x � by � F�x�

P

� � � d�

ds �
P�

�

P
y � y�t�x � x�t�

� �  x�y�� � x��y� 

x� 2 � y� 2 �3�2

t
� � tan�1�dy�dx�x� � dx�dt

d��dsd��dt
y � f �x�

xy � f �x�x � x

� �  d 2 y�dx 2 

1 � �dy�dx�2 �3�2

0 x

y

P

˙

70. (a) Use the formula in Exercise 69(b) to find the curvature of
the parabola at the point .

(b) At what point does this parabola have maximum curvature?

71. Use the formula in Exercise 69(a) to find the curvature of the
cycloid , at the top of one of its
arches.

72. (a) Show that the curvature at each point of a straight line 
is .

(b) Show that the curvature at each point of a circle of 
radius is .

73. A string is wound around a circle and then unwound while
being held taut. The curve traced by the point at the end of
the string is called the involute of the circle. If the circle has
radius and center and the initial position of is , and
if the parameter is chosen as in the figure, show that
parametric equations of the involute are

74. A cow is tied to a silo with radius by a rope just long enough
to reach the opposite side of the silo. Find the area available for
grazing by the cow.

r O P �r, 0�
�

x � r �cos � � � sin �� y � r �sin � � � cos ��

xO

y

r

¨ P

T

r

�1, 1�y � x 2

y � 1 � cos �x � � � sin �

� � 0

� � 1�rr

P

L A B O R AT O R Y  P R O J E C T ; BÉZIER CURVES

Bézier curves are used in computer-aided design and are named after the French mathema-
tician Pierre Bézier (1910–1999), who worked in the automotive industry. A cubic Bézier curve 
is determined by four control points, and , and is 
defined by the parametric equations

P0�x0, y0 �, P1�x1, y1�, P2�x2, y2 �, P3�x3, y3 �

x � x0�1 � t�3 � 3x1t�1 � t�2 � 3x2t 2�1 � t� � x3t 3

y � y0�1 � t�3 � 3y1t�1 � t�2 � 3y2t 2�1 � t� � y3t 3

; Graphing calculator or computer required

97817_10_ch10_p670-679.qk_97817_10_ch10_p670-679  11/3/10  4:12 PM  Page 677

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



678 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

where . Notice that when we have and when we have
, so the curve starts at and ends at .

1. Graph the Bézier curve with control points , , , and 
Then, on the same screen, graph the line segments , , and . (Exercise 31 in 
Section 10.1 shows how to do this.) Notice that the middle control points and don’t lie
on the curve; the curve starts at , heads toward and without reaching them, and ends 
at .

2. From the graph in Problem 1, it appears that the tangent at passes through and the 
tangent at passes through . Prove it.

3. Try to produce a Bézier curve with a loop by changing the second control point in 
Problem 1.

4. Some laser printers use Bézier curves to represent letters and other symbols. Experiment 
with control points until you find a Bézier curve that gives a reasonable representation of the 
letter C.

5. More complicated shapes can be represented by piecing together two or more Bézier curves.
Suppose the first Bézier curve has control points and the second one has con-
trol points . If we want these two pieces to join together smoothly, then the
tangents at should match and so the points , , and all have to lie on this common
tangent line. Using this principle, find control points for a pair of Bézier curves that repre-
sent the letter S.

0 � t � 1 t � 0 �x, y� � �x0, y0 � t � 1
P0 P3

P0�4, 1� P1�28, 48� P2�50, 42� P3�40, 5�.
P0P1 P1P2 P2P3

P1 P2

P0 P1 P2

P3

P0 P1

P3 P2

P0, P1, P2, P3

P3, P4, P5, P6

P3 P2 P3 P4

�x, y� � �x3, y3�

A coordinate system represents a point in the plane by an ordered pair of numbers called
coordinates. Usually we use Cartesian coordinates, which are directed distances from two
perpendicular axes. Here we describe a coordinate system introduced by Newton, called
the polar coordinate system, which is more convenient for many purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled . Then
we draw a ray (half-line) starting at called the polar axis. This axis is usually drawn hor-
izontally to the right and corresponds to the positive -axis in Cartesian coordinates.

If is any other point in the plane, let be the distance from to and let be the angle
(usually measured in radians) between the polar axis and the line as in Figure 1. Then
the point is represented by the ordered pair and , are called polar coordinates
of . We use the convention that an angle is positive if measured in the counterclockwise
direction from the polar axis and negative in the clockwise direction. If , then
and we agree that represents the pole for any value of .

We extend the meaning of polar coordinates to the case in which is negative by
agreeing that, as in Figure 2, the points and lie on the same line through and
at the same distance from , but on opposite sides of . If , the point lies in
the same quadrant as ; if , it lies in the quadrant on the opposite side of the pole.
Notice that represents the same point as .

Plot the points whose polar coordinates are given.
(a) (b) (c) (d)

O
O

x
P r O P �

OP
P �r, �� r �

P
P � O r � 0

�0, �� �
�r, �� r

��r, �� �r, �� O

 r  O O r � 0 �r, ��
� r � 0

��r, �� �r, � � ��

EXAMPLE 1
��3, 3��4��2, �2��3��2, 3���1, 5��4�

10.3 Polar Coordinates

(_r, ¨)

O

¨

(r, ¨ )

¨+π

FIGURE 2 

x
O

¨

r

polar axis

P(r, ̈ )

FIGURE 1 
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SECTION 10.3 POLAR COORDINATES 679

SOLUTION The points are plotted in Figure 3. In part (d) the point is located
three units from the pole in the fourth quadrant because the angle is in the second
quadrant and is negative.

In the Cartesian coordinate system every point has only one representation, but in the
polar coordinate system each point has many representations. For instance, the point

in Example 1(a) could be written as or or . (See
Figure 4.)

In fact, since a complete counterclockwise rotation is given by an angle 2 , the point rep-
resented by polar coordinates is also represented by

where is any integer.
The connection between polar and Cartesian coordinates can be seen from Figure 5, in

which the pole corresponds to the origin and the polar axis coincides with the positive 
-axis. If the point has Cartesian coordinates and polar coordinates , then, from

the figure, we have

and so

Although Equations 1 were deduced from Figure 5, which illustrates the case where
and , these equations are valid for all values of and (See the gen-

eral definition of and in Appendix D.)
Equations 1 allow us to find the Cartesian coordinates of a point when the polar coordi-

nates are known. To find and when and are known, we use the equations

r � �3

O

”_3,       ’3π
4

3π
4

(2, 3π) O

3π

”1,       ’5π
4

5π
4

O

FIGURE 3 

O

”2, _      ’2π
3

2π
3_

3��4

�1, 5��4� �1, �3��4� �1, 13��4� ��1, ��4�

O

13π
4

”1,        ’13π
4

O

_ 3π
4

”1, _      ’3π
4

O

”1,       ’5π
4

5π
4

FIGURE 4

O

”_1,     ’π
4

π
4

�
�r, ��

�r, � � 2n�� and ��r, � � �2n � 1���

n

x P �x, y� �r, ��

cos � �
x

r
sin � �

y

r

1 x � r cos � y � r sin �

r � 0 0 � � � ��2 r �.
sin � cos �

r � x y

��3, 3��4�

O

y

x

¨

x

y
r

P (r, ̈ )=P(x, y)

FIGURE 5
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680 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

which can be deduced from Equations 1 or simply read from Figure 5.

Convert the point from polar to Cartesian coordinates.

SOLUTION Since and , Equations 1 give

Therefore the point is in Cartesian coordinates.

Represent the point with Cartesian coordinates in terms of polar
coordinates.

SOLUTION If we choose to be positive, then Equations 2 give

Since the point lies in the fourth quadrant, we can choose or
. Thus one possible answer is ; another is .

NOTE Equations 2 do not uniquely determine when and are given because, as
increases through the interval , each value of occurs twice. Therefore, in
converting from Cartesian to polar coordinates, it’s not good enough just to find and
that satisfy Equations 2. As in Example 3, we must choose so that the point lies in
the correct quadrant.

Polar Curves
The graph of a polar equation , or more generally , consists of all
points that have at least one polar representation whose coordinates satisfy the 
equation.

What curve is represented by the polar equation ?

SOLUTION The curve consists of all points with . Since represents the dis-
tance from the point to the pole, the curve represents the circle with center and
radius . In general, the equation represents a circle with center and radius .
(See Figure 6.)

�2, ��3�

r � 2 � � ��3

x � r cos � � 2 cos 
�

3
� 2 �

1

2
� 1

y � r sin � � 2 sin  
�

3
� 2 �

s3

2
� s3

(1, s3 )

�1, �1�

r

r � sx 2 � y 2 � s12 � ��1�2 � s2

tan � �
y

x
� �1

�1, �1� � � ���4
� � 7��4 (s2 , ���4) �s2 , 7��4�

� x y �
0 � � � 2� tan �

r �
� �r, ��

F�r, �� � 0
P �r, ��

r � 2

�r, �� r � 2 r
r � 2 O

2 r � a O � a �

EXAMPLE 2

EXAMPLE 3

v EXAMPLE 4

2 r 2 � x 2 � y 2 tan � �
y

x

r � f ���

FIGURE 6

x

r=
1
2

r=1

r=2

r=4
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SECTION 10.3 POLAR COORDINATES 681

Sketch the polar curve .

SOLUTION This curve consists of all points such that the polar angle is 1 radian. It
is the straight line that passes through and makes an angle of 1 radian with the polar
axis (see Figure 7). Notice that the points on the line with are in the first
quadrant, whereas those with are in the third quadrant.

(a) Sketch the curve with polar equation .
(b) Find a Cartesian equation for this curve.

SOLUTION
(a) In Figure 8 we find the values of for some convenient values of and plot the
corresponding points . Then we join these points to sketch the curve, which appears
to be a circle. We have used only values of between 0 and , since if we let increase
beyond , we obtain the same points again.

(b) To convert the given equation to a Cartesian equation we use Equations 1 and 2.
From we have , so the equation becomes ,
which gives

or    

Completing the square, we obtain

which is an equation of a circle with center and radius 1.

� � 1EXAMPLE 5

��r, ��
O

r � 0�r, 1�
r � 0

EXAMPLE 6
r � 2 cos �

�r
�r, ��

���
�

FIGURE 8
Table of values and
graph of  r=2 cos ̈

(2, 0)

2

”_1,      ’2π
3

”0,     ’π
2

”1,     ’π
3

”œ„,     ’π
4

”œ„,     ’π
63

”_ œ„,       ’5π
63

”_ œ„,       ’3π
42

r � 2x�rr � 2 cos �cos � � x�rx � r cos �

x 2 � y 2 � 2x � 02x � r 2 � x 2 � y 2

�x � 1�2 � y 2 � 1

�1, 0�

FIGURE 9

O

y

x2

¨

r

P

Q

O
x

1

(_1, 1)

(_2, 1)

(1, 1)

(2, 1)

(3, 1)

¨=1

FIGURE 7

0 2

1
0

�1

�2
�s3
�s2

s2
s3

�
5��6
3��4
2��3
��2
��3
��4
��6

� r � 2 cos �

Figure 9 shows a geometrical illustration 
that the circle in Example 6 has the equation

. The angle is a right angle
(Why?) and so .r�2 � cos �

OPQr � 2 cos �

97817_10_ch10_p680-689.qk_97817_10_ch10_p680-689  11/3/10  4:13 PM  Page 681

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



682 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Sketch the curve .

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph of
in Cartesian coordinates in Figure 10 by shifting the sine curve up one

unit. This enables us to read at a glance the values of that correspond to increasing
values of . For instance, we see that as increases from 0 to , (the distance from )
increases from 1 to 2, so we sketch the corresponding part of the polar curve in Figure
11(a). As increases from to , Figure 10 shows that decreases from 2 to 1, so 
we sketch the next part of the curve as in Figure 11(b). As increases from to , 

decreases from 1 to 0 as shown in part (c). Finally, as increases from to , 
increases from 0 to 1 as shown in part (d). If we let increase beyond or decrease

beyond 0, we would simply re trace our path. Putting together the parts of the curve 
from Figure 11(a)–(d), we sketch the complete curve in part (e). It is called a cardioid
because it’s shaped like a heart.

Sketch the curve .

SOLUTION As in Example 7, we first sketch , , in Cartesian coor-
dinates in Figure 12. As increases from 0 to , Figure 12 shows that decreases
from 1 to 0 and so we draw the corresponding portion of the polar curve in Figure 13
(indicated by !). As increases from to , goes from 0 to . This means that
the distance from increases from 0 to 1, but instead of being in the first quadrant this
portion of the polar curve (indicated by @) lies on the opposite side of the pole in the
third quadrant. The remainder of the curve is drawn in a similar fashion, with the arrows
and numbers indicating the order in which the portions are traced out. The resulting
curve has four loops and is called a four-leaved rose.

r � 1 � sin �
r

Or��2��

r���2�
3��2��

2�3��2�r
2��r

(a) (b) (c) (d) (e)

FIGURE 11 Stages in sketching the cardioid r=1+sin ¨
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r=cos 2¨ in Cartesian coordinates

FIGURE 13
Four-leaved rose r=cos 2¨
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r=1+sin ̈  in Cartesian coordinates,
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Module 10.3 helps you see how 
polar curves are traced out by showing 
animations similar to Figures 10–13. 

TEC
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SECTION 10.3 POLAR COORDINATES 683

Symmetry
When we sketch polar curves it is sometimes helpful to take advantage of symmetry. The
following three rules are explained by Figure 14.

(a) If a polar equation is unchanged when is replaced by , the curve is sym metric
about the polar axis.

(b) If the equation is unchanged when is replaced by , or when is replaced by
, the curve is symmetric about the pole. (This means that the curve remains

unchanged if we rotate it through 180° about the origin.)

(c) If the equation is unchanged when is replaced by , the curve is sym metric
about the vertical line .

The curves sketched in Examples 6 and 8 are symmetric about the polar axis, since
. The curves in Examples 7 and 8 are symmetric about because

and . The four-leaved rose is also symmetric
about the pole. These symmetry properties could have been used in sketching the curves.
For instance, in Example 6 we need only have plotted points for and then
reflected about the polar axis to obtain the complete circle.

Tangents to Polar Curves
To find a tangent line to a polar curve , we regard as a parameter and write its
parametric equations as

Then, using the method for finding slopes of parametric curves (Equation 10.2.1) and the
Product Rule, we have

We locate horizontal tangents by finding the points where (provided that
). Likewise, we locate vertical tangents at the points where (pro-

vided that ).
Notice that if we are looking for tangent lines at the pole, then and Equation 3 sim-

plifies to

���

��rr
� � �

� � ��
� � ��2

O

(r, ¨)

(_r, ¨)
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(r, ¨)
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_¨

¨

(a) (b) (c)

FIGURE 14
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684 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

For instance, in Example 8 we found that when or . This
means that the lines and (or and ) are tangent lines to

at the origin.

(a) For the cardioid of Example 7, find the slope of the tangent line 
when .
(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 3 with , we have

(a) The slope of the tangent at the point where is

(b) Observe that

Therefore there are horizontal tangents at the points , , and
vertical tangents at and . When , both and are
0, so we must be careful. Using l’Hospital’s Rule, we have

By symmetry,

Thus there is a vertical tangent line at the pole (see Figure 15).
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FIGURE 15
Tangent lines for r=1+sin ¨
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SECTION 10.3 POLAR COORDINATES 685

NOTE Instead of having to remember Equation 3, we could employ the method used to
derive it. For instance, in Example 9 we could have written

Then we have

which is equivalent to our previous expression.

Graphing Polar Curves with Graphing Devices
Although it’s useful to be able to sketch simple polar curves by hand, we need to use a
graphing calculator or computer when we are faced with a curve as complicated as the ones
shown in Figures 16 and 17.

Some graphing devices have commands that enable us to graph polar curves directly.
With other machines we need to convert to parametric equations first. In this case we take
the polar equation and write its parametric equations as

Some machines require that the parameter be called rather than .

Graph the curve .

SOLUTION Let’s assume that our graphing device doesn’t have a built-in polar graphing
command. In this case we need to work with the corresponding parametric equations,
which are

In any case we need to determine the domain for . So we ask ourselves: How many
complete rotations are required until the curve starts to repeat itself? If the answer 
is , then

and so we require that be an even multiple of . This will first occur when
. Therefore we will graph the entire curve if we specify that . 

x � r cos � � �1 � sin �� cos � � cos � �
1
2 sin 2�

y � r sin � � �1 � sin �� sin � � sin � � sin2�

dy

dx
�

dy�d�

dx�d�
�

cos � � 2 sin � cos �

�sin � � cos 2�
�

cos � � sin 2�

�sin � � cos 2�

FIGURE 17
r=sin@(1.2¨)+cos#(6¨)

1.7

_1.7

_1.9 1.9

FIGURE 16
r=sin@(2.4¨)+cos$(2.4¨)

1

_1

_1 1

r � f ���

y � r sin � � f ��� sin �x � r cos � � f ��� cos �

�t

r � sin�8��5�EXAMPLE 10

y � r sin � � sin�8��5� sin �x � r cos � � sin�8��5� cos �

�

n

sin 
8�� � 2n��

5
� sin� 8�

5
�

16n�

5 � � sin 
8�

5

�16n��5
0 � � � 10�n � 5

97817_10_ch10_p680-689.qk_97817_10_ch10_p680-689  11/3/10  4:13 PM  Page 685

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



686 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1–2 Plot the point whose polar coordinates are given. Then find
two other pairs of polar coordinates of this point, one with
and one with .

1. (a) (b) (c) 

2. (a) (b) (c) 

3–4 Plot the point whose polar coordinates are given. Then find the
Cartesian coordinates of the point.

3. (a) (b) (c) 

r � 0
r � 0

��1, ��2��1, �3��4��2, ��3�

�1, �1���3, ��6��1, 7��4�

��2, 3��4�(2, �2��3)�1, ��

4. (a) (b) (c) 

5–6 The Cartesian coordinates of a point are given.
(i) Find polar coordinates of the point, where 
and .
(ii) Find polar coordinates of the point, where 
and .

5. (a) (b)

6. (a) (b)

�r, �� r � 0
0 � � � 2�

�r, �� r � 0
0 � � � 2�

�2, �2� (�1, s3 )
(3s3 , 3) �1, �2�

�2, �7��6��1, 5��2�(�s2 , 5��4)

10.3 Exercises

Switching from to , we have the equations

and Figure 18 shows the resulting curve. Notice that this rose has 16 loops.

Investigate the family of polar curves given by . How
does the shape change as changes? (These curves are called limaçons, after a French
word for snail, because of the shape of the curves for certain values of .)

SOLUTION Figure 19 shows computer-drawn graphs for various values of . For
there is a loop that decreases in size as decreases. When the loop disappears and
the curve becomes the cardioid that we sketched in Example 7. For between and the
cardioid’s cusp is smoothed out and becomes a “dimple.” When de creases from to ,
the limaçon is shaped like an oval. This oval becomes more circular as , and when

the curve is just the circle .

The remaining parts of Figure 19 show that as becomes negative, the shapes change
in reverse order. In fact, these curves are reflections about the horizontal axis of the corre-
sponding curves with positive .

Limaçons arise in the study of planetary motion. In particular, the trajectory of Mars, as
viewed from the planet Earth, has been modeled by a limaçon with a loop, as in the parts
of Figure 19 with .

x � sin�8t�5� cos t y � sin�8t�5� sin t 0 � t � 10�

r � 1 � c sin �
c

c

c c � 1
c c � 1

c 1 1
2

c 1
2 0

c l 0
c � 0 r � 1

c

c

EXAMPLE 11v

t�

� c � � 1

1

_1

_1 1

FIGURE 18
r=sin(8¨/5)

c=2.5

FIGURE 19
Members of the family of
limaçons r=1+c sin ̈

c=0 c=_0.2 c=_0.5 c=_0.8 c=_1

c=_2

c=1.7 c=1 c=0.7 c=0.5 c=0.2

In Exercise 53 you are asked to prove analytically
what we have discovered from the graphs in 
Figure 19.
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SECTION 10.3 POLAR COORDINATES 687

7–12 Sketch the region in the plane consisting of points whose
polar coordinates satisfy the given conditions.

7.

8. ,  

9. ,  

10. ,  

11. ,  

12. ,  

13. Find the distance between the points with polar coordinates
and .

14. Find a formula for the distance between the points with polar
coordinates and .

15–20 Identify the curve by finding a Cartesian equation for the
curve.

15. 16.

17. 18.

19. 20.

21–26 Find a polar equation for the curve represented by the given
Cartesian equation.

21. 22.

23. 24.

25. 26.

27–28 For each of the described curves, decide if the curve would
be more easily given by a polar equation or a Cartesian equation.
Then write an equation for the curve.

27. (a) A line through the origin that makes an angle of with
the positive -axis

(b) A vertical line through the point 

28. (a) A circle with radius 5 and center 
(b) A circle centered at the origin with radius 4

29–46 Sketch the curve with the given polar equation by first
sketching the graph of as a function of in Cartesion coordinates.

29. 30.

31. 32.

33. , 34. ,

35. 36.

37. 38.

39. 40.

r 
 1

0 � r � 2 � � � � 3��2

r 
 0 ��4 � � � 3��4

1 � r � 3 ��6 � � � 5��6

2 � r � 3 5��3 � � � 7��3

r 
 1 � � � � 2�

�4, 2��3��2, ��3�

�r2, �2 ��r1, �1�

r � 4 sec �r 2 � 5

� � ��3r � 2 cos �

r 2 cos 2� � 1 r � tan � sec �

y � xy � 2

4y 2 � xy � 1 � 3x

x 2 � y 2 � 2cx xy � 4

��6
x

�3, 3�

�2, 3�

r � 1 � cos �r � �2 sin �

r �

r � 2�1 � cos ��

r � � � 
 0 r � ln � � 
 1

r � cos 5�r � 4 sin 3�

r � 3 cos 6�r � 2 cos 4�

r � 2 � sin �r � 1 � 2 sin �

r � 1 � 2 cos �

41. 42.

43. 44.

45. 46.

47–48 The figure shows a graph of as a function of in Cartesian
coordinates. Use it to sketch the corresponding polar curve.

47. 48.

49. Show that the polar curve (called a conchoid)
has the line as a vertical asymptote by showing that

. Use this fact to help sketch the conchoid.

50. Show that the curve (also a conchoid) has the
line as a horizontal asymptote by showing that

. Use this fact to help sketch the conchoid.

51. Show that the curve (called a cissoid of 
Diocles) has the line as a vertical asymptote. Show also
that the curve lies entirely within the vertical strip .
Use these facts to help sketch the cissoid.

52. Sketch the curve .

53. (a) In Example 11 the graphs suggest that the limaçon
has an inner loop when . Prove

that this is true, and find the values of that correspond to
the inner loop.

(b) From Figure 19 it appears that the limaçon loses its dimple
when . Prove this.

54. Match the polar equations with the graphs labeled I–VI. Give
reasons for your choices. (Don’t use a graphing device.)

(a) (b)
(c) (d)
(e) (f )

r � 2 � sin 3� r 2� � 1

r � 1 � 2 cos 2� r � 3 � 4 cos �

r �

¨

r

0 π 2π

2

_2
¨

r

0 π 2π

1

2

r � 4 � 2 sec �
x � 2

lim r l�	 x � 2

r � 2 � csc �
y � �1

lim r l�	 y � �1

r � sin � tan �
x � 1

0 � x � 1

�x 2 � y 2 �3 � 4x 2 y 2

r � 1 � c sin � � c � � 1
�

c � 1
2

r � s� ,  0 � � � 16� r � � 2,   0 � � � 16�

r � cos���3� r � 1 � 2 cos �
r � 2 � sin 3� r � 1 � 2 sin 3�

I II III

IV V VI

r 2 � cos 4�r 2 � 9 sin 2�
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688 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

55–60 Find the slope of the tangent line to the given polar curve
at the point specified by the value of .

55. ,  56. ,  

57. , 58. ,  

59. ,  60. ,  

61–64 Find the points on the given curve where the tangent line
is horizontal or vertical.

61. 62.

63. 64.

65. Show that the polar equation , where
, represents a circle, and find its center and radius.

66. Show that the curves and intersect at
right angles.

; 67–72 Use a graphing device to graph the polar curve. Choose
the parameter interval to make sure that you produce the entire
curve.

67. (nephroid of Freeth)

68. (hippopede)

69. (butterfly curve)

70. (valentine curve)

71. (PacMan curve)

72.

; 73. How are the graphs of and
related to the graph of ?

In general, how is the graph of related to the
graph of ?

�

� � ��3r � 2 � sin �� � ��6r � 2 sin �

r � 1�� � � � r � cos���3� � � �

r � cos 2� � � ��4 r � 1 � 2 cos� � � ��3

r � 3 cos � r � 1 � sin �

r � 1 � cos � r � e �

r � a sin � � b cos �
ab � 0

r � a cos �r � a sin �

r � 1 � 2 sin���2�

r � s1 � 0.8 sin 2�

r � e sin � � 2 cos�4��

r � � tan � �� cot � �

r � 1 � cos999�

r � sin2�4�� � cos�4��

r � 1 � sin�� � ��6�
r � 1 � sin �r � 1 � sin�� � ��3�

r � f �� � ��
r � f ���

; 74. Use a graph to estimate the -coordinate of the highest points
on the curve . Then use calculus to find the exact
value.

; 75. Investigate the family of curves with polar equations
, where is a real number. How does the

shape change as changes?

; 76. Investigate the family of polar curves

where is a positive integer. How does the shape change as
increases? What happens as becomes large? Explain the
shape for large by considering the graph of as a function
of in Cartesian coordinates.

77. Let be any point (except the origin) on the curve .
If is the angle between the tangent line at and the radial
line , show that

[Hint: Observe that in the figure.]

78. (a) Use Exercise 77 to show that the angle between the tan-
gent line and the radial line is at every point on
the curve .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines at the points where and .

(c) Prove that any polar curve with the property that
the angle between the radial line and the tangent line is
a constant must be of the form , where and
are constants.

OP

tan  �
r

dr�d�

 � � � �

O

P

ÿ

¨ ˙

r=f(¨ )

 � ��4
r � e�

� � 0 ��2
r � f ���


r � Cek� C k

y
r � sin 2�

r � 1 � c cos � c
c

r � 1 � cosn�

n n
n

n r
�

r � f ���P
P

L A B O R AT O R Y  P R O J E C T ; FAMILIES OF POLAR CURVES

In this project you will discover the interesting and beautiful shapes that members of families of
polar curves can take. You will also see how the shape of the curve changes when you vary the
constants.

1. (a) Investigate the family of curves defined by the polar equations , where is a
positive integer. How is the number of loops related to ?

(b) What happens if the equation in part (a) is replaced by ?

2. A family of curves is given by the equations , where is a real number and 
is a positive integer. How does the graph change as increases? How does it change as

changes? Illustrate by graphing enough members of the family to support your conclusions.

r � sin n� n
n
r � � sin n� �

r � 1 � c sin n� c
n n c

; Graphing calculator or computer required
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES 689

3. A family of curves has polar equations

Investigate how the graph changes as the number changes. In particular, you should identify
the transitional values of for which the basic shape of the curve changes.

4. The astronomer Giovanni Cassini (1625–1712) studied the family of curves with polar 
equations

where and are positive real numbers. These curves are called the ovals of Cassini even
though they are oval shaped only for certain values of and . (Cassini thought that these
curves might represent planetary orbits better than Kepler’s ellipses.) Investigate the variety of
shapes that these curves may have. In particular, how are and related to each other when
the curve splits into two parts?

a
a

r 4 � 2c2r 2 cos 2� � c 4 � a 4 � 0 

a c
a c

a c

r �
1 � a cos �

1 � a cos �

In this section we develop the formula for the area of a region whose boundary is given by
a polar equation. We need to use the formula for the area of a sector of a circle:

where, as in Figure 1, is the radius and is the radian measure of the central angle. 
Formula 1 follows from the fact that the area of a sector is proportional to its central angle:

. (See also Exercise 35 in Section 7.3.)
Let be the region, illustrated in Figure 2, bounded by the polar curve 

and by the rays and , where is a positive continuous function and where
. We divide the interval into subintervals with endpoints , 

, , . . . , and equal width . The rays then divide into smaller regions 
with central angle . If we choose in the th subinterval , then 
the area of the th region is approximated by the area of the sector of a circle with cen-
tral angle and radius . (See Figure 3.)

Thus from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in improves as . But the sums
in are Riemann sums for the function , so

1 A � 1
2 r 2�

r �

A � ���2���r 2 � 1
2 r 2�

� r � f ���
� � a � � b f

0 � b � a � 2� 	a, b
 �0

�1 �2 �n �� � � �i � n
�� � �i � � i�1 � i* i 	� i�1, �i 


�Ai i
�� f �� i*�

�Ai � 1
2 	 f ��i*�
2 ��

A �

2 A � �
n

i�1

1
2 	 f ��i*�
2 ��

n l 	

t��� � 1
2 	 f ���
2

lim
n l 	

�
n

i�1

1
2 	 f ��i*�
2 �� � y

b

a

1
2 	 f ���
2 d�

2
2

10.4 Areas and Lengths in Polar Coordinates

¨

r

FIGURE 1

FIGURE 2

O

¨=b

b
¨=a

r=f(¨)

a

�

O

¨=b

¨=a

¨=¨i-1

¨=¨i

Î¨

f(̈ i
*)

FIGURE 3
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690 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

It therefore appears plausible (and can in fact be proved) that the formula for the area of
the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4 it is helpful to think of the area as being swept out by a

rotating ray through that starts with angle and ends with angle .

Find the area enclosed by one loop of the four-leaved rose .

SOLUTION The curve was sketched in Example 8 in Section 10.3. Notice
from Figure 4 that the region enclosed by the right loop is swept out by a ray that rotates
from to . Therefore Formula 4 gives

Find the area of the region that lies inside the circle and out-
side the cardioid .

SOLUTION The cardioid (see Example 7 in Section 10.3) and the circle are sketched in
Figure 5 and the desired region is shaded. The values of and in Formula 4 are deter-
mined by finding the points of intersection of the two curves. They intersect when

, which gives , so , . The desired area can be
found by subtracting the area inside the cardioid between and from
the area inside the circle from to . Thus

Since the region is symmetric about the vertical axis , we can write

[because ]

A
�

3 A � y
b

a

1
2 � f ����2 d�

4 A � y
b

a

1
2 r 2 d�

r � f ���

O a b

r � cos 2�

r � cos 2�

� � ���4 � � ��4

A � y
��4

���4

1
2 r 2 d� � 1

2 y
��4

���4
cos2 2� d� � y

��4

0
cos2 2� d�

A � y
��4

0

1
2 �1 � cos 4�� d� � 1

2 [� �
1
4 sin 4�]0

��4
�

�

8

v EXAMPLE 1

r � 3 sin �
r � 1 � sin �

a b

3 sin � � 1 � sin � sin � � 1
2 � � ��6 5��6

� � ��6 � � 5��6
��6 5��6

A � 1
2 y

5��6

��6
�3 sin ��2 d� �

1
2 y

5��6

��6
�1 � sin ��2 d�

� � ��2

A � 2�1
2 y

��2

��6
9 sin2� d� �

1
2 y

��2

��6
�1 � 2 sin � � sin2�� d��

� y
��2

��6
�8 sin2� � 1 � 2 sin �� d�

� y
��2

��6
�3 � 4 cos 2� � 2 sin �� d� sin2� � 1

2 �1 � cos 2��

� 3� � 2 sin 2� � 2 cos �]��6

��2
� �

v EXAMPLE 2

r=cos 2¨ ¨=
π
4

¨=_
π
4

FIGURE 4

FIGURE 5

O

¨=5π
6

¨=π
6

r=3 sin ̈

r=1+sin ¨
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES 691

Example 2 illustrates the procedure for finding the area of the region bounded by two
polar curves. In general, let be a region, as illustrated in Figure 6, that is bounded by
curves with polar equations , , , and , where
and . The area of is found by subtracting the area inside
from the area inside , so using Formula 3 we have

| CAUTION The fact that a single point has many representations in polar coordinates
sometimes makes it difficult to find all the points of intersection of two polar curves. For
instance, it is obvious from Figure 5 that the circle and the cardioid have three points of
intersection; however, in Example 2 we solved the equations and
and found only two such points, and . The origin is also a point of inter-
section, but we can’t find it by solving the equations of the curves because the origin has 
no single representation in polar coordinates that satisfies both equations. Notice that, when
represented as or , the origin satisfies and so it lies on the circle;
when represented as , it satisfies and so it lies on the cardioid. 
Think of two points moving along the curves as the parameter value increases from 0 to

. On one curve the origin is reached at and ; on the other curve it is reached
at . The points don’t collide at the origin because they reach the origin at differ-
ent times, but the curves intersect there nonetheless.

Thus, to find all points of intersection of two polar curves, it is recommended that you
draw the graphs of both curves. It is especially convenient to use a graphing calculator or
computer to help with this task.

Find all points of intersection of the curves and .

SOLUTION If we solve the equations and , we get and, there-
fore, , , , . Thus the values of between and that satisfy
both equations are , , , . We have found four points of inter -
section: , , and .

However, you can see from Figure 7 that the curves have four other points of inter-
 section—namely, , , , and . These can be found using
symmetry or by noticing that another equation of the circle is and then solving
the equations and .

Arc Length
To find the length of a polar curve , , we regard as a parameter and
write the parametric equations of the curve as

Using the Product Rule and differentiating with respect to , we obtain

�
r � f ��� r � t��� � � a � � b f ��� � t��� � 0

0 � b � a � 2� A � r � t���
r � f ���

A � y
b

a

1
2 � f ����2 d� � y

b

a

1
2 �t����2 d�

� 1
2 y

b

a
(� f ����2 � �t����2) d�

r � 3 sin � r � 1 � sin �
( 3

2, ��6) (3
2, 5��6)

�0, 0� �0, �� r � 3 sin �
�0, 3��2� r � 1 � sin �

�
2� � � 0 � � �

� � 3��2

r � cos 2� r � 1
2

r � cos 2� r � 1
2 cos 2� � 1

2

2� � ��3 5��3 7��3 11��3 � 0 2�
� � ��6 5��6 7��6 11��6

(1
2, ��6) (1

2, 5��6), ( 1
2, 7��6) (1

2, 11��6)

(1
2, ��3) (1

2, 2��3) (1
2, 4��3) (1

2, 5��3)
r � �

1
2

r � cos 2� r � �
1
2

EXAMPLE 3

r � f ��� a � � � b �

x � r cos � � f ��� cos � y � r sin � � f ��� sin �

�

dx

d�
�

dr

d�
cos � � r sin �

dy

d�
�

dr

d�
sin � � r cos �

O

¨=b

¨=a

r=f(¨)

�

r=g(¨)

FIGURE 6

FIGURE 7

r=cos 2¨

1
2

r=
”   ,     ’

1
2

π
3

”   ,    ’
1
2

π
6
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692 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

so, using , we have

Assuming that is continuous, we can use Theorem 10.2.5 to write the arc length as

Therefore the length of a curve with polar equation , , is

Find the length of the cardioid .

SOLUTION The cardioid is shown in Figure 8. (We sketched it in Example 7 in
Section 10.3.) Its full length is given by the parameter interval , so 
Formula 5 gives 

We could evaluate this integral by multiplying and dividing the integrand by
, or we could use a computer algebra system. In any event, we find that the

length of the cardioid is .

� � 	 dr

d�

2

sin2� � 2r
dr

d�
sin � cos � � r 2 cos2�

� 	 dr

d�

2

� r 2

f 	

L � y
b

a
�	 dx

d�
2

� 	 dy

d�
2 

d�

cos2� � sin2� � 1

	 dx

d�

2

� 	 dy

d�

2

� 	 dr

d�

2

cos2� � 2r
dr

d�
cos � sin � � r 2 sin2�

r � f ��� a � � � b

5 L � y
b

a
�r 2 � 	 dr

d�
2 

d�

r � 1 � sin �

0 � � � 2�

L � y
2�

0
�r 2 � 	 dr

d�
2 

d� � y
2�

0
s�1 � sin ��2 � cos 2� d�

� y
2�

0
s2 � 2 sin � d�

s2 � 2 sin �
L � 8

v EXAMPLE 4

O

FIGURE 8
r=1+sin ¨

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1–4 Find the area of the region that is bounded by the given curve
and lies in the specified sector.

1. ,  

2. ,  

3. ,  ,  

4. ,  

r � e���4 ��2 � � � �

r � cos � 0 � � � ��6

r 2 � 9 sin 2� 0 � � � ��2

r � tan � ��6 � � � ��3

r � 0

5–8 Find the area of the shaded region.

5. 6.

r=œ„̈ r=1+cos ¨

10.4 Exercises
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES 693

7. 8.

9–12 Sketch the curve and find the area that it encloses.

9. 10.

11. 12.

; 13–16 Graph the curve and find the area that it encloses.

13. 14.

15. 16.

17–21 Find the area of the region enclosed by one loop of 
the curve.

17. 18.

19. 20.

21. (inner loop)

22. Find the area enclosed by the loop of the strophoid
.

23–28 Find the area of the region that lies inside the first curve
and outside the second curve.

23. ,  24. ,  

25. ,  

26. ,  

27. ,  

28. ,  

29–34 Find the area of the region that lies inside both curves.

29. ,  

30. ,  

31. ,  

32. ,  

33. ,  

34. ,  ,  , 

r=4+3 sin ¨ r=sin 2̈

r � 1 � sin �r � 2 sin �

r � 4 � 3 sin �r � 3 � 2 cos �

r � 3 � 2 cos 4�r � 2 � sin 4�

r � s1 � cos2�5�� r � 1 � 5 sin 6�

r 2 � sin 2�r � 4 cos 3�

r � sin 4� r � 2 sin 5�

r � 1 � 2 sin �

r � 2 cos � � sec �

r � 1r � 1 � sin �r � 1r � 2 cos �

r � 2 � sin �

r � 2r 2 � 8 cos 2�

r � 3 sin �

r � 1 � cos �r � 3 cos �

r � 2 � sin �r � 3 sin �

r � sin �r � s3 cos �

r � 1 � cos �r � 1 � cos �

r � cos 2�r � sin 2�

r � 3 � 2 sin �r � 3 � 2 cos �

r 2 � sin 2� r 2 � cos 2�

r � a sin � r � b cos � a 
 0 b 
 0

35. Find the area inside the larger loop and outside the smaller
loop of the limaçon .

36. Find the area between a large loop and the enclosed small
loop of the curve .

37–42 Find all points of intersection of the given curves.

37. ,  

38. ,  

39. ,  

40. ,  

41. ,  

42. ,  

; 43. The points of intersection of the cardioid and
the spiral loop , , can’t be found
exactly. Use a graphing device to find the approximate values
of at which they intersect. Then use these values to esti-
mate the area that lies inside both curves.

44. When recording live performances, sound engineers often use 
a microphone with a cardioid pickup pattern because it sup-
presses noise from the audience. Suppose the microphone is
placed 4 m from the front of the stage (as in the figure) and
the boundary of the optimal pickup region is given by the
cardioid , where is measured in meters and
the microphone is at the pole. The musicians want to know
the area they will have on stage within the optimal pickup
range of the microphone. Answer their question.

45–48 Find the exact length of the polar curve.

45. ,  

46. ,  

47. ,  

48.

; 49–50 Find the exact length of the curve. Use a graph to
determine the parameter interval.

49. 50.

r � 1 � 2 cos 3�

r � 1 � sin � r � 3 sin �

r � 1 � cos � r � 1 � sin �

r � 2 sin 2� r � 1

r � cos 3� r � sin 3�

r � sin � r � sin 2�

r 2 � sin 2� r 2 � cos 2�

r � 1 � sin �
r � 2� ���2 � � � ��2

�

r � 8 � 8 sin � r

stage

audience
microphone

12 m

4 m

r � 2 cos � 0 � � � �

r � 5� 0 � � � 2�

r � � 2 0 � � � 2�

r � 2�1 � cos ��

r � cos4���4� r � cos2���2�

r � 1
2 � cos �
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694 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

51–54 Use a calculator to find the length of the curve correct to
four decimal places. If necessary, graph the curve to determine the
parameter interval.

51. One loop of the curve 

52. ,  

53.

54.

55. (a) Use Formula 10.2.6 to show that the area of the surface
generated by rotating the polar curve

r � cos 2�

��6 � � � ��3r � tan �

r � sin���4�

r � sin�6 sin ��

a � � � br � f ���

(where is continuous and ) about the
polar axis is

(b) Use the formula in part (a) to find the surface area
generated by rotating the lemniscate about the 
polar axis.

56. (a) Find a formula for the area of the surface generated by
rotating the polar curve , (where is
continuous and ), about the line .

(b) Find the surface area generated by rotating the lemniscate
about the line .

r 2 � cos 2�

f 	a � � � br � f ���
0 � a � b � � � � ��2

� � ��2r 2 � cos 2�

S � y
b

a
2�r sin ��r 2 � 	 dr

d�
2

d�

0 � a � b � �f 	

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and
derive their standard equations. They are called conic sections, or conics, because they
result from intersecting a cone with a plane as shown in Figure 1.

Parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point (called
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2.
Notice that the point halfway between the focus and the directrix lies on the parabola; it is
called the vertex. The line through the focus perpendicular to the directrix is called the axis
of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into 
the air at an angle to the ground is a parabola. Since then, parabolic shapes have been 
used in designing automobile headlights, reflecting telescopes, and suspension bridges. (See
Problem 16 on page 196 for the reflection property of parabolas that makes them so useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin and its directrix parallel to the -axis as in Figure 3. If the focus is the point 

, then the directrix has the equation . If is any point on the parabola, 

FIGURE 1
Conics

ellipse hyperbolaparabola

F

xO
P�x, y�y � �p�0, p�

10.5 Conic Sections

axis

F
focus

parabola

vertex directrix

FIGURE 2
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SECTION 10.5 CONIC SECTIONS 695

then the distance from to the focus is

and the distance from to the directrix is . (Figure 3 illustrates the case where
.) The defining property of a parabola is that these distances are equal:

We get an equivalent equation by squaring and simplifying:

An equation of the parabola with focus and directrix is

If we write , then the standard equation of a parabola becomes .
It opens upward if and downward if [see Figure 4, parts (a) and (b)]. The
graph is symmetric with respect to the -axis because is unchanged when is replaced
by .

If we interchange and in , we obtain

which is an equation of the parabola with focus and directrix . (Inter changing
and amounts to reflecting about the diagonal line .) The parabola opens to the right

if and to the left if [see Figure 4, parts (c) and (d)]. In both cases the graph is
symmetric with respect to the -axis, which is the axis of the parabola.

Find the focus and directrix of the parabola and sketch 
the graph.

SOLUTION If we write the equation as and compare it with Equation 2, we see
that , so . Thus the focus is and the directrix is .
The sketch is shown in Figure 5.

P

� PF � � sx 2 � �y � p�2 

p 
 0
� y � p �P

sx 2 � �y � p�2 � � y � p �

x 2 � �y � p�2 � � y � p �2 � �y � p�2

x 2 � y 2 � 2py � p 2 � y 2 � 2py � p 2

x 2 � 4py

�0, p�1 y � �p

x 2 � 4py

y � ax 21a � 1��4p�
p � 0p 
 0

x1y
�x

FIGURE 4

0 x

y

( p, 0)

x=_p

(d) ¥=4px, p<0

0 x

y

( p, 0)

x=_p

(c) ¥=4px, p>0

0
x

y

(0, p)

y=_p

(b) ≈=4py, p<0

0 x

y

(0, p)

y=_p

(a) ≈=4py, p>0

1yx

y 2 � 4px2

x � �p�p, 0�
y � xyx

p � 0p 
 0
x

y 2 � 10x � 0EXAMPLE 1

y 2 � �10x
x � 5

2� p, 0� � (� 5
2, 0)p � �

5
24p � �10

FIGURE 3

x

y

O

F(0, p)

y=_p

P(x, y)

y

p

FIGURE 5

0 x

y

x=
5
2

¥+10x=0

”_   , 0’5
2
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696 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Ellipses
An ellipse is the set of points in a plane the sum of whose distances from two fixed points

and is a constant (see Figure 6). These two fixed points are called the foci (plural of
focus). One of Kepler’s laws is that the orbits of the planets in the solar system are ellipses
with the sun at one focus.

In order to obtain the simplest equation for an ellipse, we place the foci on the -axis at
the points and as in Figure 7 so that the origin is halfway between the foci. Let
the sum of the distances from a point on the ellipse to the foci be . Then is a
point on the ellipse when

that is,

or

Squaring both sides, we have

which simplifies to

We square again:

which becomes

From triangle in Figure 7 we see that , so and therefore 
. For convenience, let . Then the equation of the ellipse becomes

or, if both sides are divided by , 

Since , it follows that . The -intercepts are found by setting 
. Then , or , so . The corresponding points and

are called the vertices of the ellipse and the line segment joining the vertices 
is called the major axis. To find the -intercepts we set and obtain , so

. The line segment joining and is the minor axis. Equation 3 is
unchanged if is replaced by or is replaced by , so the ellipse is symmetric about
both axes. Notice that if the foci coincide, then , so and the ellipse becomes a
circle with radius .

We summarize this discussion as follows (see also Figure 8).

F2F1

FIGURE 6

F¡ F™

P

FIGURE 7

F¡(_c, 0) F™(c, 0)0 x

y

P(x, y)

x
�c, 0���c, 0�

P�x, y�2a 
 0

� PF1 � � � PF2 � � 2a

s�x � c�2 � y 2 � s�x � c�2 � y 2 � 2a

s�x � c�2 � y 2 � 2a � s�x � c�2 � y 2 

x 2 � 2cx � c 2 � y 2 � 4a 2 � 4as�x � c�2 � y 2 � x 2 � 2cx � c 2 � y 2

as�x � c�2 � y 2 � a 2 � cx

a 2�x 2 � 2cx � c 2 � y 2 � � a 4 � 2a 2cx � c 2x 2

�a 2 � c 2 �x 2 � a 2y 2 � a 2�a 2 � c 2�

c � a2c � 2aF1F2P
b 2 � a 2 � c 2a 2 � c 2 
 0

a 2b 2b 2x 2 � a 2y 2 � a 2b 2

x 2

a 2 �
y 2

b 2 � 13

xb � ab 2 � a 2 � c 2 � a 2

�a, 0�x � �ax 2 � a 2x 2�a 2 � 1y � 0
��a, 0�

y
�0, b�y � �b

y 2 � b 2x � 0
�0, �b�

�yy�xx
a � bc � 0

r � a � b
+     =1,

FIGURE 8
≈
a@

¥
b@

(c, 0)0 x

y
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(0, b)

(_c, 0)

(0, _b)

(a, 0)
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SECTION 10.5 CONIC SECTIONS 697

The ellipse

has foci , where , and vertices .

If the foci of an ellipse are located on the -axis at , then we can find its equation
by interchanging and in . (See Figure 9.)

The ellipse

has foci , where , and vertices .

Sketch the graph of and locate the foci.

SOLUTION Divide both sides of the equation by 144:

The equation is now in the standard form for an ellipse, so we have , ,
, and . The -intercepts are and the -intercepts are . Also,

, so and the foci are . The graph is sketched in 
Figure 10.

Find an equation of the ellipse with foci and vertices .

SOLUTION Using the notation of , we have and . Then we obtain
, so an equation of the ellipse is

Another way of writing the equation is .

Like parabolas, ellipses have an interesting reflection property that has practical conse-
quences. If a source of light or sound is placed at one focus of a surface with elliptical 
cross-sections, then all the light or sound is reflected off the surface to the other focus (see
Exercise 65). This principle is used in lithotripsy, a treatment for kidney stones. A reflector
with elliptical cross-section is placed in such a way that the kidney stone is at one focus.
High-intensity sound waves generated at the other focus are reflected to the stone and
destroy it without damaging surrounding tissue. The patient is spared the trauma of surgery
and recovers within a few days.

Hyperbolas
A hyperbola is the set of all points in a plane the difference of whose distances from two
fixed points and (the foci) is a constant. This definition is illustrated in Figure 11.

Hyperbolas occur frequently as graphs of equations in chemistry, physics, biology, and
economics (Boyle’s Law, Ohm’s Law, supply and demand curves). A particularly signifi-

4

a � b 
 0
x 2

a 2 �
y 2

b 2 � 1

��a, 0�c 2 � a 2 � b 2��c, 0�

�0, �c�y
4yx

5

a � b 
 0
x 2

b 2 �
y 2

a 2 � 1

�0, �a�c 2 � a 2 � b 2�0, �c�

9x 2 � 16y 2 � 144EXAMPLE 2v

x 2

16
�

y 2

9
� 1

b 2 � 9a 2 � 16
�3y�4xb � 3a � 4

(�s7 , 0)c � s7c 2 � a 2 � b 2 � 7

�0, �3��0, �2�EXAMPLE 3v

a � 3c � 25
b 2 � a 2 � c 2 � 9 � 4 � 5

x 2

5
�

y 2

9
� 1

9x 2 � 5y 2 � 45

F2F1

0 x

y
(0, a)

(0, c)

(b, 0)

(0, _c)

(_b, 0)

(0, _a)

≈
b@

¥
a@

+     =1,  a˘b

FIGURE 9

0 x

y

(0, 3)

{œ„7, 0}

(4, 0)
(_4, 0)

(0, _3)

{_œ„7, 0}

FIGURE 10
9≈+16¥=144

FIGURE 11
P is on the hyperbola when
|PF¡|-|PF™ |=�2a.
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698 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

cant application of hyperbolas is found in the navigation systems developed in World Wars
I and II (see Exercise 51).

Notice that the definition of a hyperbola is similar to that of an ellipse; the only change
is that the sum of distances has become a difference of distances. In fact, the derivation of
the equation of a hyperbola is also similar to the one given earlier for an ellipse. It is left as
Exercise 52 to show that when the foci are on the -axis at and the difference of dis-
tances is , then the equation of the hyperbola is

where . Notice that the -intercepts are again and the points and
are the vertices of the hyperbola. But if we put in Equation 6 we get

, which is impossible, so there is no -intercept. The hyperbola is symmetric with
respect to both axes.

To analyze the hyperbola further, we look at Equation 6 and obtain

This shows that , so . Therefore we have or . This
means that the hyperbola consists of two parts, called its branches.

When we draw a hyperbola it is useful to first draw its asymptotes, which are the dashed
lines and shown in Figure 12. Both branches of the hyperbola
approach the asymptotes; that is, they come arbitrarily close to the asymptotes. [See Exer-
cise 73 in Section 4.5, where these lines are shown to be slant asymptotes.]

The hyperbola

has foci , where , vertices , and asymptotes
.

If the foci of a hyperbola are on the -axis, then by reversing the roles of and we
obtain the following information, which is illustrated in Figure 13.

The hyperbola

has foci , where , vertices , and asymptotes
.

Find the foci and asymptotes of the hyperbola and sketch
its graph.

��c, 0�x

� PF1 � � � PF2 � � �2a

x 2

a 2 �
y 2

b 2 � 16

�a, 0��axc 2 � a 2 � b 2

��a, 0�
y 2 � �b 2

x � 0
y

x 2

a 2 � 1 �
y 2

b 2 � 1

x � �ax � a� x � � sx 2 � ax 2 � a 2

y � �b�a�x y � ��b�a�x

7

x 2

a 2 �
y 2

b 2 � 1

��a, 0�c 2 � a 2 � b 2��c, 0�
y � ��b�a�x

yxy

8

y 2

a 2 �
x 2

b 2 � 1

�0, �a�c 2 � a 2 � b 2�0, �c�
y � ��a�b�x

9x 2 � 16y 2 � 144EXAMPLE 4
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FIGURE 14
9≈-16¥=144

0 x

y
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(4, 0)(_4, 0)
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FIGURE 15
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3
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(4, _2)

(4, 1)

SOLUTION If we divide both sides of the equation by 144, it becomes

which is of the form given in with and . Since , the
foci are . The asymptotes are the lines and . The graph is shown
in Figure 14.

Find the foci and equation of the hyperbola with vertices and asymp-
tote .

SOLUTION From and the given information, we see that and . Thus
and . The foci are and

the equation of the hyperbola is

Shifted Conics
As discussed in Appendix C, we shift conics by taking the standard equations , , ,

, , and and replacing and by and .

Find an equation of the ellipse with foci , and vertices 
, . 

SOLUTION The major axis is the line segment that joins the vertices , 
and has length , so . The distance between the foci is , so . Thus

. Since the center of the ellipse is , we replace and in 
by and to obtain

as the equation of the ellipse.

Sketch the conic and find its foci.

SOLUTION We complete the squares as follows:

This is in the form except that and are replaced by and . Thus
, , and . The hyperbola is shifted four units to the right and one

unit upward. The foci are and and the vertices are and
. The asymptotes are . The hyperbola is sketched in

Figure 15.

a � 4 b � 3 c 2 � 16 � 9 � 25
��5, 0� y � 3

4 x y � �
3
4 x

x 2

16
�

y 2

9
� 1

�0, �1�
y � 2x

a � 1 a�b � 2
b � a�2 � 1

2 c 2 � a 2 � b 2 � 5
4 (0, �s5�2)

y 2 � 4x 2 � 1

EXAMPLE 5

7

8

x y x � h y � k

�2, �2� �4, �2�
�1, �2� �5, �2�

�1, �2� �5, �2�
4 a � 2 2 c � 1

b 2 � a 2 � c 2 � 3 �3, �2� x y
x � 3 y � 2

�x � 3�2

4
�

�y � 2�2

3
� 1

1 2 4
5 7 8

EXAMPLE 6

9x 2 � 4y 2 � 72x � 8y � 176 � 0

4�y 2 � 2y� � 9�x 2 � 8x� � 176

4�y 2 � 2y � 1� � 9�x 2 � 8x � 16� � 176 � 4 � 144

4�y � 1�2 � 9�x � 4�2 � 36

�y � 1�2

9
�

�x � 4�2

4
� 1

x y x � 4 y � 1
a 2 � 9 b 2 � 4 c 2 � 13

(4, 1 � s13 ) (4, 1 � s13 ) �4, 4�
�4, �2� y � 1 � �

3
2 �x � 4�

v EXAMPLE 7

4

8
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700 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

1–8 Find the vertex, focus, and directrix of the parabola and sketch
its graph.

1. 2.

3. 4.

5. 6.

7. 8.

9–10 Find an equation of the parabola. Then find the focus and
directrix.

9. 10.

11–16 Find the vertices and foci of the ellipse and sketch 
its graph.

11. 12.

13. 14.

15.

16.

17–18 Find an equation of the ellipse. Then find its foci.

17. 18.

19–24 Find the vertices, foci, and asymptotes of the hyperbola and
sketch its graph.

19. 20.

21. 22.

x 2 � 6y 2y 2 � 5x

2x � �y 2 3x 2 � 8y � 0

�x � 2�2 � 8�y � 3� x � 1 � �y � 5�2

y 2 � 2y � 12x � 25 � 0 y � 12x � 2x 2 � 16

y

x

1

_2

y

x

1

20

x 2

2
�

y 2

4
� 1

x 2

36
�

y 2

8
� 1

x 2 � 9y 2 � 9 100x 2 � 36y 2 � 225

9x 2 � 18x � 4y 2 � 27

x 2 � 3y2 � 2x � 12y � 10 � 0

y

x

1

10

y

x

1

2

y 2

25
�

x 2

9
� 1

x 2

36
�

y 2

64
� 1

x 2 � y 2 � 100 y 2 � 16x 2 � 16

23.

24.

25–30 Identify the type of conic section whose equation is given
and find the vertices and foci.

25. 26.

27. 28.

29. 30.

31–48 Find an equation for the conic that satisfies the given 
conditions.

31. Parabola,  vertex ,  focus 

32. Parabola,  focus ,  directrix 

33. Parabola,  focus ,  directrix 

34. Parabola,  focus ,  vertex 

35. Parabola,  vertex ,  vertical axis,
passing through 

36. Parabola,  horizontal axis,  
passing through , , and 

37. Ellipse,  foci ,  vertices 

38. Ellipse,  foci ,  vertices 

39. Ellipse,  foci , ,  vertices , 

40. Ellipse,  foci , ,  vertex 

41. Ellipse,  center ,  vertex ,  focus  

42. Ellipse,  foci ,  passing through 

43. Hyperbola,  vertices ,  foci 

44. Hyperbola,  vertices ,  foci 

45. Hyperbola,  vertices , ,  
foci , 

46. Hyperbola,  vertices , ,  
foci , 

47. Hyperbola,  vertices ,  asymptotes 

48. Hyperbola,  foci , , 
asymptotes and 

x 2 � y � 1 x 2 � y 2 � 1

x 2 � 4y � 2y 2 y 2 � 8y � 6x � 16

y 2 � 2y � 4x 2 � 3 4x 2 � 4x � y 2 � 0

�0, 0� �1, 0�

�0, 0� y � 6

��4, 0� x � 2

�3, 6� �3, 2�

�2, 3�
�1, 5�

��1, 0� �1, �1� �3, 1�

��2, 0� ��5, 0�

�0, �5� �0, �13�

�0, 2� �0, 6� �0, 0� �0, 8�

�0, �1� �8, �1� �9, �1�

��1, 4� ��1, 0� ��1, 6�

��4, 0� ��4, 1.8�

��3, 0� ��5, 0�

�0, �2� �0, �5�

��3, �4� ��3, 6�
��3, �7� ��3, 9�

��1, 2� �7, 2�
��2, 2� �8, 2�

��3, 0� y � �2x

�2, 0� �2, 8�
y � 3 �

1
2 x y � 5 �

1
2 x

y2 � 4x 2 � 2y � 16x � 31

4x 2 � y2 � 24x � 4y � 28 � 0

10.5 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 10.5 CONIC SECTIONS 701

49. The point in a lunar orbit nearest the surface of the moon is
called perilune and the point farthest from the surface is called
apolune. The Apollo 11 spacecraft was placed in an elliptical
lunar orbit with perilune altitude 110 km and apolune altitude
314 km (above the moon). Find an equation of this ellipse if
the radius of the moon is 1728 km and the center of the moon
is at one focus.

50. A cross-section of a parabolic reflector is shown in the figure.
The bulb is located at the focus and the opening at the focus 
is 10 cm.
(a) Find an equation of the parabola.
(b) Find the diameter of the opening , 11 cm from 

the vertex.

51. In the LORAN (LOng RAnge Navigation) radio navigation
system, two radio stations located at and transmit simul ta-
neous signals to a ship or an aircraft located at . The onboard
computer converts the time difference in receiving these signals
into a distance difference , and this, according to
the definition of a hyperbola, locates the ship or aircraft on one
branch of a hyperbola (see the figure). Suppose that station B is
located 400 mi due east of station A on a coastline. A ship
received the signal from B 1200 micro seconds (�s) before it
received the signal from A.
(a) Assuming that radio signals travel at a speed of 980 ft �s,

find an equation of the hyperbola on which the ship lies.
(b) If the ship is due north of , how far off the coastline is 

the ship?

52. Use the definition of a hyperbola to derive Equation 6 for a
hyperbola with foci and vertices .

53. Show that the function defined by the upper branch of the
hyperbola is concave upward.

� CD �

5 cm

5 cm

A

B

C

D

V
F

11 cm

BA
P

� PA � � � PB �

�

B

400 mi
transmitting stations

coastlineA B

P

��a, 0���c, 0�

y 2�a 2 � x 2�b 2 � 1

54. Find an equation for the ellipse with foci and
and major axis of length 4.

55. Determine the type of curve represented by the equation

in each of the following cases: (a) , (b) , 
and (c) .
(d) Show that all the curves in parts (a) and (b) have the same

foci, no matter what the value of is.

56. (a) Show that the equation of the tangent line to the parabola 
at the point can be written as

(b) What is the -intercept of this tangent line? Use this fact to
draw the tangent line.

57. Show that the tangent lines to the parabola drawn
from any point on the directrix are perpendicular.

58. Show that if an ellipse and a hyperbola have the same foci,
then their tangent lines at each point of intersection are 
perpendicular.

59. Use parametric equations and Simpson’s Rule with to
estimate the circumference of the ellipse .

60. The planet Pluto travels in an elliptical orbit around the sun 
(at one focus). The length of the major axis is km
and the length of the minor axis is km. Use Simp-
son’s Rule with to estimate the distance traveled by the
planet during one complete orbit around the sun.

61. Find the area of the region enclosed by the hyperbola
and the vertical line through a focus.

62. (a) If an ellipse is rotated about its major axis, find the volume
of the resulting solid.

(b) If it is rotated about its minor axis, find the resulting
volume.

63. Find the centroid of the region enclosed by the -axis and the
top half of the ellipse .

64. (a) Calculate the surface area of the ellipsoid that is generated
by rotating an ellipse about its major axis.

(b) What is the surface area if the ellipse is rotated about its
minor axis?

65. Let be a point on the ellipse with
foci and and let and be the angles between the lines 

x 2

k
�

y 2

k � 16
� 1

��1, �1��1, 1�

0 � k � 16k � 16
k � 0

k

�x0, y0�y 2 � 4px

y0y � 2p�x � x 0�

x

x 2 � 4py

n � 8
9x 2 � 4y 2 � 36

1.18 � 1010

1.14 � 1010

n � 10

x 2�a 2 � y 2�b 2 � 1

x
9x 2 � 4y 2 � 36

x 2�a 2 � y 2�b 2 � 1P�x1, y1�
	
F2F1
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In the preceding section we defined the parabola in terms of a focus and directrix, but we
defined the ellipse and hyperbola in terms of two foci. In this section we give a more uni-
fied treatment of all three types of conic sections in terms of a focus and directrix. Further-
 more, if we place the focus at the origin, then a conic section has a simple polar equation,
which provides a convenient description of the motion of planets, satellites, and comets.

Theorem Let be a fixed point (called the focus) and be a fixed line (called
the directrix) in a plane. Let be a fixed positive number (called the eccentricity).
The set of all points in the plane such that

(that is, the ratio of the distance from to the distance from is the constant ) 
is a conic section. The conic is

(a) 

(b) 

(c) 

PROOF Notice that if the eccentricity is , then and so the given condi-
tion simply becomes the definition of a parabola as given in Section 10.5.

F l
e

P

� PF �
� Pl � � e

F l e

an ellipse if e � 1

a parabola if e � 1

1

a hyperbola if e � 1

� PF � � � Pl �e � 1

702 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

, and the ellipse as shown in the figure. Prove that
. This explains how whispering galleries and litho tripsy

work. Sound coming from one focus is reflected and passes
through the other focus. [Hint: Use the formula in Problem 15
on page 195 to show that .]

66. Let be a point on the hyperbola
with foci and and let and be the angles between 
the lines , and the hyperbola as shown in the figure.
Prove that . (This is the reflection property of the 

PF2PF1


 � 	

tan 
 � tan 	

F¡ F™0 x

y

∫

å

+    =1
≈

a@

¥

b@

P(⁄, ›)

x 2�a 2 � y 2�b 2 � 1P�x1, y1�
	
F2F1

PF2PF1


 � 	

hyperbola. It shows that light aimed at a focus of a hyper-
bolic mirror is reflected toward the other focus .)

0 x

y

å
∫

F™F¡

P

F™F¡

P

F2

F1

10.6 Conic Sections in Polar Coordinates
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SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES 703

Let us place the focus at the origin and the directrix parallel to the -axis and
units to the right. Thus the directrix has equation and is perpendicular to the

polar axis. If the point has polar coordinates , we see from Figure 1 that

Thus the condition , or , becomes

If we square both sides of this polar equation and convert to rectangular coordinates, 
we get

or

After completing the square, we have

If , we recognize Equation 3 as the equation of an ellipse. In fact, it is of the form

where

In Section 10.5 we found that the foci of an ellipse are at a distance from the center,
where

This shows that

and confirms that the focus as defined in Theorem 1 means the same as the focus defined
in Section 10.5. It also follows from Equations 4 and 5 that the eccentricity is given by

If , then and we see that Equation 3 represents a hyperbola. Just as we
did before, we could rewrite Equation 3 in the form

and see that

yF
x � dd

�r, ��P

� Pl � � d � r cos �� PF � � r

� PF � � e � Pl �� PF ��� Pl � � e

r � e�d � r cos ��2

x 2 � y 2 � e 2�d � x�2 � e 2�d 2 � 2dx � x 2�

�1 � e 2 �x 2 � 2de 2x � y 2 � e 2d 2

�x �
e 2d

1 � e 2�2

�
y 2

1 � e 2 �
e 2d 2

�1 � e 2�23

e � 1

�x � h�2

a 2 �
y 2

b 2 � 1

b 2 �
e 2d 2

1 � e 2a 2 �
e 2d 2

�1 � e 2 �2h � �
e 2d

1 � e 24

c

c 2 � a 2 � b 2 �
e 4d 2

�1 � e 2�25

c �
e 2d

1 � e 2 � �h

e �
c

a

1 � e 2 � 0e � 1

�x � h�2

a 2 �
y 2

b 2 � 1

where c 2 � a 2 � b 2e �
c

a

FIGURE 1

y

x
F

l (directrix)

x=d

r cos ¨

P

¨

r

d

C
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704 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

By solving Equation 2 for , we see that the polar equation of the conic shown in Fig-
 ure 1 can be written as

If the directrix is chosen to be to the left of the focus as , or if the directrix is cho-
sen to be parallel to the polar axis as , then the polar equation of the conic is given
by the following theorem, which is illustrated by Figure 2. (See Exercises 21–23.)

Theorem A polar equation of the form

represents a conic section with eccentricity . The conic is an ellipse if , 
a parabola if , or a hyperbola if .

Find a polar equation for a parabola that has its focus at the origin and
whose directrix is the line .

SOLUTION Using Theorem 6 with and , and using part (d) of Figure 2, we
see that the equation of the parabola is

A conic is given by the polar equation

Find the eccentricity, identify the conic, locate the directrix, and sketch the conic.

SOLUTION Dividing numerator and denominator by 3, we write the equation as

r

r �
ed

1 � e cos �

x � �d
y � �d

FIGURE 2 
Polar equations of conics

(a) r=
ed

1+e cos ¨

y

xF

x=d
directrix

(b) r=
ed

1-e cos ¨

xF

y

x=_d
directrix

(c) r=
ed

1+e sin ¨

y

F x

y=d         directrix

(d) r=
ed

1-e sin ¨

x

y

y=_d         directrix

F

6

r �
ed

1 � e sin �
orr �

ed

1 � e cos �

e � 1e
e � 1 e � 1

EXAMPLE 1v
y � �6

d � 6e � 1

r �
6

1 � sin �

EXAMPLE 2v

r �
10

3 � 2 cos �

r �
10
3

1 �
2
3 cos �
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SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES 705

From Theorem 6 we see that this represents an ellipse with . Since , 
we have

so the directrix has Cartesian equation . When , ; when � ,
. So the vertices have polar coordinates and . The ellipse is sketched

in Figure 3.

Sketch the conic .

SOLUTION Writing the equation in the form

we see that the eccentricity is and the equation therefore represents a hyperbola.
Since , and the directrix has equation . The vertices occur when

and , so they are and . It is also useful to
plot the -intercepts. These occur when , ; in both cases . For additional
accuracy we could draw the asymptotes. Note that when or

and when . Thus the asymptotes are parallel to the rays
and . The hyperbola is sketched in Figure 4.

When rotating conic sections, we find it much more convenient to use polar equations
than Cartesian equations. We just use the fact (see Exercise 73 in Section 10.3) that the
graph of is the graph of rotated counterclockwise about the origin
through an angle .

If the ellipse of Example 2 is rotated through an angle about the ori-
gin, find a polar equation and graph the resulting ellipse.

SOLUTION We get the equation of the rotated ellipse by replacing with in the
equation given in Example 2. So the new equation is

We use this equation to graph the rotated ellipse in Figure 5. Notice that the ellipse has
been rotated about its left focus.

ed � 10
3e � 2

3

d �
10
3

e
�

10
3
2
3

� 5

��r � 10� � 0x � �5
�2, ���10, 0�r � 2

r �
12

2 � 4 sin �
EXAMPLE 3

r �
6

1 � 2 sin �

e � 2
y � 3d � 3ed � 6

��6, 3��2� � �6, ��2��2, ��2�3��2� � ��2
r � 6�� � 0x

1 � 2 sin � l 0�r l �
sin � � �

1
21 � 2 sin � � 00�

� � 11��6� � 7��6

FIGURE 4

r=
12

2+4 sin ¨

x0

y

(6, π) (6, 0)

y=3 (directrix)

focus

”2,    ’π
2

”6,    ’π
2

r � f ���r � f �� � 
�



��4EXAMPLE 4v

� � ��4�

r �
10

3 � 2 cos�� � ��4�

FIGURE 3

y

0 x

r= 10
3-2 cos ̈x=_5

(directrix)

(10, 0)

(2, π)

focus

FIGURE 5

11

_6

_5 15

r= 10
3-2 cos(¨-π/4)

r=
10

3-2 cos ̈
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706 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

In Figure 6 we use a computer to sketch a number of conics to demonstrate the effect of
varying the eccentricity . Notice that when is close to 0 the ellipse is nearly circular,
whereas it becomes more elongated as . When , of course, the conic is a
parabola.

Kepler’s Laws
In 1609 the German mathematician and astronomer Johannes Kepler, on the basis of huge
amounts of astronomical data, published the following three laws of planetary motion.

Kepler’s Laws

1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of
the length of the major axis of its orbit.

Although Kepler formulated his laws in terms of the motion of planets around the sun,
they apply equally well to the motion of moons, comets, satellites, and other bodies that
orbit subject to a single gravitational force. In Section 13.4 we will show how to deduce
Kepler’s Laws from Newton’s Laws. Here we use Kepler’s First Law, together with the
polar equation of an ellipse, to calculate quantities of interest in astronomy.

For purposes of astronomical calculations, it’s useful to express the equation of an ellipse
in terms of its eccentricity and its semimajor axis . We can write the distance from the
focus to the directrix in terms of if we use :

So . If the directrix is , then the polar equation is

ee
e � 1e l 1�

FIGURE 6

e=1 e=1.1 e=1.4 e=4

e=0.96e=0.86e=0.68e=0.1 e=0.5

dae
4a

a2 �
e2d 2

�1 � e 2�2 ? d 2 �
a 2�1 � e2�2

e2 ? d �
a�1 � e2�

e

x � ded � a�1 � e2�

r �
ed

1 � e cos �
�

a�1 � e2�
1 � e cos �
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SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES 707

The polar equation of an ellipse with focus at the origin, semimajor axis ,
eccentricity , and directrix can be written in the form

The positions of a planet that are closest to and farthest from the sun are called its peri-
helion and aphelion, respectively, and correspond to the vertices of the ellipse. (See 
Figure 7.) The distances from the sun to the perihelion and aphelion are called the peri-
helion distance and aphelion distance, respectively. In Figure 1 the sun is at the focus ,
so at perihelion we have and, from Equation 7,

Similarly, at aphelion and .

The perihelion distance from a planet to the sun is and the aphelion
distance is .

(a) Find an approximate polar equation for the elliptical orbit of the earth around the sun
(at one focus) given that the eccentricity is about and the length of the major axis
is about .
(b) Find the distance from the earth to the sun at perihelion and at aphelion.

SOLUTION
(a) The length of the major axis is , so . We are given
that and so, from Equation 7, an equation of the earth’s orbit around the sun is

or, approximately,

(b) From , the perihelion distance from the earth to the sun is

and the aphelion distance is

a7
x � de

r �
a�1 � e2�

1 � e cos �

F
� � 0

r �
a�1 � e2�

1 � e cos 0
�

a�1 � e��1 � e�
1 � e

� a�1 � e�

r � a�1 � e�� � �

a�1 � e�8
a�1 � e�

0.017
2.99 � 108 km

a � 1.495 � 1082a � 2.99 � 108

e � 0.017

r �
a�1 � e2�

1 � e cos �
�

�1.495 � 108� �1 � �0.017�2	
1 � 0.017 cos �

r �
1.49 � 108

1 � 0.017 cos �

a�1 � e� 
 �1.495 � 108��1 � 0.017� 
 1.47 � 108 km

a�1 � e� 
 �1.495 � 108��1 � 0.017� 
 1.52 � 108 km

EXAMPLE 5

8

perihelionaphelion
sun

planet

¨
r

FIGURE 7 
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708 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

1–8 Write a polar equation of a conic with the focus at the origin
and the given data.

1. Ellipse,  eccentricity ,  directrix 

2. Parabola,  directrix 

3. Hyperbola,  eccentricity 1.5,  directrix 

4. Hyperbola,  eccentricity 3,  directrix 

5. Parabola,  vertex 

6. Ellipse,  eccentricity ,  vertex 

7. Ellipse,  eccentricity ,  directrix 

8. Hyperbola,  eccentricity 3,  directrix 

9–16 (a) Find the eccentricity, (b) identify the conic, (c) give an
equation of the directrix, and (d) sketch the conic.

9. 10.

11. 12.

13. 14.

15. 16.

; 17. (a) Find the eccentricity and directrix of the conic
and graph the conic and its directrix.

(b) If this conic is rotated counterclockwise about the origin
through an angle , write the resulting equation and
graph its curve.

; 18. Graph the conic and its directrix. Also
graph the conic obtained by rotating this curve about the ori-
gin through an angle .

; 19. Graph the conics with , , 
, and on a common screen. How does the value of

affect the shape of the curve?

; 20. (a) Graph the conics for and var-
ious values of . How does the value of affect the shape
of the conic?

(b) Graph these conics for and various values of .
How does the value of affect the shape of the conic?

21. Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

x � �3

y � 2

x � 3

�4, 3��2�

0.8 �1, ��2�
1
2 r � 4 sec �

r � �6 csc �

1
2 x � 4

r �
4

5 � 4 sin �
r �

12

3 � 10 cos �

r �
2

3 � 3 sin �
r �

3

2 � 2 cos �

r �
9

6 � 2 cos �
r �

8

4 � 5 sin �

r �
3

4 � 8 cos �
r �

10

5 � 6 sin �

r � 1��1 � 2 sin ��

3��4

r � 4��5 � 6 cos ��

��3

r � e��1 � e cos � � e � 0.4 0.6
0.8 1.0 e

r � ed��1 � e sin �� e � 1
d d

d � 1 e
e

e
x � �d

r �
ed

1 � e cos �

22. Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

23. Show that a conic with focus at the origin, eccentricity , and
directrix has polar equation

24. Show that the parabolas and
intersect at right angles.

25. The orbit of Mars around the sun is an ellipse with eccen-
tricity and semimajor axis . Find a polar
equation for the orbit.

26. Jupiter’s orbit has eccentricity and the length of the
major axis is . Find a polar equation for the
orbit.

27. The orbit of Halley’s comet, last seen in 1986 and due to 
return in 2062, is an ellipse with eccentricity 0.97 and one
focus at the sun. The length of its major axis is 36.18 AU. 
[An astronomical unit (AU) is the mean distance between the
earth and the sun, about 93 million miles.] Find a polar equa-
tion for the orbit of Halley’s comet. What is the maximum
distance from the comet to the sun?

28. The Hale-Bopp comet, discovered in 1995, has an elliptical
orbit with eccentricity 0.9951 and the length of the major
axis is 356.5 AU. Find a polar equation for the orbit of this
comet. How close to the sun does it come?

29. The planet Mercury travels in an elliptical orbit with eccen-
tricity . Its minimum distance from the sun is 

km. Find its maximum distance from the sun.

30. The distance from the planet Pluto to the sun is 
km at perihelion and km at aphelion.

Find the eccentricity of Pluto’s orbit.

31. Using the data from Exercise 29, find the distance traveled by
the planet Mercury during one complete orbit around the sun.
(If your calculator or computer algebra system evaluates defi-
nite integrals, use it. Otherwise, use Simpson’s Rule.)

e
y � d

r �
ed

1 � e sin �

e
y � �d

r �
ed

1 � e sin �

r � c��1 � cos ��
r � d��1 � cos ��

0.093 2.28 � 108 km

0.048
1.56 � 109 km

0.206
4.6 � 107

4.43 � 109 7.37 � 109

10.6 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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CHAPTER 10 REVIEW 709

10 Review

1. (a) What is a parametric curve?
(b) How do you sketch a parametric curve?

2. (a) How do you find the slope of a tangent to a parametric
curve?

(b) How do you find the area under a parametric curve?

3. Write an expression for each of the following:
(a) The length of a parametric curve
(b) The area of the surface obtained by rotating a parametric

curve about the 

4. (a) Use a diagram to explain the meaning of the polar coordi-
nates of a point.

(b) Write equations that express the Cartesian coordinates 
of a point in terms of the polar coordinates.

(c) What equations would you use to find the polar coordi nates
of a point if you knew the Cartesian coordinates?

5. (a) How do you find the slope of a tangent line to a polar
curve?

(b) How do you find the area of a region bounded by a polar
curve?

(c) How do you find the length of a polar curve?

x-axis

�r, ��

�x, y�

6. (a) Give a geometric definition of a parabola.
(b) Write an equation of a parabola with focus and direc-

trix . What if the focus is and the directrix 
is ?

7. (a) Give a definition of an ellipse in terms of foci.
(b) Write an equation for the ellipse with foci and 

vertices .

8. (a) Give a definition of a hyperbola in terms of foci.
(b) Write an equation for the hyperbola with foci and

vertices .
(c) Write equations for the asymptotes of the hyperbola in

part (b).

9. (a) What is the eccentricity of a conic section?
(b) What can you say about the eccentricity if the conic section

is an ellipse? A hyperbola? A parabola?
(c) Write a polar equation for a conic section with eccentricity

and directrix . What if the directrix is ?
? ?

�0, p�
y � �p �p, 0�

x � �p

��c, 0�
��a, 0�

��c, 0�
��a, 0�

e x � d x � �d
y � d y � �d

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. If the parametric curve , satisfies ,
then it has a horizontal tangent when .

2. If and are twice differentiable, then

3. The length of the curve , , , is
.

4. If a point is represented by in Cartesian coordinates
(where ) and in polar coordinates, then

.

x � f �t� y � t�t� t��1� � 0
t � 1

y � t�t�x � f �t�

d 2y

dx 2 �
d 2y�dt 2

d 2x�dt 2

a � t � by � t�t�x � f �t�
x

b
a s� f ��t�	 2 � �t��t�	 2 dt

�x, y�
�r, ��x � 0

� � tan �1� y�x�

5. The polar curves and have the
same graph.

6. The equations , , and ,
all have the same graph.

7. The parametric equations , have the same graph
as , .

8. The graph of is a parabola.

9. A tangent line to a parabola intersects the parabola only once.

10. A hyperbola never intersects its directrix.

r � 2 x 2 � y 2 � 4 x � 2 sin 3t
y � 2 cos 3t �0 � t � 2��

x � t 2 y � t 4

x � t 3 y � t 6

y 2 � 2y � 3x

r � sin 2� � 1r � 1 � sin 2�

True-False Quiz
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710 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

; Graphing calculator or computer required Computer algebra system requiredCAS

1–4 Sketch the parametric curve and eliminate the parameter to
find the Cartesian equation of the curve.

1. ,  ,  

2. ,  

3. ,  ,  

4. ,  

5. Write three different sets of parametric equations for the 
curve .

6. Use the graphs of  and to sketch the para-
metric curve , . Indicate with arrows the 
direction in which the curve is traced as increases.

7. (a) Plot the point with polar coordinates . Then find
its Cartesian coordinates.

(b) The Cartesian coordinates of a point are . Find two
sets of polar coordinates for the point.

8. Sketch the region consisting of points whose polar coor-
dinates satisfy .

9–16 Sketch the polar curve.

9. 10.

11. 12.

13. 14.

15. 16.

17–18 Find a polar equation for the curve represented by the
given Cartesian equation.

17. 18.

; 19. The curve with polar equation is called a
cochleoid. Use a graph of as a function of in Cartesian
coordinates to sketch the cochleoid by hand. Then graph it
with a machine to check your sketch.

; 20. Graph the ellipse and its directrix. 
Also graph the ellipse obtained by rotation about the origin
through an angle .

�4 � t � 1y � 2 � tx � t 2 � 4t

y � e tx � 1 � e 2 t

0 � � � ��2y � sec �x � cos �

y � 1 � sin �x � 2 cos �

y � sx

y � t�t�x � f �t�
y � t�t�x � f �t�

t

t

x

_1

1 t

y

1

1

�4, 2��3�

��3, 3�

1 � r � 2 and ��6 � � � 5��6

r � sin 4�r � 1 � cos �

r � 3 � cos 3�r � cos 3 �

r � 2 cos���2�r � 1 � cos 2�

r �
3

2 � 2 cos �
r �

3

1 � 2 sin �

x 2 � y 2 � 2x � y � 2

r � �sin � ���
�r

r � 2��4 � 3 cos � �

2��3

21–24 Find the slope of the tangent line to the given curve at the
point corresponding to the specified value of the parameter.

21. , ;  

22. ,  ;  

23. ;  

24. ;  

25–26 Find and .

25. ,  

26. ,  

; 27. Use a graph to estimate the coordinates of the lowest point on
the curve , .  Then use calculus to
find the exact coordinates.

28. Find the area enclosed by the loop of the curve in Exercise 27.

29. At what points does the curve

have vertical or horizontal tangents? Use this information to
help sketch the curve.

30. Find the area enclosed by the curve in Exercise 29.

31. Find the area enclosed by the curve .

32. Find the area enclosed by the inner loop of the curve
.

33. Find the points of intersection of the curves and
.

34. Find the points of intersection of the curves and
.

35. Find the area of the region that lies inside both of the circles
and .

36. Find the area of the region that lies inside the curve
but outside the curve .

37–40 Find the length of the curve.

37. ,  ,  

38. ,  ,  

39. ,  

40. ,  

x � ln t y � 1 � t 2 t � 1

x � t 3 � 6t � 1 y � 2t � t 2 t � �1

r � e �� � � �

r � 3 � cos 3� � � ��2

dy�dx d 2 y�dx 2

x � t � sin t y � t � cos t

x � 1 � t 2 y � t � t 3

x � t 3 � 3t y � t 2 � t � 1

x � 2a cos t � a cos 2t y � 2a sin t � a sin 2t

r 2 � 9 cos 5�

r � 1 � 3 sin �

r � 2
r � 4 cos �

r � cot �
r � 2 cos �

r � 2 sin � r � sin � � cos �

r � 2 � cos 2� r � 2 � sin �

x � 3t 2 y � 2t 3 0 � t � 2

x � 2 � 3t y � cosh 3t 0 � t � 1

r � 1�� � � � � 2�

r � sin3���3� 0 � � � �

Exercises
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CHAPTER 10 REVIEW 711

41–42 Find the area of the surface obtained by rotating the given
curve about the -axis.

41. ,  ,  

42. ,  ,  

; 43. The curves defined by the parametric equations

are called strophoids (from a Greek word meaning “to turn
or twist”). Investigate how these curves vary as varies.

; 44. A family of curves has polar equations where 
is a positive number. Investigate how the curves change as 
changes.

45–48 Find the foci and vertices and sketch the graph.

45. 46.

47.

48.

49. Find an equation of the ellipse with foci and vertices
.

50. Find an equation of the parabola with focus and direc-
trix .

51. Find an equation of the hyperbola with foci and
asymptotes .

52. Find an equation of the ellipse with foci and major
axis with length 8.

x

x � 4st y �
t 3

3
�

1

2t 2 1 � t � 4

x � 2 � 3t y � cosh 3t 0 � t � 1

x �
t 2 � c

t 2 � 1
y �

t�t 2 � c�
t 2 � 1

c

r a � � sin 2� �
a
a

x 2

9
�

y 2

8
� 1 4x 2 � y 2 � 16

6y 2 � x � 36y � 55 � 0

25x 2 � 4y 2 � 50x � 16y � 59

��4, 0�
��5, 0�

�2, 1�
x � �4

�0, �4�
y � �3x

�3, �2�

53. Find an equation for the ellipse that shares a vertex and a
focus with the parabola and that has its other
focus at the origin.

54. Show that if is any real number, then there are exactly 
two lines of slope that are tangent to the ellipse

and their equations are
.

55. Find a polar equation for the ellipse with focus at the origin,
eccentricity .

56. Show that the angles between the polar axis and the 
asymptotes of the hyperbola , , 
are given by .

57. A curve called the folium of Descartes is defined by the
parametric equations

(a) Show that if lies on the curve, then so does ;
that is, the curve is symmetric with respect to the line 

. Where does the curve intersect this line?
(b) Find the points on the curve where the tangent lines are

horizontal or vertical.
(c) Show that the line is a slant asymptote.
(d) Sketch the curve.
(e) Show that a Cartesian equation of this curve is

.
(f ) Show that the polar equation can be written in the form

(g) Find the area enclosed by the loop of this curve.
(h) Show that the area of the loop is the same as the area that

lies between the asymptote and the infinite branches of
the curve. (Use a computer algebra system to evaluate 
the integral.)

y � x

y � �x � 1

x 3 � y 3 � 3xy

r �
3 sec � tan �

1 � tan3�

CAS

x 2 � y � 100

m
m

x 2�a 2 � y 2�b 2 � 1
y � mx � sa 2m 2 � b 2

1
3 , and directrix with equation r � 4 sec �

e 	 1r � ed��1 � e cos ��
cos�1��1�e�

x �
3t

1 � t 3 y �
3t 2

1 � t 3

�b, a��a, b�

97817_10_ch10_p710-712.qk_97817_10_ch10_p710-712  11/3/10  4:15 PM  Page 711

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



Problems Plus
1. A curve is defined by the parametric equations

Find the length of the arc of the curve from the origin to the nearest point where there is a verti-
cal tangent line.

2. (a) Find the highest and lowest points on the curve .
(b) Sketch the curve. (Notice that it is symmetric with respect to both axes and both of the lines

, so it suffices to consider initially.)
(c) Use polar coordinates and a computer algebra system to find the area enclosed by the curve.

; 3. What is the smallest viewing rectangle that contains every member of the family of polar curves
, where ? Illustrate your answer by graphing several members of the

family in this viewing rectangle.

4. Four bugs are placed at the four corners of a square with side length . The bugs crawl counter-
clockwise at the same speed and each bug crawls directly toward the next bug at all times. They
approach the center of the square along spiral paths.
(a) Find the polar equation of a bug’s path assuming the pole is at the center of the square. (Use

the fact that the line joining one bug to the next is tangent to the bug’s path.)
(b) Find the distance traveled by a bug by the time it meets the other bugs at the center.

5. Show that any tangent line to a hyperbola touches the hyperbola halfway between the points of
intersection of the tangent and the asymptotes.

6. A circle of radius has its center at the origin. A circle of radius rolls without slipping in
the counterclockwise direction around . A point is located on a fixed radius of the rolling
circle at a distance from its center, . [See parts (i) and (ii) of the figure.] Let be
the line from the center of to the center of the rolling circle and let be the angle that
makes with the positive -axis.
(a) Using as a parameter, show that parametric equations of the path traced out by are

Note: If , the path is a circle of radius ; if , the path is an epicycloid. The path
traced out by for is called an epitrochoid.

; (b) Graph the curve for various values of between and .

(c) Show that an equilateral triangle can be inscribed in the epitrochoid and that its centroid is
on the circle of radius centered at the origin.

Note: This is the principle of the Wankel rotary engine. When the equilateral triangle rotates
with its vertices on the epitrochoid, its centroid sweeps out a circle whose center is at the
center of the curve.

(d) In most rotary engines the sides of the equilateral triangles are replaced by arcs of circles
centered at the opposite vertices as in part (iii) of the figure. (Then the diameter of the rotor
is constant.) Show that the rotor will fit in the epitrochoid if .

x � y
t

1

cos u

u
du y � y

t

1

sin u

u
du

x 4 � y 4 � x 2 � y 2

y 
 x 
 0y � �x
CAS

0 � c � 1r � 1 � c sin �

a

r2rC
PC

L0 � b � rb
L�C

x
P�

x � b cos 3� � 3r cos � y � b sin 3� � 3r sin �

b � r3rb � 0
0 � b � rP

r0b

b

b �
3
2 (2 � s3 )r

(ii)

y

xP¸
¨

P

y

x

r

b

P=P¸

2r

(i) (iii)

712

a

a a

a

FIGURE FOR PROBLEM 4
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Infinite Sequences 
and Series11

Infinite sequences and series were introduced briefly in A Preview of Calculus in connection with Zeno’s

paradoxes and the decimal representation of numbers. Their importance in calculus stems from Newton’s

idea of representing functions as sums of infinite series. For instance, in finding areas he often integrated

a function by first expressing it as a series and then integrating each term of the series. We will pursue his

idea in Section 11.10 in order to integrate such functions as . (Recall that we have previously been

unable to do this.) Many of the functions that arise in mathematical physics and chemistry, such as Bessel

functions, are defined as sums of series, so it is important to be familiar with the basic concepts of con-

vergence of infinite sequences and series.

Physicists also use series in another way, as we will see in Section 11.11. In studying fields as diverse

as optics, special relativity, and electromagnetism, they analyze phenomena by replacing a function with

the first few terms in the series that represents it.

e�x 2

713

© Epic Stock / Shutterstock

In the last section of this chapter you are
asked to use a series to derive a formula
for the velocity of an ocean wave.
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714 CHAPTER 11 INFINITE SEQUENCES AND SERIES

11.1 Sequences

A sequence can be thought of as a list of numbers written in a definite order:

The number is called the first term, is the second term, and in general is the nth term.
We will deal exclusively with infinite sequences and so each term will have a succes-
sor .

Notice that for every positive integer there is a corresponding number and so a
sequence can be defined as a function whose domain is the set of positive integers. But we
usually write instead of the function notation for the value of the function at the
number .

NOTATION The sequence { , , , . . .} is also denoted by

Some sequences can be defined by giving a formula for the nth term. In the
following examples we give three descriptions of the sequence: one by using the preced-
ing notation, another by using the defining formula, and a third by writing out the terms
of the sequence. Notice that doesn’t have to start at 1.

(a)  

(b)  

(c)  

(d)  

Find a formula for the general term of the sequence

assuming that the pattern of the first few terms continues.

SOLUTION We are given that

Notice that the numerators of these fractions start with 3 and increase by 1 whenever we
go to the next term. The second term has numerator 4, the third term has numerator 5; in
general, the th term will have numerator . The denominators are the powers of 5, 

a1, a2, a3, a4, . . . , an, . . .

a1 a2 an

an

an�1

n an

an f �n�
n

a1 a2 a3

�an � or �an� n�1
�

n

� n

n � 1�n�1

�

an �
n

n � 1 �1

2
, 

2

3
, 

3

4
, 

4

5
, . . . , 

n

n � 1
, . . .�

���1�n�n � 1�
3n � an �

��1�n�n � 1�
3n ��

2

3
, 

3

9
, �

4

27
, 

5

81
, . . . , 

��1�n�n � 1�
3n , . . .�

{sn � 3 }n�3
�

an � sn � 3 , n � 3 {0, 1, s2 , s3 , . . . , sn � 3 , . . .}

�cos 
n�

6 �n�0

�

an � cos 
n�

6
, n � 0 �1, 

s3

2
, 

1

2
, 0, . . . , cos 

n�

6
, . . .�

an

�3

5
, �

4

25
, 

5

125
, �

6

625
, 

7

3125
, . . .�

a 1 �
3

5
a 2 � �

4

25
a 3 �

5

125
a 4 � �

6

625
a 5 �

7

3125

n n � 2

EXAMPLE 1

v EXAMPLE 2
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SECTION 11.1 SEQUENCES 715

so has denominator . The signs of the terms are alternately positive and negative, 
so we need to multiply by a power of . In Example 1(b) the factor meant we
started with a negative term. Here we want to start with a positive term and so we use

or . Therefore

Here are some sequences that don’t have a simple defining equation.

(a) The sequence , where is the population of the world as of January 1 in the
year .

(b) If we let be the digit in the nth decimal place of the number , then is a well-
defined sequence whose first few terms are

(c) The Fibonacci sequence is defined recursively by the conditions

Each term is the sum of the two preceding terms. The first few terms are

This sequence arose when the 13th-century Italian mathematician known as Fibonacci
solved a problem concerning the breeding of rabbits (see Exercise 83).

A sequence such as the one in Example 1(a), , can be pictured either by
plotting its terms on a number line, as in Figure 1, or by plotting its graph, as in Figure 2.
Note that, since a sequence is a function whose domain is the set of positive integers, its
graph consists of isolated points with coordinates

. . .    . . .

From Figure 1 or Figure 2 it appears that the terms of the sequence are
approaching 1 as becomes large. In fact, the difference

can be made as small as we like by taking sufficiently large. We indicate this by writing

In general, the notation

means that the terms of the sequence approach as becomes large. Notice that the
following definition of the limit of a sequence is very similar to the definition of a limit of
a function at infinity given in Section 3.4.

an 5 n

�1 ��1� n

��1� n�1 ��1� n�1

an � ��1� n�1 n � 2

5 n

�pn� pn

n

an e �an �

�7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, . . .�

� fn�

f1 � 1 f2 � 1 fn � fn�1 � fn�2 n � 3

�1, 1, 2, 3, 5, 8, 13, 21, . . .�

an � n��n � 1�

�1, a1� �2, a2� �3, a3� �n, an �

an � n��n � 1�
n

1 �
n

n � 1
�

1

n � 1

n

lim
n l �

n

n � 1
� 1

lim
n l �

an � L

�an � L n

EXAMPLE 3

0 11
2

a¡ a™ a£
a¢

FIGURE 1

FIGURE 2

0 n

an

1

1

2 3 4 5 6 7

7
8a¶=
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716 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Definition A sequence has the limit and we write

if we can make the terms as close to as we like by taking sufficiently large.
If exists, we say the sequence converges (or is convergent). Otherwise,
we say the sequence diverges (or is divergent).

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have the
limit .

A more precise version of Definition 1 is as follows.

Definition A sequence has the limit and we write

if for every there is a corresponding integer such that

if    then    

Definition 2 is illustrated by Figure 4, in which the terms , , , . . . are plotted on a
number line. No matter how small an interval is chosen, there exists an
such that all terms of the sequence from onward must lie in that interval.

Another illustration of Definition 2 is given in Figure 5. The points on the graph of
must lie between the horizontal lines and if . This picture
must be valid no matter how small is chosen, but usually a smaller requires a larger .

�an� L

lim
n l �

an � L or an l L as n l �

an L n
limn l � an

L

0 n

a
n

L

0 n

a
n

L

FIGURE 3
Graphs of two
sequences with
lim  a

n
= L

n     `

1

L�an�

an l L as n l �orlim
n l �

an � L

N� � 0

	 an � L 	 	 �n � N

a3a2a1

N�L � �, L � ��
aN�1

FIGURE 4 0 L-∑ L L+∑

a¡ a£ a¢a™ a∞aß a¶aˆ a˜aN+1 aN+2

�an�
n � Ny � L � �y � L � �

N��

2

FIGURE 5 20 n

y

1 3 4

L

y=L+∑

N

y=L-∑

Compare this definition with Definition 3.4.5.
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SECTION 11.1 SEQUENCES 717

If you compare Definition 2 with Definition 3.4.5 you will see that the only difference
between and is that is required to be an integer. Thus we
have the following theorem, which is illustrated by Figure 6.

Theorem If and when is an integer, then 
.

In particular, since we know that when (Theorem 3.4.4), we
have

if 

If becomes large as n becomes large, we use the notation . The fol-
lowing precise definition is similar to Definition 3.4.7.

Definition means that for every positive number there is an
integer such that

if    then    

If , then the sequence is divergent but in a special way. We say that
diverges to .

The Limit Laws given in Section 1.6 also hold for the limits of sequences and their proofs
are similar.

If and are convergent sequences and is a constant, then

limn l � an � L limx l � f �x� � L n

3 limx l � f �x� � L f �n� � an n
limn l � an � L

FIGURE 6 20 x

y

1 3 4

L

y=ƒ

limx l � �1�xr� � 0 r � 0

4 lim
n l �

1

nr � 0 r � 0

an lim n l � an � �

limn l � an � � M
N

n � N an � M

lim n l � an � � �an �
�an � �

5

�an � �bn� c

lim
n l �

�an � bn � � lim
n l �

an � lim
n l �

bn

lim
n l �

�an � bn � � lim
n l �

an � lim
n l �

bn

lim
n l �

can � c lim
n l �

an lim
n l �

c � c

lim
n l �

�anbn� � lim
n l �

an � lim
n l �

bn

lim
n l �

an

bn
�

lim
n l �

an

lim
n l �

bn
if lim

n l �
bn � 0         

lim
n l �

an
p � 
 lim

n l �
an� p

if  p � 0 and an � 0

Limit Laws for Sequences
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718 CHAPTER 11 INFINITE SEQUENCES AND SERIES

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

If for and , then .

Another useful fact about limits of sequences is given by the following theorem, whose
proof is left as Exercise 87.

Theorem If , then .

Find .

SOLUTION The method is similar to the one we used in Section 3.4: Divide numerator
and denominator by the highest power of that occurs in the denominator and then use
the Limit Laws.

Here we used Equation 4 with .

Is the sequence convergent or divergent?

SOLUTION As in Example 4, we divide numerator and denominator by :

because the numerator is constant and the denominator approaches . So is 
divergent.

Calculate .

SOLUTION Notice that both numerator and denominator approach infinity as . We
can’t apply l’Hospital’s Rule directly because it applies not to sequences but to functions
of a real variable. However, we can apply l’Hospital’s Rule to the related function

and obtain

Therefore, by Theorem 3, we have

an 
 bn 
 cn n � n0 lim
n l �

an � lim
n l �

cn � L lim
n l �

bn � L

6 lim
n l �

	 an 	 � 0 lim
n l �

an � 0

lim
n l �

n

n � 1

n

lim
n l �

n

n � 1
� lim

n l �

1

1 �
1

n

�
lim
n l �

1 

lim
n l �

1 � lim
n l �

1

n

�
1

1 � 0
� 1

r � 1

EXAMPLE 4

EXAMPLE 5 an �
n

s10 � n

n

lim
n l �

n

s10 � n
� lim

n l �

1

� 10

n 2 �
1

n

� �

0 �an�

lim
n l �

ln n

n

n l �

EXAMPLE 6

f �x� � �ln x��x

lim
x l �

ln x

x
� lim

x l �

1�x

1
� 0

lim
n l �

ln n

n
� 0

Squeeze Theorem for Sequences

FIGURE 7
The sequence �b � is squeezed
between the sequences �a �
and �c �.

0 n

cn

an

bn

n

n

n

This shows that the guess we made earlier
from Figures 1 and 2 was correct.
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SECTION 11.1 SEQUENCES 719

Determine whether the sequence is convergent or divergent.

SOLUTION If we write out the terms of the sequence, we obtain

The graph of this sequence is shown in Figure 8. Since the terms oscillate between 1 and
infinitely often, does not approach any number. Thus does not exist;

that is, the sequence is divergent.

Evaluate if it exists.

SOLUTION We first calculate the limit of the absolute value:

Therefore, by Theorem 6,

The following theorem says that if we apply a continuous function to the terms of a con-
vergent sequence, the result is also convergent. The proof is left as Exercise 88.

Theorem If and the function is continuous at , then

Find .

SOLUTION Because the sine function is continuous at , Theorem 7 enables us to write

Discuss the convergence of the sequence , where
.

SOLUTION Both numerator and denominator approach infinity as but here we
have no corresponding function for use with l’Hospital’s Rule ( is not defined when 

is not an integer). Let’s write out a few terms to get a feeling for what happens to 
as gets large:

It appears from these expressions and the graph in Figure 10 that the terms are decreasing
and perhaps approach 0. To confirm this, observe from Equation 8 that

an � ��1�n

��1, 1, �1, 1, �1, 1, �1, . . .�

�1 an lim n l � ��1�n

���1�n �

EXAMPLE 7

lim
n l �

��1�n

n

lim
n l �

 ��1�n

n  � lim
n l �

1

n
� 0

lim
n l �

��1�n

n
� 0

EXAMPLE 8

7 lim
n l �

an � L f L

lim
n l �

f �an� � f �L�

lim
n l �

sin���n�

0

lim
n l �

sin���n� � sin�lim
n l �

���n�� � sin 0 � 0

EXAMPLE 9

an � n!�nn

n! � 1 � 2 � 3 � � � � � n

n l �
x!

x an

EXAMPLE 10v

n

a3 �
1 � 2 � 3

3 � 3 � 3
a2 �

1 � 2

2 � 2
a1 � 1

an �
1 � 2 � 3 � � � � � n

n � n � n � � � � � n
8

an �
1

n � 2 � 3 � � � � � n

n � n � � � � � n�

0 n

an

1

1

2 3 4
_1

FIGURE 8

The graph of the sequence in Example 8 is
shown in Figure 9 and supports our answer.

FIGURE 9

0 n

an

1

1

_1

Creating Graphs of Sequences
Some computer algebra systems have special
commands that enable us to create sequences
and graph them directly. With most graphing
calcula tors, however, sequences can be
graphed by using parametric equations. For
instance, the sequence in Example 10 can be
graphed by entering the parametric equations

and graphing in dot mode, starting with 
and setting the -step equal to . The result is
shown in Figure 10.

1t
t � 1

x � t y � t!�t t

FIGURE 10

1

0 10
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720 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Notice that the expression in parentheses is at most 1 because the numerator is less than
(or equal to) the denominator. So

We know that as . Therefore as by the Squeeze Theorem.

For what values of is the sequence convergent?

SOLUTION We know from Section 3.4 and the graphs of the exponential functions in
Section 6.2 (or Section 6.4*) that for and for

. Therefore, putting and using Theorem 3, we have

It is obvious that

and    

If , then , so

and therefore by Theorem 6. If , then diverges as in
Example 7. Figure 11 shows the graphs for various values of . (The case is
shown in Figure 8.)

The results of Example 11 are summarized for future use as follows.

The sequence is convergent if and divergent for all other
values of .

Definition A sequence is called increasing if for all , 
that is, It is called decreasing if for all . 
A sequence is monotonic if it is either increasing or decreasing.

0 	 an 

1

n

1�n l 0 n l � an l 0 n l �

r �r n�

limx l � ax � � a � 1 limx l � ax � 0
0 	 a 	 1 a � r

lim
n l �

r n � ��

0

if r � 1

if 0 	 r 	 1

lim
n l �

1n � 1 lim
n l �

0 n � 0

�1 	 r 	 0 0 	 	 r 	 	 1

lim
n l �

	 r n 	 � lim
n l �

	 r 	n � 0

lim n l � r n � 0 r 
 �1 �r n �
r r � �1

r>1

r=1

0<r<1

0

r<_1

_1<r<0

0 n

an

1

1
n

an

1
1

FIGURE 11
The sequence an=rn

v EXAMPLE 11

�1 	 r 
 1�r n �9
r

lim
n l �

r n � �0

1

if �1 	 r 	 1

if r � 1

�an �10
a1 	 a2 	 a3 	 � � � .

n � 1an 	 an�1

an � an�1 n � 1
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SECTION 11.1 SEQUENCES 721

The sequence is decreasing because

and so for all .

Show that the sequence is decreasing.

SOLUTION 1 We must show that , that is,

This inequality is equivalent to the one we get by cross-multiplication:

Since , we know that the inequality is true. Therefore and 
so is decreasing.

SOLUTION 2 Consider the function :

Thus is decreasing on and so . Therefore is decreasing.

Definition A sequence is bounded above if there is a number such that

It is bounded below if there is a number such that

If it is bounded above and below, then is a bounded sequence.

For instance, the sequence is bounded below but not above. The
sequence is bounded because for all .

We know that not every bounded sequence is convergent [for instance, the sequence
satisfies but is divergent from Example 7] and not every mono -

� 3

n � 5�
3

n � 5
�

3

�n � 1� � 5
�

3

n � 6

an � an�1 n � 1

EXAMPLE 12

an �
n

n2 � 1

an�1 	 an

n � 1

�n � 1�2 � 1
	

n

n2 � 1

n � 1

�n � 1�2 � 1
	

n

n2 � 1
&? �n � 1��n2 � 1� 	 n��n � 1�2 � 1�

&? n3 � n2 � n � 1 	 n3 � 2n2 � 2n

&? 1 	 n2 � n

n � 1 n2 � n � 1 an�1 	 an

�an �

f �x� �
x

x 2 � 1

f ��x� �
x 2 � 1 � 2x 2

�x 2 � 1�2 �
1 � x 2

�x 2 � 1�2 	 0 whenever x2 � 1

f �1, �� f �n� � f �n � 1� �an�

EXAMPLE 13

�an� M

an 
 M for all n � 1

m

m 
 an for all n � 1

�an �

11

an � n �an � 0�
an � n��n � 1� 0 	 an 	 1 n

an � ��1�n �1 
 an 
 1

The right side is smaller because it has a
larger denominator.
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722 CHAPTER 11 INFINITE SEQUENCES AND SERIES

tonic sequence is convergent . But if a sequence is both bounded and
monotonic, then it must be convergent. This fact is proved as Theorem 12, but intuitively
you can understand why it is true by looking at Figure 12. If is increasing and
for all , then the terms are forced to crowd together and approach some number .

The proof of Theorem 12 is based on the Completeness Axiom for the set of real
numbers, which says that if is a nonempty set of real numbers that has an upper bound
( for all in ), then has a least upper bound . (This means that is an upper
bound for , but if is any other upper bound, then .) The Completeness Axiom is
an expression of the fact that there is no gap or hole in the real number line.

Monotonic Sequence Theorem Every bounded, monotonic sequence is 
convergent.

PROOF Suppose is an increasing sequence. Since is bounded, the set
has an upper bound. By the Completeness Axiom it has a least upper

bound . Given , is not an upper bound for (since is the least upper
bound). Therefore

But the sequence is increasing so for every . Thus if , we have

so

since . Thus

so .
A similar proof (using the greatest lower bound) works if is decreasing.

The proof of Theorem 12 shows that a sequence that is increasing and bounded above is
convergent. (Likewise, a decreasing sequence that is bounded below is convergent.) This
fact is used many times in dealing with infinite series.

�an � n l ��

�an� an � M
n L

�

S M
x � M x S S b b

S M b � M

12

�an� �an �
S � �an � n � 1�

L � � 0 L � � S L

aN � L � � for some integer N

an � aN n � N n � N

an � L � �

0 � L � an � �

an � L

� L � an � � � whenever n � N

lim n l � an � L
�an �

FIGURE 12 20 n

an

1 3

L

M
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SECTION 11.1 SEQUENCES 723

Investigate the sequence defined by the recurrence relation

SOLUTION We begin by computing the first several terms:

These initial terms suggest that the sequence is increasing and the terms are approaching
6. To confirm that the sequence is increasing, we use mathematical induction to show
that for all . This is true for because . If we assume
that it is true for , then we have

so

and

Thus

We have deduced that is true for . Therefore the inequality is true
for all by induction.

Next we verify that is bounded by showing that for all . (Since the
sequence is increasing, we already know that it has a lower bound: for 
all .) We know that , so the assertion is true for . Suppose it is true for

. Then

so

and

Thus

This shows, by mathematical induction, that for all .
Since the sequence is increasing and bounded, Theorem 12 guarantees that it has

a limit. The theorem doesn’t tell us what the value of the limit is. But now that we know
exists, we can use the given recurrence relation to write

Since , it follows that too (as , also). So we have

Solving this equation for , we get , as we predicted.

ak	1 � ak

ak	1 	 6 � ak 	 6

1
2 �ak	1 	 6� �

1
2 �ak 	 6�

ak	2 � ak	1

an	1 � an n � k 	 1
n

�an � an � 6 n
an � a1 � 2

n a1 � 6 n � 1
n � k

ak � 6

ak 	 6 � 12

1
2 �ak 	 6� �

1
2 �12� � 6

ak	1 � 6

an � 6 n
�an �

L � limn l � an

lim
n l �

an	1 � lim
n l �

1
2 �an 	 6� � 1

2 ( lim
n l �

an 	 6) � 1
2 �L 	 6�

an l L an	1 l L n l � n 	 1 l �

L � 1
2 �L 	 6�

L L � 6

n � k

a1 � 2 a2 � 1
2 �2 	 6� � 4 a3 � 1

2 �4 	 6� � 5

a4 � 1
2 �5 	 6� � 5.5 a5 � 5.75 a6 � 5.875

a7 � 5.9375 a8 � 5.96875 a9 � 5.984375

an	1 � an n � 1 n � 1 a2 � 4 � a1

�an �

a1 � 2 an	1 � 1
2 �an 	 6� for n � 1, 2 , 3, . . .

EXAMPLE 14

Mathematical induction is often used in deal-
ing with recursive sequences. See page 98 for
a discussion of the Principle of Mathematical
Induction.

A proof of this fact is requested in Exercise 70.
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724 CHAPTER 11 INFINITE SEQUENCES AND SERIES

1. (a) What is a sequence?
(b) What does it mean to say that ?
(c) What does it mean to say that ?

2. (a) What is a convergent sequence? Give two examples.
(b) What is a divergent sequence? Give two examples.

3–12 List the first five terms of the sequence.

3. 4.

5. 6.

7. 8.

9. ,  

10. ,  

11. ,  

12. ,  ,  

13–18 Find a formula for the general term of the sequence,
assuming that the pattern of the first few terms continues.

13.

14.

15.

16.

17.

18.

19–22 Calculate, to four decimal places, the first ten terms of the
sequence and use them to plot the graph of the sequence by hand.
Does the sequence appear to have a limit? If so, calculate it. If not,
explain why.

19. 20.

21. 22.

limn l � an � 8
limn l � an � �

an �
3n

1 	 2nan �
2n

n 2 	 1

an � cos 
n


2
an �

��1�n�1

5n

an �
��1�nn

n! 	 1
an �

1

�n 	 1�!

an	1 � 5an � 3a1 � 1

an	1 �
an

n
a1 � 6

an	1 �
an

1 	 an
a1 � 2

an	1 � an � an�1a2 � 1a1 � 2

an

{1, 13 , 1
5 , 1

7 , 1
9 , . . .}

�1, �1
3 , 19 , � 1

27 , 1
81 , . . .�

��3, 2, �4
3 , 89 , �16

27 , . . .�
�5, 8, 11, 14, 17, . . .�

� 1
2 , �4

3 , 9
4 , �16

5 , 25
6 , . . .�

�1, 0, �1, 0, 1, 0, �1, 0, . . .�

an � 2 	
��1�n

n
an �

3n

1 	 6n

an � 1 	
10 n

9 nan � 1 	 (�1
2)n

23–56 Determine whether the sequence converges or diverges. 
If it converges, find the limit.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49.

50.

51.

52.

53.

54.

an � 1 � �0.2�n an �
n3

n3 	 1

an �
3 	 5n2

n 	 n2 an �
n3

n 	 1

an � e1�n an �
3n	2

5n

an � tan� 2n


1 	 8n	 an � 
 n 	 1

9n 	 1

an �
n2

sn3 	 4n
an � e2n��n	2�

an �
��1�n

2sn
an �

��1�n	1n

n 	 sn

an � cos�n�2� an � cos�2�n�

� �2n � 1 �!
�2n 	 1�!� � ln n

ln 2n�
� e n 	 e �n

e 2n � 1 � an �
tan�1n

n

�n2e �n� an � ln�n 	 1� � ln n

an �
cos2n

2n an � s
n 21	3n

an � n sin�1�n� an � 2�n cos n


an � �1 	
2

n	
n

an �
sin 2n

1 	 sn

an � ln�2n2 	 1� � ln�n2 	 1�

an �
�ln n�2

n

an � arctan�ln n�

an � n � sn 	 1 sn 	 3

�0, 1, 0, 0, 1, 0, 0, 0, 1, . . . �

{1
1, 13 , 1

2 , 1
4 , 13 , 1

5 , 1
4 , 16 , . . .}

11.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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CHAPTER 11.1 SEQUENCES 725

55. 56.

; 57–63 Use a graph of the sequence to decide whether the
sequence is convergent or divergent. If the sequence is conver-
gent, guess the value of the limit from the graph and then prove
your guess. (See the margin note on page 719 for advice on
graphing sequences.)

57. 58.

59. 60.

61.

62.

63.

64. (a) Determine whether the sequence defined as follows is
convergent or divergent:

(b) What happens if the first term is ?

65. If $1000 is invested at 6% interest, compounded annually,
then after years the investment is worth 
dollars.
(a) Find the first five terms of the sequence .
(b) Is the sequence convergent or divergent? Explain.

66. If you deposit $100 at the end of every month into an
account that pays 3% interest per year compounded monthly,
the amount of interest accumulated after months is given
by the sequence

(a) Find the first six terms of the sequence.
(b) How much interest will you have earned after two years?

67. A fish farmer has 5000 catfish in his pond. The number of
catfish increases by 8% per month and the farmer harvests
300 catfish per month.
(a) Show that the catfish population after months is

given recursively by

(b) How many catfish are in the pond after six months?

an �
n!

2n an �
��3�n

n!

an � 1 	 ��2�e�n an � sn sin(
�sn )

an � 
3 	 2n2

8n2 	 n
an � s

n 3n 	 5n

an �
n2 cos n

1 	 n2

an �
1 � 3 � 5 � � � � � �2n � 1�

n!

an �
1 � 3 � 5 � � � � � �2n � 1�

�2n�n

a1 � 1    an	1 � 4 � an for n � 1

a1 � 2

n an � 1000�1.06�n

�an �

n

In � 100�1.0025n � 1

0.0025
� n	

Pn n

Pn � 1.08Pn�1 � 300 P0 � 5000

68. Find the first 40 terms of the sequence defined by

and . Do the same if . Make a conjecture
about this type of sequence.

69. For what values of is the sequence convergent?

70. (a) If is convergent, show that

(b) A sequence is defined by and
for . Assuming that is 

convergent, find its limit.

71. Suppose you know that is a decreasing sequence and 
all its terms lie between the numbers 5 and 8. Explain why 
the sequence has a limit. What can you say about the value 
of the limit?

72–78 Determine whether the sequence is increasing, decreasing,
or not monotonic. Is the sequence bounded?

72.

73. 74.

75. 76.

77. 78.

79. Find the limit of the sequence

80. A sequence is given by , .
(a) By induction or otherwise, show that is increasing 

and bounded above by 3. Apply the Monotonic Sequence
Theorem to show that exists.

(b) Find .

81. Show that the sequence defined by

is increasing and for all . Deduce that is conver-
gent and find its limit.

82. Show that the sequence defined by

satisfies and is decreasing. Deduce that the
sequence is convergent and find its limit.

an	1 � �1
2 an

3an 	 1

if an is an even number

if an is an odd number

a1 � 11 a1 � 25

r �nr n �

�an �

lim
n l �

an	1 � lim
n l �

an

�an � a1 � 1
an	1 � 1��1 	 an � n � 1 �an �

�an �

an � ��2�n	1

an �
1

2n 	 3
an �

2n � 3

3n 	 4

an � n��1�n an � ne �n

an �
n

n 2 	 1
an � n 	

1

n

{s2 , s2s2 , s2s2s2 , . . .}
�an � a1 � s2 an	1 � s2 	 an

�an �

limn l � an

limn l � an

a1 � 1 an	1 � 3 �
1

an

an � 3 n �an �

a1 � 2 an	1 �
1

3 � an

0 � an � 2
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726 CHAPTER 11 INFINITE SEQUENCES AND SERIES

83. (a) Fibonacci posed the following problem: Suppose that 
rabbits live forever and that every month each pair
produces a new pair which becomes productive at age
2 months. If we start with one newborn pair, how many
pairs of rabbits will we have in the month? Show that
the answer is , where is the Fibonacci sequence
defined in Example 3(c).

(b) Let and show that .
Assuming that is convergent, find its limit.

84. (a) Let , , , . . . ,
, where is a continuous function. If

, show that .
(b) Illustrate part (a) by taking , , and 

estimating the value of to five decimal places.

; 85. (a) Use a graph to guess the value of the limit

(b) Use a graph of the sequence in part (a) to find the 
smallest values of that correspond to and

in Definition 2.

86. Use Definition 2 directly to prove that when
.

87. Prove Theorem 6.
[Hint: Use either Definition 2 or the Squeeze Theorem.]

88. Prove Theorem 7.

89. Prove that if and is bounded, then
.

90. Let .

(a) Show that if , then

(b) Deduce that .
(c) Use and in part (b) to

show that is increasing.
(d) Use and in part (b) to show that

.
(e) Use parts (c) and (d) to show that for all .
(f ) Use Theorem 12 to show that exists.

(The limit is . See Equation 6.4.9 or 6.4*.9.)

nth
fn � fn �

an � fn	1�fn an�1 � 1 	 1�an�2

�an �

a1 � a a2 � f �a� a3 � f �a2� � f � f �a��
an	1 � f �an � f
limn l � an � L f �L� � L

f �x� � cos x a � 1
L

lim
nl �

n5

n!

N � � 0.1
� � 0.001

lim n l � r n � 0

� r � � 1

limn l � an � 0 �bn�
limn l � �an bn� � 0

an � �1 	
1

n	n

0 � a � b

b n	1 � a n	1

b � a
� �n 	 1�b n

b n �n 	 1�a � nb� � a n	1

a � 1 	 1��n 	 1� b � 1 	 1�n
�an �

a � 1 b � 1 	 1��2n�
a2n � 4

an � 4 n
lim n l � �1 	 1�n�n

e

91. Let and be positive numbers with . Let be their
arithmetic mean and their geometric mean:

Repeat this process so that, in general,

(a) Use mathematical induction to show that

(b) Deduce that both and are convergent.
(c) Show that . Gauss called the 

common value of these limits the arithmetic-geometric
mean of the numbers and .

92. (a) Show that if and , 
then is convergent and .

(b) If and

find the first eight terms of the sequence . Then use 
part (a) to show that . This gives the 
continued fraction expansion

93. The size of an undisturbed fish population has been modeled
by the formula

where is the fish population after years and and are
positive constants that depend on the species and its environ-
ment. Suppose that the population in year 0 is .
(a) Show that if is convergent, then the only possible 

values for its limit are 0 and .
(b) Show that .
(c) Use part (b) to show that if , then ; 

in other words, the population dies out.
(d) Now assume that . Show that if , then

is increasing and . Show also that 
if , then is decreasing and .
Deduce that if , then .

a b a � b a1

b1

a1 �
a 	 b

2
b1 � sab

an	1 �
an 	 bn

2
bn	1 � san bn

an � an	1 � bn	1 � bn

�an � �bn �
limn l � an � limn l � bn

a b

lim n l � a2n � L lim n l � a2n	1 � L
�an � lim n l � an � L

a1 � 1

an	1 � 1 	
1

1 	 an

�an �
lim n l � an � s2

s2 � 1 	
1

2 	
1

2 	 � � �

pn	1 �
bpn

a 	 pn

pn n a b

p0 � 0
� pn�

b � a
pn	1 � �b�a�pn

a � b limn l � pn � 0

a � b p 0 � b � a
� pn� 0 � pn � b � a

p 0 � b � a � pn� pn � b � a
a � b limn l � pn � b � a
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SECTION 11.2 SERIES 727

What do we mean when we express a number as an infinite decimal? For instance, what
does it mean to write

The convention behind our decimal notation is that any number can be written as an infi-
nite sum. Here it means that

where the three dots indicate that the sum continues forever, and the more terms we
add, the closer we get to the actual value of .


 � 3.14159 26535 89793 23846 26433 83279 50288 . . .


 � 3 	
1

10
	

4

10 2 	
1

103 	
5

104 	
9

10 5 	
2

10 6 	
6

107 	
5

108 	 ���

�����



11.2 Series

The current record is that has been computed
to (more than two trillion) 
decimal places by T. Daisuke and his team.

2,576,980,370,000



L A B O R AT O R Y  P R O J E C T LOGISTIC SEQUENCES

A sequence that arises in ecology as a model for population growth is defined by the logistic 
difference equation

where measures the size of the population of the generation of a single species. To keep
the numbers manageable, is a fraction of the maximal size of the population, so .
Notice that the form of this equation is similar to the logistic differential equation in Section 9.4.
The discrete model—with sequences instead of continuous functions—is preferable for modeling
insect populations, where mating and death occur in a periodic fashion.

An ecologist is interested in predicting the size of the population as time goes on, and asks 
these questions: Will it stabilize at a limiting value? Will it change in a cyclical fashion? Or will 
it exhibit random behavior?

Write a program to compute the first terms of this sequence starting with an initial population
. Use this program to do the following.

1. Calculate 20 or 30 terms of the sequence for and for two values of such that
. Graph each sequence. Do the sequences appear to converge? Repeat for a dif-

ferent value of between 0 and 1. Does the limit depend on the choice of ? Does it
depend on the choice of ?

2. Calculate terms of the sequence for a value of between 3 and 3.4 and plot them. What do
you notice about the behavior of the terms?

3. Experiment with values of between 3.4 and 3.5. What happens to the terms?

4. For values of between 3.6 and 4, compute and plot at least 100 terms and comment on the
behavior of the sequence. What happens if you change by 0.001? This type of behavior is
called chaotic and is exhibited by insect populations under certain conditions.

CAS

pn	1 � kpn�1 � pn �

nthpn

0 � pn � 1pn

n
p0, where 0 � p0 � 1

kp0 � 1
2

1 � k � 3
p0p0

k

k

k

k
p0

Computer algebra system requiredCAS
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728 CHAPTER 11 INFINITE SEQUENCES AND SERIES

In general, if we try to add the terms of an infinite sequence we get an expression
of the form

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

Does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find a finite sum for the series

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 21, . . . and,
after the term, we get , which becomes very large as increases.

However, if we start to add the terms of the series

we get , , , , , , . . . , , . . . . The table shows that as we add more and more
terms, these partial sums become closer and closer to 1. (See also Figure 11 in A Preview
of Calculus, page 6.) In fact, by adding sufficiently many terms of the series we can make
the partial sums as close as we like to 1. So it seems reasonable to say that the sum of this
infinite series is 1 and to write

We use a similar idea to determine whether or not a general series has a sum. We con-
sider the partial sums

and, in general,

These partial sums form a new sequence , which may or may not have a limit. If
exists (as a finite number), then, as in the preceding example, we call it the

sum of the infinite series .

�an�n�1
�

1 a1 	 a2 	 a3 	 � � � 	 an 	 � � �

�
�

n�1
an or � an

1 	 2 	 3 	 4 	 5 	 � � � 	 n 	 � � �

nth n�n 	 1��2 n

1

2
	

1

4
	

1

8
	

1

16
	

1

32
	

1

64
	 � � � 	

1

2n 	 � � �

1
2

3
4

7
8

15
16

31
32

63
64 1 � 1�2n

�
�

n�1

1

2n �
1

2
	

1

4
	

1

8
	

1

16
	 � � � 	

1

2n 	 � � � � 1

s1 � a1

s2 � a1 	 a2

s3 � a1 	 a2 	 a3

s4 � a1 	 a2 	 a3 	 a4

sn � a1 	 a2 	 a3 	 � � � 	 an � �
n

i�1
ai

�sn�

1

lim n l � sn � s
� an

n Sum of first n terms

1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750

10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997
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Definition Given a series , let denote its 
th partial sum:

If the sequence is convergent and exists as a real number, then
the series is called convergent and we write

The number is called the sum of the series. If the sequence is divergent, then
the series is called divergent.

Thus the sum of a series is the limit of the sequence of partial sums. So when we write
, we mean that by adding sufficiently many terms of the series we can get as

close as we like to the number . Notice that

Suppose we know that the sum of the first terms of the series is

Then the sum of the series is the limit of the sequence :

In Example 1 we were given an expression for the sum of the first terms, but it’s usu-
ally not easy to find such an expression. In Example 2, however, we look at a famous series
for which we can find an explicit formula for .

An important example of an infinite series is the geometric series

Each term is obtained from the preceding one by multiplying it by the common ratio .
(We have already considered the special case where and on page 728.)

If , then . Since doesn’t exist, the
geometric series diverges in this case.

If , we have

and

sn��
n�1 an � a1 	 a2 	 a3 	 � � �2

n

sn � �
n

i�1
ai � a1 	 a2 	 � � � 	 an

lim n l � sn � s�sn �
� an

�
�

n�1
an � sora1 	 a2 	 � � � 	 an 	 � � � � s

s

��
n�1 an � s

s

�
�

n�1
an � lim

n l �
�
n

i�1
ai

��
n�1 annEXAMPLE 1

sn � a1 	 a2 	 � � � 	 an �
2n

3n 	 5

�sn �

�
�

n�1
an � lim

n l �
sn � lim

n l �

2n

3n 	 5
� lim

n l �

2

3 	
5

n

�
2

3

n

sn

EXAMPLE 2

a � 0a 	 ar 	 ar 2 	 ar 3 	 � � � 	 ar n�1 	 � � � � �
�

n�1
ar n�1

r
r � 1

2a � 1
2

lim n l � snsn � a 	 a 	 � � � 	 a � na l ��r � 1

r � 1

sn � a 	 ar 	 ar 2 	 � � � 	 ar n�1

rsn � ar 	 ar 2 	 � � � 	 ar n�1 	 ar n

�sn �

SECTION 11.2 SERIES 729

Compare with the improper integral

To find this integral we integrate from 1 to 
and then let . For a series, we sum from 
1 to and then let .n l �

t l �

n

t

y
�

1
f �x� dx � lim

t l �
y

t

1
f �x� dx
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730 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Figure 1 provides a geometric demonstration 
of the result in Example 2. If the triangles are
constructed as shown and is the sum of the
series, then, by similar triangles,

s

a
�

a

a � ar
so s �

a

1 � r

s

FIGURE 1

aa

a

ara-ar

ar

ar@

ar#

ar@

s

Subtracting these equations, we get

If , we know from (11.1.9) that as , so

Thus when the geometric series is convergent and its sum is .
If or , the sequence is divergent by (11.1.9) and so, by Equation 3,

does not exist. Therefore the geometric series diverges in those cases.

We summarize the results of Example 2 as follows.

The geometric series

is convergent if and its sum is

If , the geometric series is divergent.

Find the sum of the geometric series

SOLUTION The first term is and the common ratio is . Since ,
the series is convergent by and its sum is

sn � rsn � a � ar n

sn �
a�1 � r n�

1 � r
3

n l �r n l 0�1 � r � 1

lim
n l �

sn � lim
n l �

a�1 � r n�
1 � r

�
a

1 � r
�

a

1 � r
lim
n l �

r n �
a

1 � r

a��1 � r�� r � � 1
�r n �r � 1r � �1

lim n l � sn

4

�
�

n�1
ar n�1 � a 	 ar 	 ar 2 	 � � �

� r � � 1

� r � � 1�
�

n�1
ar n�1 �

a

1 � r

� r � � 1

EXAMPLE 3v

5 �
10
3 	

20
9 �

40
27 	 � � �

� r � � 2
3 � 1r � �

2
3a � 5

4

5 �
10

3
	

20

9
�

40

27
	 � � � �

5

1 � (� 2
3 ) �

5
5
3

� 3

FIGURE 2

0 n

sn

20

3

In words: The sum of a convergent geometric
series is

first term

1 � common ratio

n

1 5.000000
2 1.666667
3 3.888889
4 2.407407
5 3.395062
6 2.736626
7 3.175583
8 2.882945
9 3.078037

10 2.947975

sn
What do we really mean when we say that the
sum of the series in Example 3 is ? Of course,
we can’t literally add an infinite number of
terms, one by one. But, according to Defi ni -
tion 2, the total sum is the limit of the
sequence of partial sums. So, by taking the
sum of sufficiently many terms, we can get as
close as we like to the number . The table
shows the first ten partial sums and the
graph in Figure 2 shows how the sequence of
partial sums approaches .3

3

3

sn
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SECTION 11.2 SERIES 731

Is the series convergent or divergent?

SOLUTION Let’s rewrite the nth term of the series in the form :

We recognize this series as a geometric series with and . Since , the
series diverges by .

Write the number . . . as a ratio of integers.

SOLUTION

After the first term we have a geometric series with and . 
Therefore

Find the sum of the series , where 

SOLUTION Notice that this series starts with and so the first term is . (With
series, we adopt the convention that even when .) Thus

This is a geometric series with and . Since , it converges and
gives

Show that the series is convergent, and find its sum.

SOLUTION This is not a geometric series, so we go back to the definition of a convergent
series and compute the partial sums.

We can simplify this expression if we use the partial fraction decomposition

�
�

n�1
22n31�n

arn�1

�
�

n�1
22n31�n � �

�

n�1
�22�n3��n�1� � �

�

n�1

4n

3n�1 � �
�

n�1
4( 4

3 )n�1

a � 4 r � 4
3 r � 1

2.317 � 2.3171717

2.3171717. . . � 2.3 	
17

103 	
17

105 	
17

107 	 � � �

a � 17�103 r � 1�102

2.317 � 2.3 	

17

103

1 �
1

102

� 2.3 	

17

1000

99

100

�
23

10
	

17

990
�

1147

495

�
�

n�0
xn � x � � 1.

n � 0 x 0 � 1
x 0 � 1 x � 0

�
�

n�0
xn � 1 	 x 	 x 2 	 x 3 	 x 4 	 � � �

a � 1 r � x � r � � � x � � 1

5 �
�

n�0
xn �

1

1 � x

�
�

n�1

1

n�n 	 1�

sn � �
n

i�1

1

i�i 	 1�
�

1

1 � 2
	

1

2 � 3
	

1

3 � 4
	 � � � 	

1

n�n 	 1�

EXAMPLE 4

v EXAMPLE 5

EXAMPLE 6

4

4

EXAMPLE 7

1

i�i 	 1�
�

1

i
�

1

i 	 1

Another way to identify and is to write out
the first few terms:

4 	
16
3 	

64
9 	 � � �

ra

Module 11.2 explores a series that
depends on an angle in a triangle and enables
you to see how rapidly the series converges
when varies.

TEC
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732 CHAPTER 11 INFINITE SEQUENCES AND SERIES

(see Section 7.4). Thus we have

and so

Therefore the given series is convergent and

Show that the harmonic series

is divergent.

SOLUTION For this particular series it’s convenient to consider the partial sums , ,
, and show that they become large.

Similarly, , , and in general

This shows that as and so is divergent. Therefore the harmonic
series diverges.

Theorem If the series is convergent, then .

sn � �
n

i�1

1

i�i � 1�
� �

n

i�1
� 1

i
�

1

i � 1�
� �1 �

1

2� � �1

2
�

1

3� � �1

3
�

1

4� � � � � � �1

n
�

1

n � 1�
� 1 �

1

n � 1

lim
n l �

sn � lim
n l �

�1 �
1

n � 1� � 1 � 0 � 1

�
�

n�1

1

n�n � 1�
� 1

�
�

n�1

1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

s2 s4 s8,
s16 s32, . . .

s2 � 1 �
1
2

s4 � 1 �
1
2 � ( 1

3 �
1
4 ) � 1 �

1
2 � ( 1

4 �
1
4 ) � 1 �

2
2

s8 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 �
1
6 �

1
7 �

1
8 )

� 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 �
1
8 �

1
8 �

1
8 )

� 1 �
1
2 �

1
2 �

1
2 � 1 �

3
2

s16 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 � � � � �
1
8 ) � ( 1

9 � � � � �
1
16 )

� 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 � � � � �
1
8 ) � ( 1

16 � � � � �
1
16 )

� 1 �
1
2 �

1
2 �

1
2 �

1
2 � 1 �

4
2

s32 � 1 �
5
2 s64 � 1 �

6
2

s2n � 1 �
n

2

s2n l � n l � �sn �

v EXAMPLE 8

6 �
�

n�1
an lim

n l �
an � 0

Notice that the terms cancel in pairs. 
This is an example of a telescoping sum:
Because of all the cancellations, the sum 
collapses (like a pirate’s collapsing 
telescope) into just two terms.

Figure 3 illustrates Example 7 by show-
ing the graphs of the sequence of terms

and the sequence 
of partial sums. Notice that and

. See Exer cises 76 and 77 for two 
geometric interpretations of Example 7.
sn l 1

an l 0
�sn �an � 1	[n�n � 1�]

FIGURE 3

0

1

�an�

n

�sn�

The method used in Example 8 for showing
that the harmonic series diverges is due to the
French scholar Nicole Oresme (1323–1382).
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SECTION 11.2 SERIES 733

PROOF Let . Then . Since is convergent, the
sequence is convergent. Let . Since as , we also
have . Therefore

NOTE 1 With any series we associate two sequences: the sequence of its par-
tial sums and the sequence of its terms. If is convergent, then the limit of the
sequence is (the sum of the series) and, as Theorem 6 asserts, the limit of the sequence

is 0.

| NOTE 2 The converse of Theorem 6 is not true in general. If , we can-
not conclude that is convergent. Observe that for the harmonic series we have

as , but we showed in Example 8 that is divergent.

Test for Divergence If does not exist or if , then the

series is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not divergent,
then it is convergent, and so .

Show that the series diverges.

SOLUTION

So the series diverges by the Test for Divergence.

NOTE 3 If we find that , we know that is divergent. If we find that
, we know nothing about the convergence or divergence of . Remember

the warning in Note 2: If , the series might converge or it might diverge.

Theorem If and are convergent series, then so are the series 
(where is a constant), , and , and

(i) (ii) 

(iii)

These properties of convergent series follow from the corresponding Limit Laws for
Sequences in Section 11.1. For instance, here is how part (ii) of Theorem 8 is proved:

Let

�sn � lim n l � sn � s n � 1 l � n l �
lim n l � sn�1 � s

lim
n l �

an � lim
n l �

�sn � sn�1� � lim
n l �

sn � lim
n l �

sn�1

� s � s � 0


 an �sn �
�an � 
 an

�sn � s
�an �

lim n l � an � 0

 an 
 1	n

an � 1	n l 0 n l � 
 1	n

7 lim
n l �

an lim
n l �

an � 0

�
�

n�1
an

lim n l � an � 0

�
�

n�1

n 2

5n 2 � 4

lim
n l �

an � lim
n l �

n 2

5n 2 � 4
� lim

n l �

1

5 � 4	n 2 �
1

5
� 0

lim n l � an � 0 
 an

lim n l � an � 0 
 an

lim n l � an � 0 
 an

8 
 an 
 bn 
 can

c 
 �an � bn� 
 �an � bn �

�
�

n�1
can � c �

�

n�1
an �

�

n�1
�an � bn � � �

�

n�1
an � �

�

n�1
bn

�
�

n�1
�an � bn � � �

�

n�1
an � �

�

n�1
bn

EXAMPLE 9

t � �
�

n�1
bntn � �

n

i�1
bis � �

�

n�1
ansn � �

n

i�1
ai


 anan � sn � sn�1sn � a1 � a2 � � � � � an
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734 CHAPTER 11 INFINITE SEQUENCES AND SERIES

The nth partial sum for the series is

and, using Equation 4.2.10, we have

Therefore is convergent and its sum is

Find the sum of the series .

SOLUTION The series is a geometric series with and , so

In Example 7 we found that

So, by Theorem 8, the given series is convergent and

NOTE 4 A finite number of terms doesn’t affect the convergence or divergence of a
series. For instance, suppose that we were able to show that the series

is convergent. Since

it follows that the entire series is convergent. Similarly, if it is known that
the series converges, then the full series

is also convergent.

un � �
n

i�1
�ai � bi �

lim
n l �

un � lim
n l �

�
n

i�1
�ai � bi� � lim

n l �
��

n

i�1
ai � �

n

i�1
bi�

� lim
n l �

�
n

i�1
ai � lim

n l �
�
n

i�1
bi

� lim
n l �

sn � lim
n l �

tn � s � t


 �an � bn �

�
�

n�1
�an � bn � � s � t � �

�

n�1
an � �

�

n�1
bn


 �an � bn �

�
�

n�1
� 3

n�n � 1�
�

1

2n�

 1	2n a � 1

2 r � 1
2

�
�

n�1

1

2n �
1
2

1 �
1
2

� 1

�
�

n�1

1

n�n � 1�
� 1 

�
�

n�1
� 3

n�n � 1�
�

1

2n� � 3 �
�

n�1

1

n�n � 1�
� �

�

n�1

1

2n

� 3 � 1 � 1 � 4

�
�

n�4

n

n3 � 1

�
�

n�1

n

n3 � 1
�

1

2
�

2

9
�

3

28
� �

�

n�4

n

n3 � 1


�
n�1 n	�n3 � 1�


�
n�N�1 an

�
�

n�1
an � �

N

n�1
an � �

�

n�N�1
an

EXAMPLE 10
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SECTION 11.2 SERIES 735

1. (a) What is the difference between a sequence and a series?
(b) What is a convergent series? What is a divergent series?

2. Explain what it means to say that .

3–4 Calculate the sum of the series whose partial sums
are given.

3. 4.

5–8 Calculate the first eight terms of the sequence of partial
sums correct to four decimal places. Does it appear that the series
is convergent or divergent?

5. 6.

7. 8.

; 9–14 Find at least 10 partial sums of the series. Graph both the
sequence of terms and the sequence of partial sums on the same
screen. Does it appear that the series is convergent or divergent?
If it is convergent, find the sum. If it is divergent, explain why.

9. 10.

11. 12.

13. 14.

15. Let .

(a) Determine whether is convergent.
(b) Determine whether is convergent.

16. (a) Explain the difference between

(b) Explain the difference between

17–26 Determine whether the geometric series is convergent or
divergent. If it is convergent, find its sum.

17. 18.

19.

20.


�
n�1 an � 5


�
n�1 an

sn � 2 � 3�0.8�n sn �
n 2 � 1

4n 2 � 1

�
�

n�1

1

n3 �
�

n�1

1

ln�n � 1�

�
�

n�1

n

1 � sn
�
�

n�1

��1�n�1

n!

�
�

n�1

12

��5�n �
�

n�1
cos n

�
�

n�1

n

sn 2 � 4
�
�

n�1

7 n�1

10 n

�
�

n�1
� 1

sn
�

1

sn � 1
� �

�

n�2

1

n�n � 2�

an �
2n

3n � 1
�an �

�

n�1 an

�
n

i�1
ai and �

n

j�1
aj

�
n

i�1
ai and �

n

i�1
aj

3 � 4 �
16
3 �

64
9 � � � � 4 � 3 �

9
4 �

27
16 � � � �

10 � 2 � 0.4 � 0.08 � � � �

2 � 0.5 � 0.125 � 0.03125 � � � �

21. 22.

23. 24.

25. 26.

27–42 Determine whether the series is convergent or divergent. 
If it is convergent, find its sum.

27.

28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43–48 Determine whether the series is convergent or divergent
by expressing as a telescoping sum (as in Ex am ple 7). If it is
convergent, find its sum.

43. 44.

45.

46.

47. 48.

�
�

n�1
6�0.9�n�1 �

�

n�1

10 n

��9�n�1

�
�

n�1

��3�n�1

4 n �
�

n�0

1

(s2 )n

�
�

n�0

� n

3 n�1 �
�

n�1

e n

3n�1

1

3
�

1

6
�

1

9
�

1

12
�

1

15
� � � �

1

3
�

2

9
�

1

27
�

2

81
�

1

243
�

2

729
� � � �

�
�

n�1

n � 1

3n � 1 �
�

k�1

k�k � 2�
�k � 3�2

�
�

n�1

1 � 2n

3n �
�

n�1

1 � 3 n

2 n

�
�

n�1
s
n 2 �

�

n�1
��0.8�n�1 � �0.3�n�

�
�

n�1
ln� n2 � 1

2n2 � 1� �
�

n�1

1

1 � (2
3)

n

�
�

k�0
��

3�k

�
�

k�1
�cos 1�k

�
�

n�1
arctan n �

�

n�1
� 3

5 n �
2

n�
�
�

n�1
� 1

en �
1

n�n � 1�� �
�

n�1

en

n2

sn

�
�

n�2

2

n2 � 1 �
�

n�1
ln 

n

n � 1

�
�

n�1

3

n�n � 3�

�
�

n�1
�cos 

1

n2
 � cos 

1

�n � 1�2�
�
�

n�1
(e 1	n � e1	�n�1�) �

�

n�2

1

n3 � n

11.2 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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736 CHAPTER 11 INFINITE SEQUENCES AND SERIES

49. Let 
(a) Do you think that or ?
(b) Sum a geometric series to find the value of .
(c) How many decimal representations does the number 1

have?
(d) Which numbers have more than one decimal 

representation?

50. A sequence of terms is defined by

Calculate .

51–56 Express the number as a ratio of integers.

51. 52.

53.

54.

55. 56.

57–63 Find the values of for which the series converges. Find
the sum of the series for those values of .

57. 58.

59. 60.

61. 62.

63.

64. We have seen that the harmonic series is a divergent series
whose terms approach 0. Show that

is another series with this property.

65–66 Use the partial fraction command on your CAS to find 
a convenient expression for the partial sum, and then use this
expression to find the sum of the series. Check your answer by
using the CAS to sum the series directly.

65. 66.

67. If the partial sum of a series is

find and .

x � 0.99999 . . . .
x � 1x � 1

x

a1 � 1 an � �5 � n�an�1


�
n�1 an

0.8 � 0.8888 . . . 0.46 � 0.46464646 . . .

2.516 � 2.516516516 . . .

10.135 � 10.135353535 . . .

1.5342 7.12345

x
x

�
�

n�1
��5�nx n �

�

n�1
�x � 2�n

�
�

n�0

�x � 2�n

3n �
�

n�0
��4�n�x � 5�n

�
�

n�0

2n

x n �
�

n�0

sin n x

3n

�
�

n�0
e nx

�
�

n�1
ln�1 �

1

n�

CAS

�
�

n�1

3n2 � 3n � 1

�n2 � n�3 �
�

n�3

1

n5 � 5n3 � 4n


�
n�1 annth

sn �
n � 1

n � 1


�
n�1 anan

68. If the partial sum of a series is , 

find and .

69. A patient takes 150 mg of a drug at the same time every day.
Just before each tablet is taken, 5% of the drug remains in the
body.
(a) What quantity of the drug is in the body after the third

tablet? After the th tablet?
(b) What quantity of the drug remains in the body in the long

run?

70. After injection of a dose of insulin, the concentration of
insulin in a patient’s system decays exponentially and so it
can be written as , where represents time in hours and

is a positive constant.
(a) If a dose is injected every hours, write an expression

for the sum of the residual concentrations just before the
st injection.

(b) Determine the limiting pre-injection concentration.
(c) If the concentration of insulin must always remain at or

above a critical value , determine a minimal dosage
in terms of , , and .

71. When money is spent on goods and services, those who
receive the money also spend some of it. The people receiv-
ing some of the twice-spent money will spend some of that,
and so on. Economists call this chain reaction the multiplier
effect. In a hypothetical isolated community, the local
government begins the process by spending dollars. Sup-
pose that each recipient of spent money spends and
saves of the money that he or she receives. The val-
ues and s are called the marginal propensity to consume
and the marginal propensity to save and, of course,

.
(a) Let be the total spending that has been generated after 

transactions. Find an equation for .
(b) Show that , where . The number 

is called the multiplier. What is the multiplier if the 
marginal propensity to consume is ?

Note: The federal government uses this principle to justify
deficit spending. Banks use this principle to justify lend ing a
large percentage of the money that they receive in deposits.

72. A certain ball has the property that each time it falls from 
a height onto a hard, level surface, it rebounds to a height

, where . Suppose that the ball is dropped from
an initial height of meters.
(a) Assuming that the ball continues to bounce indefinitely,

find the total distance that it travels.
(b) Calculate the total time that the ball travels. (Use the 

fact that the ball falls in .)
(c) Suppose that each time the ball strikes the surface 

with velocity it rebounds with velocity , where
. How long will it take for the ball to come 

to rest?

73. Find the value of if

an 
�
n�1 an

sn � 3 � n2�n
�
n�1 annth

n

D

De�at t
a

D T

�n � 1�

C D
C a T

D
100c%

100s%
c

c � s � 1
Sn

n Sn

limn l � Sn � kD k � 1	s
k

80%

h
rh 0 � r � 1

H

1
2 tt 2 meters t seconds

v �kv
0 � k � 1
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CHAPTER 11.2 SERIES 737

74. Find the value of such that

75. In Example 8 we showed that the harmonic series is diver-
gent. Here we outline another method, making use of the 
fact that for any . (See Exercise 6.2.103.)

If is the partial sum of the harmonic series, show that
 . Why does this imply that the harmonic series is
divergent?

; 76. Graph the curves , , for
on a common screen. By finding the areas between successive
curves, give a geometric demonstration of the fact, shown in
Example 7, that

77. The figure shows two circles and of radius 1 that touch 
at . is a common tangent line; is the circle that touches 

, , and ; is the circle that touches , , and ; is
the circle that touches , , and . This procedure can be
continued indefinitely and produces an infinite sequence of 
circles . Find an expression for the diameter of and 
thus provide another geometric demonstration of Example 7.

78. A right triangle is given with and . 
is drawn perpendicular to , is drawn perpendicular

to , , and this process is continued indefi nitely, 
as shown in the figure. Find the total length of all the 
perpendiculars

in terms of and .

�
�

n�0
e nc � 10 

e x � 1 � x x � 0
sn nth

e sn � n � 1

y � x n 0 	 x 	 1 n � 0, 1, 2, 3, 4, . . .

�
�

n�1

1

n�n � 1�
� 1

DC
C1TP

C3C1DCC2TDC
C2DC

Cn�Cn �

1 1

P

C£
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T

C

 AC  � b�A � 
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DEABCD

EF � ABBC

c

 CD  �  DE  �  EF  �  FG  � � � �


b

A

CEGB

F
H

D ¨

b

79. What is wrong with the following calculation?

(Guido Ubaldus thought that this proved the existence of God
because “something has been created out of nothing.”)

80. Suppose that is known to be a convergent
series. Prove that is a divergent series.

81. Prove part (i) of Theorem 8.

82. If is divergent and , show that is divergent.

83. If is convergent and is divergent, show that 
the series is divergent. [Hint: Argue by 
contradiction.]

84. If and are both divergent, is neces-
sarily divergent?

85. Suppose that a series has positive terms and its partial
sums satisfy the inequality for all . Explain why

must be convergent.

86. The Fibonacci sequence was defined in Section 11.1 by the
equations

Show that each of the following statements is true.

(a)

(b)

(c)

87. The Cantor set, named after the German mathematician Georg
Cantor (1845–1918), is constructed as follows. We start with
the closed interval and remove the open interval . 
That leaves the two intervals and and we remove
the open middle third of each. Four intervals remain and again
we remove the open middle third of each of them. We continue
this procedure indefinitely, at each step removing the open
middle third of every interval that remains from the preceding
step. The Cantor set consists of the numbers that remain in

after all those intervals have been removed.
(a) Show that the total length of all the intervals that are

removed is 1. Despite that, the Cantor set contains infi-
nitely many numbers. Give examples of some numbers in
the Cantor set.

(b) The Sierpinski carpet is a two-dimensional counterpart of
the Cantor set. It is constructed by removing the center
one-ninth of a square of side 1, then removing the centers

0 � 0 � 0 � 0 � � � �

� �1 � 1� � �1 � 1� � �1 � 1� � � � �

� 1 � 1 � 1 � 1 � 1 � 1 � � � �

� 1 � ��1 � 1� � ��1 � 1� � ��1 � 1� � � � �

� 1 � 0 � 0 � 0 � � � � � 1


�
n�1 an �an � 0�


�
n�1 1	an


 canc � 0
 an


 bn
 an


 �an � bn�


 �an � bn�
 bn
 an


 an

nsn 	 1000sn


 an

n � 3fn � fn�1 � fn�2f2 � 1,f1 � 1,

1

fn�1 fn�1
�

1

fn�1 fn
�

1

fn fn�1

�
�

n�2

1

fn�1 fn�1
� 1

�
�

n�2

fn

fn�1 fn�1
� 2

( 1
3, 2

3 )[0, 1]
[ 2

3, 1][0, 1
3 ]
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738 CHAPTER 11 INFINITE SEQUENCES AND SERIES

of the eight smaller remaining squares, and so on. (The fig-
ure shows the first three steps of the construction.) Show
that the sum of the areas of the removed squares is 1. This
implies that the Sierpinski carpet has area 0.

88. (a) A sequence is defined recursively by the equation
for , where and can be any

real numbers. Experiment with various values of and
and use your calculator to guess the limit of the sequence.

(b) Find in terms of and by expressing
in terms of and summing a series.

89. Consider the series .
(a) Find the partial sums and . Do you recognize the

denominators? Use the pattern to guess a formula for .

�an �
a2a1n � 3an � 1

2 �an�1 � an�2 �
a2a1

a2a1limn l � an

a2 � a1an�1 � an

	�n � 1�!
�
n�1 n

s4s1, s2, s3,
sn

(b) Use mathematical induction to prove your guess.
(c) Show that the given infinite series is convergent, and find

its sum.

90. In the figure there are infinitely many circles approaching the
vertices of an equilateral triangle, each circle touching other
circles and sides of the triangle. If the triangle has sides of
length 1, find the total area occupied by the circles.

In general, it is difficult to find the exact sum of a series. We were able to accomplish this
for geometric series and the series because in each of those cases we could
find a simple formula for the partial sum . But usually it isn’t easy to discover such a
formula. Therefore, in the next few sections, we develop several tests that enable us to 
determine whether a series is convergent or divergent without explicitly finding its sum. 
(In some cases, however, our methods will enable us to find good esti  mates of the sum.) Our
first test involves improper integrals.

We begin by investigating the series whose terms are the reciprocals of the squares of the
positive integers:

There’s no simple formula for the sum of the first terms, but the computer-generated
table of approximate values given in the margin suggests that the partial sums are approach-
ing a number near 1.64 as and so it looks as if the series is convergent.

We can confirm this impression with a geometric argument. Figure 1 shows the curve
and rectangles that lie below the curve. The base of each rectangle is an interval

of length 1; the height is equal to the value of the function at the right endpoint of
the interval. 
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nth sn
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11.3 The Integral Test and Estimates of Sums
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SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS 739

So the sum of the areas of the rectangles is

If we exclude the first rectangle, the total area of the remaining rectangles is smaller than
the area under the curve for , which is the value of the integral .
In Section 7.8 we discovered that this improper integral is convergent and has value 1. So
the picture shows that all the partial sums are less than

Thus the partial sums are bounded. We also know that the partial sums are increasing
(because all the terms are positive). Therefore the partial sums converge (by the Mono tonic
Sequence Theorem) and so the series is convergent. The sum of the series (the limit of the
partial sums) is also less than 2:

[The exact sum of this series was found by the Swiss mathematician Leonhard Euler 
(1707–1783) to be , but the proof of this fact is quite difficult. (See Problem 6 in the
Problems Plus following Chapter 15.)]

Now let’s look at the series

The table of values of suggests that the partial sums aren’t approaching a finite number,
so we suspect that the given series may be divergent. Again we use a picture for confirma-
tion. Figure 2 shows the curve , but this time we use rectangles whose tops lie
above the curve.

The base of each rectangle is an interval of length 1. The height is equal to the value of
the function at the left endpoint of the interval. So the sum of the areas of all the
rectangles is

This total area is greater than the area under the curve for , which is equal 
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740 CHAPTER 11 INFINITE SEQUENCES AND SERIES

to the integral . But we know from Section 7.8 that this improper integral is
divergent. In other words, the area under the curve is infinite. So the sum of the series must
be infinite; that is, the series is divergent.

The same sort of geometric reasoning that we used for these two series can be used to
prove the following test. (The proof is given at the end of this section.)

The Integral Test Suppose is a continuous, positive, decreasing function on
and let . Then the series is convergent if and only if the improper
integral is convergent. In other words:

(i) If is convergent, then is convergent.

(ii) If is divergent, then is divergent.

NOTE When we use the Integral Test, it is not necessary to start the series or the integral
at . For instance, in testing the series

Also, it is not necessary that be always decreasing. What is important is that be ulti-
mately decreasing, that is, decreasing for larger than some number . Then is 
convergent, so is convergent by Note 4 of Section 11.2.

Test the series for convergence or divergence.

SOLUTION The function is continuous, positive, and decreasing on
so we use the Integral Test:

Thus is a convergent integral and so, by the Integral Test, the series
is convergent.

For what values of is the series convergent?

SOLUTION If , then . If , then . In
either case , so the given series diverges by the Test for Divergence
(11.2.7).

If , then the function is clearly continuous, positive, and decreasing
on . We found in Chapter 7 [see (7.8.2)] that

x
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1

nppEXAMPLE 2v
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1

x p dx converges if p � 1 and diverges if p 	 1

In order to use the Integral Test we need to be
able to evaluate and therefore we
have to be able to find an antiderivative of .
Frequently this is difficult or impossible, so we
need other tests for convergence too.

f
x

�
1 f �x� dx
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SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS 741

It follows from the Integral Test that the series converges if and diverges 
if . (For , this series is the harmonic series discussed in Example 8 in
Section 11.2.)

The series in Example 2 is called the p-series. It is important in the rest of this chapter,
so we summarize the results of Example 2 for future reference as follows.

The -series is convergent if and divergent if .

(a) The series

is convergent because it is a p-series with .
(b) The series

is divergent because it is a p-series with .

NOTE We should not infer from the Integral Test that the sum of the series is equal to
the value of the integral. In fact,

Therefore, in general,

Determine whether the series converges or diverges.

SOLUTION The function is positive and continuous for because the
logarithm function is continuous. But it is not obvious whether or not is decreasing, so
we compute its derivative:

Thus when , that is, . It follows that is decreasing when
and so we can apply the Integral Test:

Since this improper integral is divergent, the series is also divergent by the
Integral Test.
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742 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Estimating the Sum of a Series
Suppose we have been able to use the Integral Test to show that a series is convergent
and we now want to find an approximation to the sum of the series. Of course, any partial
sum is an approximation to because . But how good is such an approxima-
tion? To find out, we need to estimate the size of the remainder

The remainder is the error made when , the sum of the first terms, is used as an approx-
imation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that is decreas-
ing on . Comparing the areas of the rectangles with the area under for
in Figure 3, we see that

Similarly, we see from Figure 4 that

So we have proved the following error estimate.

Remainder Estimate for the Integral Test Suppose , where is a 
continuous, positive, decreasing function for and is convergent. If

, then

(a) Approximate the sum of the series by using the sum of the first 10 terms.
Estimate the error involved in this approximation. 
(b) How many terms are required to ensure that the sum is accurate to within ?

SOLUTION In both parts (a) and (b) we need to know . With , which
satisfies the conditions of the Integral Test, we have

(a) Approximating the sum of the series by the 10th partial sum, we have

According to the remainder estimate in , we have

So the size of the error is at most .
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SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS 743

(b) Accuracy to within means that we have to find a value of such that
. Since

we want

Solving this inequality, we get

We need 32 terms to ensure accuracy to within .

If we add to each side of the inequalities in , we get

because . The inequalities in give a lower bound and an upper bound for .
They provide a more accurate approximation to the sum of the series than the partial sum

does.

Use with to estimate the sum of the series .

SOLUTION The inequalities in become

From Example 5 we know that

so

Using , we get

If we approximate by the midpoint of this interval, then the error is at most half the
length of the interval. So

If we compare Example 6 with Example 5, we see that the improved estimate in can
be much better than the estimate . To make the error smaller than we had to
use 32 terms in Example 5 but only 10 terms in Example 6.

n0.0005
Rn � 0.0005

Rn � y
�

n

1

x 3 dx �
1

2n2

1

2n2 	 0.0005 

n � s1000 � 31.6orn2 �
1

0.001
� 1000

0.0005

2sn

sn � y
�

n�1
f �x� dx � s � sn � y

�

n
f �x� dx3

s3sn � Rn � s

sn

�
�

n�1

1

n3n � 103EXAMPLE 6

3

s10 � y
�

11

1

x 3 dx � s � s10 � y
�

10

1

x 3 dx

y
�

n

1

x 3 dx �
1

2n 2

s10 �
1

2�11�2 � s � s10 �
1

2�10�2

s10 � 1.197532

1.201664 � s � 1.202532 

s

with error 	 0.0005�
�

n�1

1

n3 � 1.2021

3
0.0005s � sn

Although Euler was able to calculate the exact
sum of the -series for , nobody has been
able to find the exact sum for . In Example
6, however, we show how to estimate this sum.

p p � 2
p � 3

97817_11_ch11_p742-751.qk_97817_11_ch11_p742-751  11/3/10  5:29 PM  Page 743

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



744 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Proof of the Integral Test
We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and
2 for the series and . For the general series , look at Figures 5 and 6. The
area of the first shaded rectangle in Figure 5 is the value of at the right endpoint of ,
that is, . So, comparing the areas of the shaded rectangles with the area under

from 1 to , we see that

(Notice that this inequality depends on the fact that is decreasing.) Likewise, Figure 6
shows that

(i) If is convergent, then gives

since . Therefore

Since for all , the sequence is bounded above. Also

since . Thus is an increasing bounded sequence and so it is con-
vergent by the Monotonic Sequence Theorem (11.1.12). This means that is convergent.

(ii) If is divergent, then as because . But
gives

and so . This implies that and so diverges.

� 1�n2 � 1�sn � an

f �1, 2
f �2� � a2

y � f �x� n

a2 � a3 � � � � � an � y
n

1
f �x� dx

f

y
n

1
f �x� dx � a1 � a2 � � � � � an�1

y
�

1
f �x� dx

�
n

i�2
ai � y

n

1
f �x� dx � y

�

1
f �x� dx

f �x� � 0

sn � a1 � �
n

i�2
ai � a1 � y

�

1
f �x� dx � M, say

sn � M n �sn �

sn�1 � sn � an�1 � sn

an�1 � f �n � 1� � 0 �sn �
� an

x
�

1 f �x� dx x
n
1 f �x� dx l � n l � f �x� � 0

y
n

1
f �x� dx � �

n�1

i�1
ai � sn�1

sn�1 l � sn l � � an

4

5

4

5

0 x

y

1 2 3 4 5 . . . n

y=ƒ

ana™ a£ a¢ a∞

FIGURE 5

FIGURE 6

0 x

y

1 2 3 4 5 . . . n

y=ƒ

a™ a£ a¢a¡

an-1

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1. Draw a picture to show that

What can you conclude about the series?

2. Suppose is a continuous positive decreasing function for
and . By drawing a picture, rank the following

three quantities in increasing order:

�
�

n�2

1

n 1.3 	 y
�

1

1

x 1.3 dx

f
an � f �n�x � 1

�
6

i�2
ai�

5

i�1
aiy

6

1
f �x� dx

3–8 Use the Integral Test to determine whether the series is 
convergent or divergent.

3. 4.

5. 6.

7. 8.

�
�

n�1

1

s
5 n

�
�

n�1

1

n5

�
�

n�1

1

�2n � 1�3 �
�

n�1

1

sn � 4

�
�

n�1

n

n2 � 1 �
�

n�1
n2e�n3

11.3 Exercises
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CHAPTER 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS 745

9–26 Determine whether the series is convergent or divergent.

9. 10.

11.

12.

13.

14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27–28 Explain why the Integral Test can’t be used to determine
whether the series is convergent.

27. 28.

29–32 Find the values of for which the series is convergent.

29. 30.

31. 32.

33. The Riemann zeta-function is defined by

and is used in number theory to study the distribution of prime
numbers. What is the domain of ?

�
�

n�1

1

ns2 �
�

n�3
n�0.9999

1 �
1

8
�

1

27
�

1

64
�

1

125
� � � �

1 �
1

2s2
�

1

3s3
�

1

4s4
�

1

5s5
� � � �

1 �
1

3
�

1

5
�

1

7
�

1

9
� � � �

1

5
�

1

8
�

1

11
�

1

14
�

1

17
� � � �

�
�

n�1

sn � 4
n2 �

�

n�1

n2

n3 � 1

�
�

n�1

1

n2 � 4 �
�

n�3

3n � 4

n2 � 2n

�
�

n�1

ln n

n3 �
�

n�1

1

n2 � 6n � 13

�
�

n�2

1

n ln n �
�

n�2

1

n�ln n�2

�
�

n�3

n2

e n�
�

n�1

e1�n

n2

�
�

n�1

1

n2 � n3 �
�

n�1

n

n4 � 1

�
�

n�1

cos 
n

sn �
�

n�1

cos2 n

1 � n2

p

�
�

n�2

1

n�ln n� p �
�

n�3

1

n ln n �ln�ln n� p

�
�

n�1

ln n

n p�
�

n�1
n�1 � n2 � p

�

��x� � �
�

n�1

1

n x

�

34. Leonhard Euler was able to calculate the exact sum of the 
-series with :

(See page 739.) Use this fact to find the sum of each series.

(a) (b)

(c)

35. Euler also found the sum of the -series with :

Use Euler’s result to find the sum of the series.

(a) (b)

36. (a) Find the partial sum of the series . Estimate the
error in using as an approximation to the sum of the
series.

(b) Use with to give an improved estimate of the
sum.

(c) Compare your estimate in part (b) with the exact value
given in Exercise 35.

(d) Find a value of so that is within of the sum.

37. (a) Use the sum of the first 10 terms to estimate the sum of the
series . How good is this estimate?

(b) Improve this estimate using with .
(c) Compare your estimate in part (b) with the exact value

given in Exercise 34.
(d) Find a value of that will ensure that the error in the

approximation is less than .

38. Find the sum of the series correct to three decimal
places.

39. Estimate correct to five decimal places.

40. How many terms of the series would you
need to add to find its sum to within ?

41. Show that if we want to approximate the sum of the series
so that the error is less than 5 in the ninth decimal

place, then we need to add more than terms!

42. (a) Show that the series is convergent.
(b) Find an upper bound for the error in the approximation

.
(c) What is the smallest value of such that this upper bound

is less than ?
(d) Find for this value of .

p p � 2

��2� � �
�

n�1

1

n2 �

 2

6

�
�

n�2

1

n2 �
�

n�3

1

�n � 1�2

�
�

n�1

1

�2n�2

p p � 4

��4� � �
�

n�1

1

n 4 �

 4

90

�
�

n�1
	3

n

4

�
�

k�5

1

�k � 2�4

s10 ��
n�1 1�n4

s10

n � 10

n sn 0.00001

3

��
n�1 1�n2

n � 103

n
s � sn 0.001

��
n�1 1�n5

��
n�1 �2n � 1��6

��
n�2 1��n�ln n�2

0.01

��
n�1 n�1.001

1011,301

��
n�1 �ln n�2�n 2

s � sn

n
0.05

sn n

CAS

97817_11_ch11_p742-751.qk_97817_11_ch11_p742-751  11/3/10  5:29 PM  Page 745

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



746 CHAPTER 11 INFINITE SEQUENCES AND SERIES

(b) Interpret

as a difference of areas to show that . There-
fore is a decreasing sequence.

(c) Use the Monotonic Sequence Theorem to show that is
convergent.

45. Find all positive values of for which the series 
converges.

46. Find all values of for which the following series converges. 

�tn �

��
n�1 b ln nb

c

�
�

n�1
	 c

n
�

1

n � 1


tn � tn�1 � �ln�n � 1� � ln n �
1

n � 1

tn � tn�1 � 0
�tn �

In the comparison tests the idea is to compare a given series with a series that is known to
be convergent or divergent. For instance, the series

reminds us of the series , which is a geometric series with and and is
therefore convergent. Because the series is so similar to a convergent series, we have the
feeling that it too must be convergent. Indeed, it is. The inequality

shows that our given series has smaller terms than those of the geometric series and
therefore all its partial sums are also smaller than 1 (the sum of the geometric series). This
means that its partial sums form a bounded increasing sequence, which is convergent. It
also follows that the sum of the series is less than the sum of the geometric series:

Similar reasoning can be used to prove the following test, which applies only to series
whose terms are positive. The first part says that if we have a series whose terms are 
smaller than those of a known convergent series, then our series is also convergent. The
second part says that if we start with a series whose terms are larger than those of a known
divergent series, then it too is divergent.

The Comparison Test Suppose that and are series with positive terms.

(i) If is convergent and for all , then is also convergent.

(ii) If is divergent and for all , then is also divergent.

1 �
�

n�1

1

2n � 1

��
n�1 1�2n a � 1

2 r � 1
2

1

2n � 1
	

1

2n

�
�

n�1

1

2n � 1
	 1

� an � bn

� bn an � bn n � an

� bn an � bn n � an

1

1

11.4 The Comparison Tests

43. (a) Use to show that if is the partial sum of the har-
monic series, then

(b) The harmonic series diverges, but very slowly. Use part (a)
to show that the sum of the first million terms is less than
15 and the sum of the first billion terms is less than 22.

44. Use the following steps to show that the sequence

has a limit. (The value of the limit is denoted by and is called
Euler’s constant.)
(a) Draw a picture like Figure 6 with and interpret

as an area [or use ] to show that for all .

tn � 1 �
1

2
�

1

3
� � � � �

1

n
� ln n

�

f �x� � 1�x

sn nth

sn � 1 � ln n

4

ntn � 05tn
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SECTION 11.4 THE COMPARISON TESTS 747

PROOF

(i) Let

Since both series have positive terms, the sequences and are increasing
. Also , so for all . Since .

Thus for all . This means that is increasing and bounded above and therefore
converges by the Monotonic Sequence Theorem. Thus converges.

(ii) If is divergent, then (since is increasing). But so .
Thus . Therefore diverges.

In using the Comparison Test we must, of course, have some known series for the
purpose of comparison. Most of the time we use one of these series: 

■ A -series [ con verges if and diverges if ; see (11.3.1)]
■ A geometric series [ converges if and diverges if ; 

see (11.2.4)]

Determine whether the series converges or diverges.

SOLUTION For large the dominant term in the denominator is , so we compare the
given series with the series . Observe that

because the left side has a bigger denominator. (In the notation of the Comparison Test,
is the left side and is the right side.) We know that

is convergent because it’s a constant times a -series with . Therefore

is convergent by part (i) of the Comparison Test.

NOTE 1 Although the condition or in the Comparison Test is given for
all , we need verify only that it holds for , where is some fixed integer, because
the convergence of a series is not affected by a finite number of terms. This is illustrated in
the next example.

Test the series for convergence or divergence.

SOLUTION We used the Integral Test to test this series in Example 4 of Section 11.3, but
we can also test it by comparing it with the harmonic series. Observe that for

and so

�sn � �tn �
�sn�1 � sn � an�1 � sn � tn l t tn � t n ai � bi, we have sn � tn

sn � t n �sn�
� an

� bn tn l � �tn� ai � bi sn � tn

sn l � � an

sn � �
n

i�1
ai tn � �

n

i�1
bi t � �

�

n�1
bn

� bn

p � 1�np p � 1 p � 1

� ar n�1 � r � 	 1 � r � � 1

�
�

n�1

5

2n2 � 4n � 3

n 2n2

� 5��2n2�

5

2n2 � 4n � 3
	

5

2n2

an bn

�
�

n�1

5

2n2 �
5

2
 �

�

n�1

1

n2

p p � 2 � 1

�
�

n�1

5

2n2 � 4n � 3

v EXAMPLE 1

an � bn an � bn

n n � N N

�
�

k�1

ln k

k

ln k � 1
k � 3

v EXAMPLE 2

k � 3
ln k

k
�

1

k

It is important to keep in mind the distinction
between a sequence and a series. A sequence 
is a list of numbers, whereas a series is a sum.
With every series there are associated two
sequences: the sequence of terms and the
sequence of partial sums.�sn �

�an �
� an

Standard Series for Use 
with the Comparison Test
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748 CHAPTER 11 INFINITE SEQUENCES AND SERIES

We know that is divergent ( -series with ). Thus the given series is diver-
gent by the Comparison Test.

NOTE 2 The terms of the series being tested must be smaller than those of a convergent
series or larger than those of a divergent series. If the terms are larger than the terms of a
convergent series or smaller than those of a divergent series, then the Comparison Test 
doesn’t apply. Consider, for instance, the series

The inequality

is useless as far as the Comparison Test is concerned because is convergent
and . Nonetheless, we have the feeling that ought to be convergent
because it is very similar to the convergent geometric series . In such cases the fol-
lowing test can be used.

The Limit Comparison Test Suppose that and are series with positive 
terms. If

where c is a finite number and , then either both series converge or both
diverge.

PROOF Let m and M be positive numbers such that . Because is close
to c for large n, there is an integer N such that

and so

If converges, so does . Thus converges by part (i) of the Comparison
Test. If diverges, so does and part (ii) of the Comparison Test shows that
diverges.

Test the series for convergence or divergence.

SOLUTION We use the Limit Comparison Test with

and obtain

�
�

n�1

1

2n � 1

1

2n � 1
�

1

2n

� bn � � ( 1
2 )n

an � bn � 1��2n � 1�
� ( 1

2 )n

� an � bn

lim
n l �

an

bn
� c

c � 0

m 	 c 	 M an�bn

m 	
an

bn
	 M when n � N

mbn 	 an 	 Mbn when n � N

� bn � Mbn � an

� bn � mbn � an

�
�

n�1

1

2n � 1

an �
1

2n � 1
bn �

1

2n

lim
n l �

an

bn
� lim

n l �

1��2 n � 1�
1�2 n � lim

n l �

2n

2n � 1
� lim

n l �

1

1 � 1�2n � 1 � 0

EXAMPLE 3

p � 1p� 1�k

Exercises 40 and 41 deal with the 
cases and .c � �c � 0
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SECTION 11.4 THE COMPARISON TESTS 749

Since this limit exists and is a convergent geometric series, the given series con-
verges by the Limit Comparison Test.

Determine whether the series converges or diverges.

SOLUTION The dominant part of the numerator is and the dominant part of the denom-
inator is . This suggests taking

Since is divergent ( -series with ), the given series diverges
by the Limit Comparison Test.

Notice that in testing many series we find a suitable comparison series by keeping
only the highest powers in the numerator and denominator.

Estimating Sums
If we have used the Comparison Test to show that a series converges by comparison
with a series , then we may be able to estimate the sum by comparing remainders.
As in Section 11.3, we consider the remainder

For the comparison series we consider the corresponding remainder

Since for all , we have . If is a -series, we can estimate its remain-
der as in Section 11.3. If is a geometric series, then is the sum of a geometric
series and we can sum it exactly (see Exercises 35 and 36). In either case we know that
is smaller than .

Use the sum of the first 100 terms to approximate the sum of the series
. Estimate the error involved in this approximation.

SOLUTION Since

the given series is convergent by the Comparison Test. The remainder for the compar-
ison series was estimated in Example 5 in Section 11.3 using the Remainder Esti-
mate for the Integral Test. There we found that

� 1�2n

�
�

n�1

2n2 � 3n

s5 � n 5 

2n2

sn5 � n 5�2

an �
2n2 � 3n

s5 � n 5 
bn �

2n2

n 5�2 �
2

n 1�2

lim
n l �

an

bn
� lim

n l �

2n2 � 3n

s5 � n 5 
�

n 1�2

2
� lim

n l �

2n5�2 � 3n3�2

2s5 � n 5 

� lim
n l �

2 �
3

n

2� 5

n5 � 1

�
2 � 0

2s0 � 1
� 1

� bn � 2 � 1�n 1�2 p p � 1
2 	 1

EXAMPLE 4

� bn

� an

� bn � an

Rn � s � sn � an�1 � an�2 � � � �

� bn

Tn � t � tn � bn�1 � bn�2 � � � �

an � bn n Rn � Tn � bn p
Tn � bn Tn

Rn

Tn

� 1��n3 � 1�

1

n3 � 1
	

1

n3

Tn

� 1�n3

Tn � y
�

n

1

x 3 dx �
1

2n2

v EXAMPLE 5
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750 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Therefore the remainder for the given series satisfies

With we have

Using a programmable calculator or a computer, we find that

with error less than .

Rn � Tn �
1

2n2

n � 100

R100 �
1

2�100�2 � 0.00005

�
�

n�1

1

n3 � 1
� �

100

n�1

1

n3 � 1
� 0.6864538

0.00005

Rn

1. Homework Hints available at stewartcalculus.com

1. Suppose and are series with positive terms and 
is known to be convergent.
(a) If for all , what can you say about ? Why?
(b) If for all , what can you say about ? Why?

2. Suppose and are series with positive terms and 
is known to be divergent.
(a) If for all n, what can you say about ? Why?
(b) If for all n, what can you say about ? Why?

3–32 Determine whether the series converges or diverges.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

� an � bn � bn

an � bn n � an

an 	 bn n � an

� an � bn � bn

an � bn � an

an 	 bn � an

�
�

n�1

n

2n3 � 1 �
�

n�2

n3

n4 � 1

�
�

n�1

n � 1

nsn
�
�

n�1

n � 1

n2
sn

�
�

n�1

9n

3 � 10 n �
�

n�1

6n

5n � 1

�
�

k�1

ln k

k �
�

k�1

k sin2k

1 � k 3

�
�

k�1

s
3 k

sk 3 � 4k � 3
�
�

k�1

�2k � 1��k 2 � 1�
�k � 1��k 2 � 4�2

�
�

n�1

arctan n

n1.2 �
�

n�2

sn

n � 1

�
�

n�1

4n�1

3n � 2 �
�

n�1

1

s
3 3n 4 � 1

�
�

n�1

1

sn 2 � 1
�
�

n�1

1

2n � 3

�
�

n�1

1 � 4n

1 � 3n �
�

n�1

n � 4n

n � 6 n

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33–36 Use the sum of the first 10 terms to approximate the sum of
the series. Estimate the error.

33. 34.

35. 36.

37. The meaning of the decimal representation of a number
(where the digit is one of the numbers 0, 1, 

2, . . . , 9) is that

Show that this series always converges.

�
�

n�1

sn � 2

2n2 � n � 1 �
�

n�3

n � 2

�n � 1� 3

�
�

n�1

5 � 2n

�1 � n2�2 �
�

n�1

n2 � 5n

n3 � n � 1

�
�

n�1

sn4 � 1

n3 � n2 �
�

n�2

1

nsn2 � 1

�
�

n�1
	1 �

1

n
2

e�n �
�

n�1

e 1�n

n

�
�

n�1

1

n! �
�

n�1

n!

n n

�
�

n�1
sin	 1

n
 �
�

n�1

1

n 1�1�n

�
�

n�1

1

sn4 � 1
�
�

n�1

sin 2 n

n3

�
�

n�1
5�n cos2n �

�

n�1

1

3n � 4n

0.d1d2d3 . . . di

0.d1d2d3d4 . . . �
d1

10
�

d2

102 �
d3

103 �
d4

104 � � � �

11.4 Exercises
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SECTION 11.5 ALTERNATING SERIES 751

38. For what values of does the series converge?

39. Prove that if and converges, then also 
converges.

40. (a) Suppose that and are series with positive terms
and is convergent. Prove that if

then is also convergent.
(b) Use part (a) to show that the series converges.

(i) (ii)

41. (a) Suppose that and are series with positive terms
and is divergent. Prove that if

then is also divergent.

p ��
n�2 1��n p ln n�

an � 0 � an � an
2

� an � bn

� bn

lim
n l �

an

bn
� 0

� an

�
�

n�1

ln n

n3 �
�

n�1

ln n

sn en

� an � bn

� bn

lim
n l �

an

bn
� �

� an

(b) Use part (a) to show that the series diverges.

(i) (ii)

42. Give an example of a pair of series and with positive
terms where and diverges, but
converges. (Compare with Exercise 40.)

43. Show that if and then is
divergent.

44. Show that if and is convergent, then
is convergent.

45. If is a convergent series with positive terms, is it true that
is also convergent?

46. If and are both convergent series with positive terms,
is it true that is also convergent?

�
�

n�2

1

ln n �
�

n�1

ln n

n

� an � bn

lim n l � �an�bn� � 0 � bn � an

� anlim n l � nan � 0, an � 0

� ln�1 � an �� anan � 0

� an

� sin�an �

� bn� an

� an bn

The convergence tests that we have looked at so far apply only to series with positive 
terms. In this section and the next we learn how to deal with series whose terms are not
necessarily positive. Of particular importance are alternating series, whose terms alternate
in sign.

An alternating series is a series whose terms are alternately positive and negative. Here
are two examples:

We see from these examples that the term of an alternating series is of the form

where is a positive number. (In fact, .)
The following test says that if the terms of an alternating series decrease toward 0 in

absolute value, then the series converges.

Alternating Series Test If the alternating series

satisfies

(i)

(ii)

then the series is convergent.

1 �
1

2
�

1

3
�

1

4
�

1

5
�

1

6
� � � � � �

�

n�1
��1�n�1 1

n

�
1

2
�

2

3
�

3

4
�

4

5
�

5

6
�

6

7
� � � � � �

�

n�1
��1�n n

n � 1

nth

an � ��1�n�1bn or an � ��1�nbn

bn bn � � an �

�
�

n�1
��1�n�1bn � b1 � b2 � b3 � b4 � b5 � b6 � � � � bn � 0

bn�1 � bn for all n

lim
n l �

bn � 0

11.5 Alternating Series
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752 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Before giving the proof let’s look at Figure 1, which gives a picture of the idea behind
the proof. We first plot on a number line. To find we subtract , so is to the 
left of . Then to find we add , so is to the right of . But, since , is to 
the left of . Continuing in this manner, we see that the partial sums oscillate back and
forth. Since , the successive steps are becoming smaller and smaller. The even par-
tial sums , , , . . . are increasing and the odd partial sums , , , . . . are decreasing.
Thus it seems plausible that both are converging to some number , which is the sum of the
series. Therefore we consider the even and odd partial sums separately in the follow-
ing proof.

PROOF OF THE ALTERNATING SERIES TEST We first consider the even partial sums:

In general

Thus

But we can also write

Every term in brackets is positive, so for all . Therefore the sequence 
of even partial sums is increasing and bounded above. It is therefore convergent by the
Monotonic Sequence Theorem. Let’s call its limit , that is,

Now we compute the limit of the odd partial sums:

[by condition (ii)]

Since both the even and odd partial sums converge to , we have 
[see Exercise 92(a) in Section 11.1] and so the series is convergent.

s1 � b1 s2 b2 s2

s1 s3 b3 s3 s2 b3 � b2 s3

s1

bn l 0
s2 s4 s6 s1 s3 s5

s

FIGURE 1 0 s¡s™ s£s¢ s∞sß s

b¡

-b™

+b£

-b¢

+b∞

-bß

s2 � b1 � b2 � 0 since b2 � b1

s4 � s2 � �b3 � b4 � � s2 since b4 � b3

s2n � s2n�2 � �b2n�1 � b2n � � s2n�2 since b2n � b2n�1

0 � s2 � s4 � s6 � � � � � s2n � � � �

s2n � b1 � �b2 � b3 � � �b4 � b5 � � � � � � �b2n�2 � b2n�1� � b2n

s2n � b1 n �s2n �

s

lim
n l �

s2n � s

lim
n l �

s2n�1 � lim 
n l �

�s2n � b2n�1�

� lim
n l �

s2n � lim
n l �

b2n�1

� s � 0

� s

s lim n l � sn � s
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SECTION 11.5 ALTERNATING SERIES 753

The alternating harmonic series

satisfies

(i) because    

(ii) 

so the series is convergent by the Alternating Series Test.

The series is alternating, but

so condition (ii) is not satisfied. Instead, we look at the limit of the term of the series:

This limit does not exist, so the series diverges by the Test for Divergence.

Test the series for convergence or divergence.

SOLUTION The given series is alternating so we try to verify conditions (i) and (ii) of the
Alternating Series Test.

Unlike the situation in Example 1, it is not obvious that the sequence given by
is decreasing. However, if we consider the related function

, we find that

Since we are considering only positive , we see that if , that is,
. Thus is decreasing on the interval . This means that

and therefore when . (The inequality can be verified directly but
all that really matters is that the sequence is eventually decreasing.)

Condition (ii) is readily verified:

Thus the given series is convergent by the Alternating Series Test.

1 �
1

2
�

1

3
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1

4
� � � � � �

�

n�1

��1�n�1

n

bn�1 � bn
1

n � 1
�

1

n

lim
n l �

bn � lim
n l �

1

n
� 0

�
�

n�1

��1�n3n

4n � 1

lim
n l �

bn � lim
n l �

3n

4n � 1
� lim

n l �

3

4 �
1

n

�
3

4

nth

lim
n l �

an � lim
n l �

��1�n3n

4n � 1

�
�

n�1
��1�n�1 n2

n3 � 1

bn � n2��n3 � 1�
f �x� � x 2��x 3 � 1�

f 	�x� �
x �2 � x 3 �
�x 3 � 1�2

x f 	�x� � 0 2 � x 3 � 0
x 
 s

3 2 f (s3 2 , �) f �n � 1� � f �n�
bn�1 � bn n � 2 b2 � b1

�bn �

lim
n l �

bn � lim
n l �

n2

n3 � 1
� lim

n l �

1

n

1 �
1

n3

� 0

EXAMPLE 1v

v EXAMPLE 2

EXAMPLE 3

Figure 2 illustrates Example 1 by show  ing the
graphs of the terms and the
partial sums . Notice how the values of 
zigzag across the limiting value, which appears
to be about . In fact, it can be proved that
the exact sum of the series is 
(see Exercise 36).

ln 2 � 0.693
0.7

snsn

an � ��1�n�1�n

FIGURE 2

0 n

1

�an�

�sn�

Instead of verifying condition (i) of the Alter-
nating Series Test by com puting a derivative,
we could verify that directly by
using the tech ni que of Solution 1 of
Example 13 in Section 11.1.

bn�1 � bn
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754 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Estimating Sums
A partial sum of any convergent series can be used as an approximation to the total sum
, but this is not of much use unless we can estimate the accuracy of the approximation. The

error involved in using is the remainder . The next theorem says that 
for series that satisfy the conditions of the Alternating Series Test, the size of the error is
smaller than , which is the absolute value of the first neglected term.

Alternating Series Estimation Theorem If is the sum of an alter nating
series that satisfies

(i) and (ii) 

then

PROOF We know from the proof of the Alternating Series Test that s lies between any two
consecutive partial sums and . (There we showed that is larger than all even par-
tial sums. A similar argument shows that is smaller than all the odd sums.) It follows
that

Find the sum of the series correct to three decimal places.

SOLUTION We first observe that the series is convergent by the Alternating Series Test
because

(i)

(ii) so as 

To get a feel for how many terms we need to use in our approximation, let’s write out
the first few terms of the series:

Notice that

and

By the Alternating Series Estimation Theorem we know that

This error of less than does not affect the third decimal place, so we have
correct to three decimal places.

sn

s
s � sn Rn � s � sn

bn�1

s � 	 ��1�n�1bn

bn�1 � bn lim
n l �

bn � 0


 Rn 
 � 
 s � sn 
 � bn�1

sn sn�1


 s � sn 
 � 
 sn�1 � sn 
 � bn�1

s
s

�
�

n�0

��1�n

n!

s �
1

0!
�

1

1!
�

1

2!
�

1

3!
�

1

4!
�

1

5!
�

1

6!
�

1

7!
� � � �

� 1 � 1 �
1
2 �

1
6 �

1
24 �

1
120 �

1
720 �

1
5040 � � � �

b7 � 1
5040 �

1
5000 � 0.0002

s6 � 1 � 1 �
1
2 �

1
6 �

1
24 �

1
120 �

1
720 � 0.368056


 s � s6 
 � b7 � 0.0002

v EXAMPLE 4

1

�n � 1�!
�

1

n! �n � 1�
�

1

n!

0 �
1

n!
�

1

n
l 0

1

n!
l 0 n l �

0.0002
s � 0.368

You can see geometrically why the Alternating
Series Estimation Theorem is true by looking at
Figure 1 (on page 752). Notice that 

and so on. Notice also that 
lies between any two consecutive partial sums.

s
 s � s5 
 � b6,
s � s4 � b5,

In Section 11.10 we will prove that
for all , so what we 

have obtained in Example 4 is actually an
approximation to the number .e�1

xex � 	�
n�0 xn�n!

By definition, .0! � 1
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SECTION 11.5 ALTERNATING SERIES 755

| NOTE The rule that the error (in using to approximate ) is smaller than the first 
neglected term is, in general, valid only for alternating series that satisfy the conditions of
the Alternating Series Estimation Theorem. The rule does not apply to other types of series.

sn s

1. (a) What is an alternating series?
(b) Under what conditions does an alternating series

converge?
(c) If these conditions are satisfied, what can you say about

the remainder after terms?

2–20 Test the series for convergence or divergence.

2.

3.

4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

; 21–22 Graph both the sequence of terms and the sequence of 
partial sums on the same screen. Use the graph to make a rough
estimate of the sum of the series. Then use the Alternating Series
Estimation Theorem to estimate the sum correct to four decimal
places.

21.

n

2
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2
5 �

2
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2
9 �

2
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�
2
5 �

4
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8
8 �
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9 � � � �
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s2
�

1

s3
�

1

s4
�

1

s5
�

1

s6
� � � �

�
�

n�1
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��1� n�1 
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�
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n�1
��1�n 3n � 1

2n � 1 �
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n�1
��1�n n

sn3 � 2

�
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n�1
��1�ne�n �
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��1�n sn

2n � 3

�
�

n�1
��1�n�1 n2

n3 � 4 �
�

n�1
��1�n�1ne�n

�
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n�1
��1�n�1e 2�n �

�

n�1
��1�n�1 arctan n

�
�

n�0

 sin(n �
1
2)�

1 � sn
�
�

n�1

 n cos n�

2n

�
�

n�1
��1�n sin��

n � �
�

n�1
��1�n cos��

n �
�
�

n�1
��1�n n n

n! �
�

n�1
��1�n(sn � 1 � sn )

�
�

n�1

��0.8�n

n!

22.

23–26 Show that the series is convergent. How many terms of
the series do we need to add in order to find the sum to the indi-
cated accuracy?

23.

24.

25.

26.

27–30 Approximate the sum of the series correct to four 
decimal places.

27. 28.

29. 30.

31. Is the 50th partial sum of the alternating series
an overestimate or an underestimate of the 

total sum? Explain.

32–34 For what values of is each series convergent?

32.

33. 34.

35. Show that the series , where if is odd
and if is even, is divergent. Why does the Alter-
nating Series Test not apply?
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��1�n

n 5n (
 error 
 � 0.0001)

�
�

n�1
��1�n�1ne�n (
 error 
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 � 0.00005)
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10nn!
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10 n �
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3 nn!
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n�1

��1�n�1
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s50

	�
n�1 ��1�n�1�n

p

�
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n�1

��1�n�1

n p

�
�

n�1

��1�n

n � p �
�

n�2
��1�n�1 �ln n� p

n

	 ��1�n�1bn bn � 1�n n
bn � 1�n2 n

�
�

n�1
��1�n�1 n

8n

11.5 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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756 CHAPTER 11 INFINITE SEQUENCES AND SERIES

36. Use the following steps to show that

Let and be the partial sums of the harmonic and alter-
 nating harmonic series.
(a) Show that .

�
�

n�1

��1�n�1

n
� ln 2

snhn

s2n � h2n � hn

(b) From Exercise 44 in Section 11.3 we have

as

and therefore

as 

Use these facts together with part (a) to show that
as .

hn � ln n l � n l �

n l �h2n � ln�2n� l �

n l �s2n l ln 2

Given any series , we can consider the corresponding series

whose terms are the absolute values of the terms of the original series.

Definition A series is called absolutely convergent if the series of 
absolute values is convergent.

Notice that if is a series with positive terms, then and so absolute con-
vergence is the same as convergence in this case.

The series

is absolutely convergent because

is a convergent -series ( ).

We know that the alternating harmonic series

is convergent (see Example 1 in Section 11.5), but it is not absolutely convergent because
the corresponding series of absolute values is

which is the harmonic series ( -series with ) and is therefore divergent.
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 � an	 an

�
�

n�1

��1�n�1

n2 � 1 �
1

22 �
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p � 2p
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n
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4
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EXAMPLE 1

EXAMPLE 2

1

�
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n�1
 ��1�n�1

n  � �
�

n�1

1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

p � 1p

11.6 Absolute Convergence and the Ratio and Root Tests

We have convergence tests for series with
positive terms and for alternating series. But
what if the signs of the terms switch back and
forth irregularly? We will see in Example 3 that
the idea of absolute convergence sometimes
helps in such cases.
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SECTION 11.6 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS 757

Definition A series is called conditionally convergent if it is convergent
but not absolutely convergent.

Example 2 shows that the alternating harmonic series is conditionally convergent. Thus
it is possible for a series to be convergent but not absolutely convergent. However, the next
theorem shows that absolute convergence implies convergence.

Theorem If a series is absolutely convergent, then it is convergent.

PROOF Observe that the inequality

is true because is either or . If is absolutely convergent, then is
convergent, so is convergent. Therefore, by the Comparison Test, is
convergent. Then

is the difference of two convergent series and is therefore convergent.

Determine whether the series

is convergent or divergent.

SOLUTION This series has both positive and negative terms, but it is not alternating. 
(The first term is positive, the next three are negative, and the following three are posi-
tive: The signs change irregularly.) We can apply the Comparison Test to the series of
absolute values

Since for all , we have

We know that is convergent ( -series with ) and therefore is
convergent by the Comparison Test. Thus the given series is absolutely
convergent and therefore convergent by Theorem 3.

The following test is very useful in determining whether a given series is absolutely 
convergent.

	 an2

3 	 an

0 � an � 
 an 
 � 2
 an 


 an 
 an �an 	 an 	 
 an 

	 2
 an 
 	 (an � 
 an 
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� an � � (an � 
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 an 


�
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n�1

cos n
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cos 1

12 �
cos 2

22 �
cos 3

32 � � � �

�
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n�1
 cos n

n2  � �
�

n�1


 cos n 

n2


 cos n 
 � 1 n


 cos n 

n2 �

1

n2

	 1�n2 p p � 2 	 
 cos n 
�n2

	 �cos n��n2

v EXAMPLE 3

FIGURE 1

0 n

0.5

�an�

�sn�

Figure 1 shows the graphs of the terms and
partial sums of the series in Example 3.
Notice that the series is not alternating but
has positive and negative terms.

sn

an
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758 CHAPTER 11 INFINITE SEQUENCES AND SERIES

The Ratio Test

(i) If , then the series is absolutely convergent 

(and therefore convergent).

(ii) If or , then the series 

is divergent.

(iii) If , the Ratio Test is inconclusive; that is, no conclusion can

be drawn about the convergence or divergence of .

PROOF
(i) The idea is to compare the given series with a convergent geometric series. Since

, we can choose a number such that . Since

the ratio will eventually be less than ; that is, there exists an integer 
such that

or, equivalently,

Putting successively equal to , , , . . . in , we obtain

and, in general,

Now the series

is convergent because it is a geometric series with . So the inequality
together with the Comparison Test, shows that the series
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SECTION 11.6 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS 759

is also convergent. It follows that the series is convergent. (Recall that a finite
number of terms doesn’t affect convergence.) Therefore is absolutely convergent.

(ii) If or , then the ratio will eventually be
greater than 1; that is, there exists an integer such that

This means that whenever and so

Therefore diverges by the Test for Divergence.

NOTE Part (iii) of the Ratio Test says that if , the test gives no
information. For instance, for the convergent series we have

whereas for the divergent series we have

Therefore, if , the series might converge or it might diverge. In
this case the Ratio Test fails and we must use some other test.

Test the series for absolute convergence.

SOLUTION We use the Ratio Test with :

Thus, by the Ratio Test, the given series is absolutely convergent and therefore 
convergent.
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Estimating Sums
In the last three sections we used various meth-
ods for estimating the sum of a series—the
method depended on which test was used to
prove convergence. What about series for 
which the Ratio Test works? There are two 
possibilities: If the series happens to be an alter-
nating series, as in Example 4, then it is best to
use the methods of Section 11.5. If the terms are
all positive, then use the special methods
explained in Exercise 38.

The Ratio Test is usually conclusive if the th
term of the series contains an exponential or a
factorial, as we will see in Examples 4 and 5.

n
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760 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Test the convergence of the series .

SOLUTION Since the terms are positive, we don’t need the absolute value
signs.

(see Equation 6.4.9 or 6.4*.9). Since , the given series is divergent by the Ratio
Test.

NOTE Although the Ratio Test works in Example 5, an easier method is to use the Test
for Divergence. Since

it follows that does not approach 0 as . Therefore the given series is divergent by
the Test for Divergence.

The following test is convenient to apply when th powers occur. Its proof is similar to
the proof of the Ratio Test and is left as Exercise 41.

The Root Test

(i) If , then the series is absolutely convergent 

(and therefore convergent).

(ii) If or , then the series is divergent.

(iii) If , the Root Test is inconclusive.

If , then part (iii) of the Root Test says that the test gives no infor-
mation. The series could converge or diverge. (If in the Ratio Test, don’t try the
Root Test because will again be 1. And if in the Root Test, don’t try the Ratio Test
because it will fail too.)

Test the convergence of the series .

SOLUTION

Thus the given series converges by the Root Test.
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SECTION 11.6 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS 761

Rearrangements
The question of whether a given convergent series is absolutely convergent or condi tionally
convergent has a bearing on the question of whether infinite sums behave like finite sums.

If we rearrange the order of the terms in a finite sum, then of course the value of the sum
remains unchanged. But this is not always the case for an infinite series. By a rearrange-
ment of an infinite series we mean a series obtained by simply changing the order of
the terms. For instance, a rearrangement of could start as follows:

It turns out that

if is an absolutely convergent series with sum s,
then any rearrangement of has the same sum s.

However, any conditionally convergent series can be rearranged to give a different sum. To
illustrate this fact let’s consider the alternating harmonic series

(See Exercise 36 in Section 11.5.) If we multiply this series by , we get

Inserting zeros between the terms of this series, we have

Now we add the series in Equations 6 and 7 using Theorem 11.2.8:

Notice that the series in contains the same terms as in , but rearranged so that one neg-
ative term occurs after each pair of positive terms. The sums of these series, however, are
different. In fact, Riemann proved that

if is a conditionally convergent series and r is any real number what-
soever, then there is a rearrangement of that has a sum equal to r.

A proof of this fact is outlined in Exercise 44.
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Adding these zeros does not affect the sum of
the series; each term in the sequence of partial
sums is repeated, but the limit is the same.

1. What can you say about the series in each of the following
cases?

(a) (b)

(c)

2–30 Determine whether the series is absolutely convergent, 
conditionally convergent, or divergent.

2.

3. 4.
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11.6 Exercises

1. Homework Hints available at stewartcalculus.com
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762 CHAPTER 11 INFINITE SEQUENCES AND SERIES

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

29.

30.

31. The terms of a series are defined recursively by the equations

Determine whether converges or diverges.

32. A series is defined by the equations

Determine whether converges or diverges.

33–34 Let be a sequence of positive numbers that converges 
to . Determine whether the given series is absolutely convergent.

33. 34.

35. For which of the following series is the Ratio Test inconclusive
(that is, it fails to give a definite answer)?

(a) (b)

(c) (d)
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36. For which positive integers is the following series convergent?

37. (a) Show that converges for all .
(b) Deduce that for all .

38. Let be a series with positive terms and let .
Suppose that , so converges by the
Ratio Test. As usual, we let be the remainder after terms,
that is,

(a) If is a decreasing sequence and , show, by
summing a geometric series, that

(b) If is an increasing sequence, show that

39. (a) Find the partial sum of the series . Use Exer-
cise 38 to estimate the error in using as an approximation
to the sum of the series.

(b) Find a value of so that is within of the sum.
Use this value of to approximate the sum of the series.

40. Use the sum of the first 10 terms to approximate the sum of 
the series

Use Exercise 38 to estimate the error.

41. Prove the Root Test. [Hint for part (i): Take any number such
that and use the fact that there is an integer such
that whenever .]

42. Around 1910, the Indian mathematician Srinivasa Ramanujan
discovered the formula

William Gosper used this series in 1985 to compute the first
17 million digits of .
(a) Verify that the series is convergent.
(b) How many correct decimal places of do you get if you

use just the first term of the series? What if you use two
terms?

43. Given any series , we define a series whose terms are
all the positive terms of and a series whose terms 
are all the negative terms of . To be specific, we let
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SECTION 11.7 STRATEGY FOR TESTING SERIES 763

Notice that if , then and , whereas if
, then and .

(a) If is absolutely convergent, show that both of the
series and are convergent.

(b) If is conditionally convergent, show that both of the
series and are divergent.

44. Prove that if is a conditionally convergent series and 
is any real number, then there is a rearrangement of 

whose sum is . [Hints: Use the notation of Exercise 43. 

an
� � 0an

� � anan 
 0
an

� � 0an
� � anan � 0

� an

� an
�� an

�

� an

� an
�� an

�

� an

� anr
r

Take just enough positive terms so that their sum is greater
than . Then add just enough negative terms so that the
cumulative sum is less than . Continue in this manner and use
Theorem 11.2.6.]

45. Suppose the series is conditionally convergent.
(a) Prove that the series is divergent.
(b) Conditional convergence of is not enough to deter-

mine whether is convergent. Show this by giving an
example of a conditionally convergent series such that

converges and an example where diverges.

r an
�

r

� an

� n2an

� an

� nan

� nan � nan

an
�

We now have several ways of testing a series for convergence or divergence; the problem
is to decide which test to use on which series. In this respect, testing series is similar to inte-
grating functions. Again there are no hard and fast rules about which test to apply to a given
series, but you may find the following advice of some use.

It is not wise to apply a list of the tests in a specific order until one finally works. That
would be a waste of time and effort. Instead, as with integration, the main strategy is to
classify the series according to its form.

1. If the series is of the form , it is a -series, which we know to be convergent
if and divergent if .

2. If the series has the form or , it is a geometric series, which converges
if and diverges if . Some preliminary algebraic manipulation may
be required to bring the series into this form.

3. If the series has a form that is similar to a -series or a geometric series, then 
one of the comparison tests should be considered. In particular, if is a rational 
function or an algebraic function of (involving roots of polynomials), then the
series should be compared with a -series. Notice that most of the series in Exer-
cises 11.4 have this form. (The value of should be chosen as in Sec tion 11.4 by
keeping only the highest powers of in the numerator and denominator.) The com-
parison tests apply only to series with positive terms, but if has some negative
terms, then we can apply the Comparison Test to and test for absolute 
convergence.

4. If you can see at a glance that , then the Test for Divergence should
be used.

5. If the series is of the form or , then the Alternating Series
Test is an obvious possibility.

6. Series that involve factorials or other products (including a constant raised to the
power) are often conveniently tested using the Ratio Test. Bear in mind that

as for all -series and therefore all rational or algebraic 
functions of . Thus the Ratio Test should not be used for such series.

7. If is of the form , then the Root Test may be useful.

8. If , where is easily evaluated, then the Integral Test is effective
(assuming the hypotheses of this test are satisfied).
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11.7 Strategy for Testing Series
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764 CHAPTER 11 INFINITE SEQUENCES AND SERIES

In the following examples we don’t work out all the details but simply indicate which
tests should be used.

Since as , we should use the Test for Divergence.

Since is an algebraic function of , we compare the given series with a -series. The
comparison series for the Limit Comparison Test is , where

Since the integral is easily evaluated, we use the Integral Test. The Ratio Test
also works.

Since the series is alternating, we use the Alternating Series Test.

Since the series involves , we use the Ratio Test.

Since the series is closely related to the geometric series , we use the Comparison
Test.
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EXAMPLE 6

1–38 Test the series for convergence or divergence.

1. 2.

3. 4.

5. 6.

7. 8.
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11.7 Exercises
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SECTION 11.8 POWER SERIES 765

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.
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31. 32.

33. 34.
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37. 38.
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A power series is a series of the form

where is a variable and the ’s are constants called the coefficients of the series. For each
fixed , the series is a series of constants that we can test for convergence or divergence.
A power series may converge for some values of and diverge for other values of . The
sum of the series is a function

whose domain is the set of all for which the series converges. Notice that resembles a
polynomial. The only difference is that has infinitely many terms.

For instance, if we take for all , the power series becomes the geometric series

which converges when and diverges when . (See Equation 11.2.5.)
More generally, a series of the form

is called a power series in or a power series centered at a or a power series about
a. Notice that in writing out the term corresponding to in Equations 1 and 2 we have
adopted the convention that even when . Notice also that when
all of the terms are 0 for and so the power series always converges when .

For what values of is the series convergent?

SOLUTION We use the Ratio Test. If we let , as usual, denote the nth term of the series,
then . If , we have

1 �
�

n�0
cn xn � c0 � c1 x � c2x 2 � c3 x 3 � � � �

x cn

x
x x

f �x� � c0 � c1x � c2 x 2 � � � � � cnx n � � � �

x f
f

1

cn � 1 n

�
�

n�0
xn � 1 � x � x 2 � � � � � xn � � � �

�1 � x � 1 � x � 	 1

2 �
�

n�0
cn�x � a�n � c0 � c1�x � a� � c2�x � a�2 � � � �

�x � a�
n � 0

�x � a�0 � 1 x � a x � a
n 	 1 x � a

x �
�

n�0
n!xn

an

an � n!xn x � 0

2

v EXAMPLE 1

� lim
n l �

�n � 1�� x � � �lim
n l �

� an�1

an
� � lim

n l �
� �n � 1�!xn�1

n!xn �

11.8 Power Series

Trigonometric Series
A power series is a series in which each term is
a power function. A trigonometric series

is a series whose terms are trigonometric 
functions. This type of series is discussed on 
the website

www.stewartcalculus.com

Click on Additional Topics and then on Fourier
Series.

�
�

n�0
�an cos nx � bn sin nx�

Notice that

� �n � 1�n!

�n � 1�! � �n � 1�n�n � 1� � . . . � 3 � 2 � 1
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766 CHAPTER 11 INFINITE SEQUENCES AND SERIES

By the Ratio Test, the series diverges when . Thus the given series converges only
when .

For what values of does the series converge?

SOLUTION Let . Then

By the Ratio Test, the given series is absolutely convergent, and therefore convergent,
when and divergent when . Now

so the series converges when and diverges when or .
The Ratio Test gives no information when so we must consider

and separately. If we put in the series, it becomes , the harmonic
series, which is divergent. If , the series is , which converges by the
Alternating Series Test. Thus the given power series converges for .

We will see that the main use of a power series is that it provides a way to represent
some of the most important functions that arise in mathematics, physics, and chemistry. In
particular, the sum of the power series in the next example is called a Bessel function, after
the German astronomer Friedrich Bessel (1784–1846), and the function given in Exer cise 35
is another example of a Bessel function. In fact, these functions first arose when Bessel
solved Kepler’s equation for describing planetary motion. Since that time, these functions
have been applied in many different physical situations, including the temperature distri-
bution in a circular plate and the shape of a vibrating drumhead.

Find the domain of the Bessel function of order 0 defined by

SOLUTION Let . Then

Thus, by the Ratio Test, the given series converges for all values of . In other words,
the domain of the Bessel function is .

x � 0
x � 0

x �
�

n�1

�x � 3�n

n

an � �x � 3�n�n

� an�1

an
� � � �x � 3�n�1

n � 1
�

n

�x � 3�n �
�

1

1 �
1

n

� x � 3 � l � x � 3 � as n l �

� x � 3 � � 1 � x � 3 � 
 1

� x � 3 � � 1 &? �1 � x � 3 � 1 &? 2 � x � 4

2 � x � 4 x � 2 x 
 4

� x � 3 � � 1 x � 2
x � 4 x � 4 � 1�n

x � 2 � ��1�n�n
2 � x � 4

v EXAMPLE 2

J0�x� � �
�

n�0

��1�nx 2n

22n�n!�2

an � ��1�nx 2n�22n�n!�2�

� an�1

an
� � � ��1�n�1x 2�n�1�

22�n�1��n � 1�!�2 �
22n�n!�2

��1�nx 2n �
�

x 2n�2

22n�2�n � 1�2�n!�2 �
22n�n!�2

x 2n

�
x 2

4�n � 1�2 l 0 � 1 for all x

EXAMPLE 3

x
���, �� � �J0

N
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Notice how closely the computer-generated
model (which involves Bessel functions and
cosine functions) matches the photograph of a
vibrating rubber membrane.
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SECTION 11.8 POWER SERIES 767

Recall that the sum of a series is equal to the limit of the sequence of partial sums. So
when we define the Bessel function in Example 3 as the sum of a series we mean that, for
every real number ,

where    

The first few partial sums are

Figure 1 shows the graphs of these partial sums, which are polynomials. They are all approx-
imations to the function , but notice that the approximations become better when more
terms are included. Figure 2 shows a more complete graph of the Bessel function.

For the power series that we have looked at so far, the set of values of for which the
series is convergent has always turned out to be an interval [a finite interval for the geometric
series and the series in Example 2, the infinite interval in Example 3, and a col-
lapsed interval in Example 1]. The following theorem, proved in Appendix F,
says that this is true in general.

Theorem For a given power series there are only three 
possibilities:

(i) The series converges only when .

(ii) The series converges for all .

(iii) There is a positive number such that the series converges if
and diverges if .

The number in case (iii) is called the radius of convergence of the power series. By
convention, the radius of convergence is in case (i) and in case (ii). The inter-
val of convergence of a power series is the interval that consists of all values of for which
the series converges. In case (i) the interval consists of just a single point . In case (ii) the
interval is . In case (iii) note that the inequality can be rewritten as

. When is an endpoint of the interval, that is, , anything
can happen—the series might converge at one or both endpoints or it might diverge at both
endpoints. Thus in case (iii) there are four possibilities for the interval of convergence:

The situation is illustrated in Figure 3.

x

sn�x� � �
n

i�0

��1�ix 2i

22i�i!�2J0�x� � lim
n l �

sn�x�

s2�x� � 1 �
x 2

4
�

x 4

64
s1�x� � 1 �

x 2

4
s0�x� � 1

s4�x� � 1 �
x 2

4
�

x 4

64
�

x 6

2304
�

x 8

147,456
s3�x� � 1 �

x 2

4
�

x 4

64
�

x 6

2304

J0

x

���, ��
0, 0� � 	0


�
�

n�0
cn�x � a�n3

x � a

x

� x � a � � RR

� x � a � 
 R

R
R � �R � 0

x
a

� x � a � � R���, ��
x � a � Rxa � R � x � a � R

�a � R, a � R� �a � R, a � R� a � R, a � R� a � R, a � R�

FIGURE 3

a-R a a+R

convergence for |x-a|<R

divergence for |x-a|>R

s¢

0 x

1

y

1

s¡

s™

s£
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FIGURE 1
Partial sums of the Bessel function J¸

FIGURE 2

0 x

1

y

10_10

y=J¸(x)
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768 CHAPTER 11 INFINITE SEQUENCES AND SERIES

We summarize here the radius and interval of convergence for each of the examples
already considered in this section.

In general, the Ratio Test (or sometimes the Root Test) should be used to determine the
radius of convergence . The Ratio and Root Tests always fail when is an endpoint of the
interval of convergence, so the endpoints must be checked with some other test.

Find the radius of convergence and interval of convergence of the series

SOLUTION Let . Then

By the Ratio Test, the given series converges if and diverges if .
Thus it converges if and diverges if . This means that the radius of con-
vergence is .

We know the series converges in the interval , but we must now test for con-
vergence at the endpoints of this interval. If , the series becomes

which diverges. (Use the Integral Test or simply observe that it is a -series with
.) If , the series is

which converges by the Alternating Series Test. Therefore the given power series con-
verges when , so the interval of convergence is .

xR

EXAMPLE 4

�
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n�0

��3�nxn

sn � 1

an � ��3�nxn�sn � 1

� an�1
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��3�nxn � � � �3x�n � 1

n � 2 �
� 3� 1 � �1�n�
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3 � x � 
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1
3

R � 1
3

(� 1
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1
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3p � 1
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3

Series Radius of convergence Interval of convergence

Geometric series

Example 1

Example 2

Example 3 ���, ��R � ��
�

n�0

��1�n x 2n

22n�n!�2

2, 4�R � 1�
�

n�1
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�

n�0
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�

n�0
x n
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SECTION 11.8 POWER SERIES 769

Find the radius of convergence and interval of convergence of the series

SOLUTION If , then

Using the Ratio Test, we see that the series converges if and it diverges
if . So it converges if and diverges if . Thus the
radius of convergence is .

The inequality can be written as , so we test the series at
the endpoints and 1. When , the series is

which diverges by the Test for Divergence [ doesn’t converge to 0]. When ,
the series is

which also diverges by the Test for Divergence. Thus the series converges only when
, so the interval of convergence is .

�
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n�0

n�x � 2�n

3n�1

an � n�x � 2�n�3n�1

� an�1
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 3
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��1�nn
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�
�

n�0

n�3�n

3n�1 � 1
3 �

�

n�0
n

�5 � x � 1 ��5, 1�

EXAMPLE 5v

1. What is a power series?

2. (a) What is the radius of convergence of a power series? 
How do you find it?

(b) What is the interval of convergence of a power series? 
How do you find it?

3–28 Find the radius of convergence and interval of convergence
of the series.

3. 4.

5. 6.

7. 8.

�
�

n�1
��1�nnx n �

�

n�1

��1�nx n

s
3 n

�
�

n�1

x n

2n � 1 �
�

n�1

��1�nx n

n2

�
�

n�0

x n

n! �
�

n�1
n nx n

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

�
�

n�1

��3�n

nsn
x n �

�

n�1

x n

n3n

�
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n�2
��1�n x n

4n ln n �
�

n�0
��1�n x 2n�1
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n�1

�2x � 1�n

5n
sn

�
�

n�1
��1�n n 2 x n

2 n �
�

n�1

10 nx n
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11.8 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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770 CHAPTER 11 INFINITE SEQUENCES AND SERIES

21. ,  

22. ,  

23. 24.

25. 26.

27.

28.

29. If is convergent, does it follow that the following
series are convergent?

(a) (b)

30. Suppose that converges when and diverges
when . What can be said about the convergence or
divergence of the following series?

(a) (b)

(c) (d)

31. If is a positive integer, find the radius of convergence of 
the series

32. Let and be real numbers with . Find a power series
whose interval of convergence is 
(a) (b)
(c) (d)

33. Is it possible to find a power series whose interval of conver-
gence is ? Explain.

; 34. Graph the first several partial sums of the series ,
together with the sum function , on a com-
mon screen. On what interval do these partial sums appear to
be converging to ?

�
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n�1

�5x � 4�n
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x n
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��1�ncn 9n�
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n�0 x nsn�x�

f �x� � 1��1 � x�

�
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n�1
n!�2x � 1�n �

�

n�1

n 2 x n

2 � 4 � 6 � � � � � �2n�

�
�

n�1

n

bn �x � a�n b 
 0

�
�

n�2

b n

ln n
�x � a�n b 
 0

�
�

n�0

�n!�k

�kn�!
 x n

f �x�

35. The function defined by

is called the Bessel function of order 1.
(a) Find its domain.

; (b) Graph the first several partial sums on a common 
screen.

(c) If your CAS has built-in Bessel functions, graph on the
same screen as the partial sums in part (b) and observe
how the partial sums approximate .

36. The function defined by

is called an Airy function after the English mathematician 
and astronomer Sir George Airy (1801–1892).
(a) Find the domain of the Airy function.

; (b) Graph the first several partial sums on a common screen.
(c) If your CAS has built-in Airy functions, graph on the

same screen as the partial sums in part (b) and observe
how the partial sums approximate .

37. A function is defined by

that is, its coefficients are and for all 
. Find the interval of convergence of the series and find

an explicit formula for .

38. If , where for all , find the
interval of convergence of the series and a formula for .

39. Show that if , where , then the
radius of convergence of the power series is .

40. Suppose that the power series satisfies
for all . Show that if exists, then it is equal
to the radius of convergence of the power series.

41. Suppose the series has radius of convergence 2 and
the series has radius of convergence 3. What is the
radius of convergence of the series ?

42. Suppose that the radius of convergence of the power series
is . What is the radius of convergence of the power

series ?

CAS J1

J1

A

A�x� � 1 �
x 3

2 � 3
�
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2 � 3 � 5 � 6
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x 9

2 � 3 � 5 � 6 � 8 � 9
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CAS A
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f

f �x� � 1 � 2x � x 2 � 2x 3 � x 4 � � � �

c2n � 1 c2n�1 � 2
n 	 0

f �x�

f �x� � ��
n�0 cn x n cn�4 � cn n 	 0

f �x�

lim n l � s
n � cn � � c c � 0

� cn x n R � 1�c

� cn�x � a� n cn � 0
n lim n l � � cn�cn�1 �

� cn x n

� dn x n

� �cn � dn�x n

� cn x n R
� cn x 2n

J1

J1�x� � �
�

n�0

��1�nx 2n�1

n!�n � 1�!22n�1

In this section we learn how to represent certain types of functions as sums of power series
by manipulating geometric series or by differentiating or integrating such a series. You might
wonder why we would ever want to express a known function as a sum of infinitely many
terms. We will see later that this strategy is useful for integrating functions that don’t have
elementary antiderivatives, for solving differential equations, and for approximating func-

11.9 Representations of Functions as Power Series
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SECTION 11.9 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES 771

tions by polynomials. (Scientists do this to simplify the expressions they deal with; computer
scientists do this to represent functions on calculators and computers.)

We start with an equation that we have seen before:

We first encountered this equation in Example 6 in Section 11.2, where we obtained it by
observing that the series is a geometric series with and . But here our point of
view is different. We now regard Equation 1 as expressing the function
as a sum of a power series.

Express as the sum of a power series and find the interval of
convergence.

SOLUTION Replacing by in Equation 1, we have

Because this is a geometric series, it converges when , that is, , or
. Therefore the interval of convergence is . (Of course, we could have

determined the radius of convergence by applying the Ratio Test, but that much work is
unnecessary here.)

Find a power series representation for .

SOLUTION In order to put this function in the form of the left side of Equation 1, we first
factor a 2 from the denominator:

This series converges when , that is, . So the interval of conver-
gence is .
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EXAMPLE 2

A geometric illustration of Equation 1 is shown
in Figure 1. Because the sum of a series is the
limit of the sequence of partial sums, we have

where

is the th partial sum. Notice that as 
increases, becomes a better approxi-
mation to for .

1

1 � x
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n l �
sn�x�

�1 � x � 1f �x�
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772 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Find a power series representation of .

SOLUTION Since this function is just times the function in Example 2, all we have to
do is to multiply that series by :

Another way of writing this series is as follows:

As in Example 2, the interval of convergence is .

Differentiation and Integration of Power Series
The sum of a power series is a function whose domain is the inter-
val of convergence of the series. We would like to be able to differentiate and integrate such
functions, and the following theorem (which we won’t prove) says that we can do so by dif-
ferentiating or integrating each individual term in the series, just as we would for a polyno-
mial. This is called term-by-term differentiation and integration.

Theorem If the power series has radius of convergence ,
then the function defined by

is differentiable (and therefore continuous) on the interval and

(i)

(ii) 

The radii of convergence of the power series in Equations (i) and (ii) are both .

NOTE 1 Equations (i) and (ii) in Theorem 2 can be rewritten in the form

(iii)

(iv) 

x 3��x � 2�

x 3

x 3

x 3

x � 2
� x 3 �

1

x � 2
� x 3 �

�

n�0

��1�n

2n�1 xn � �
�

n�0

��1�n

2n�1 xn�3

� 1
2 x 3 �

1
4 x 4 �

1
8 x 5 �

1
16 x 6 � � � �

x 3

x � 2
� �

�

n�3

��1�n�1

2n�2 xn

��2, 2�

f �x� � ��
n�0 cn�x � a�n

EXAMPLE 3

R � 0� cn�x � a�n2
f

f �x� � c0 � c1�x � a� � c2�x � a�2 � � � � � �
�

n�0
cn�x � a�n

�a � R, a � R�

f ��x� � c1 � 2c2�x � a� � 3c3�x � a�2 � � � � � �
�

n�1
ncn�x � a�n�1

y f �x� dx � C � c0�x � a� � c1
�x � a�2

2
� c2

�x � a�3

3
� � � �

� C � �
�

n�0
cn

�x � a�n�1

n � 1

R

d

dx��
�

n�0
cn�x � a�n� � �

�

n�0

d

dx
	cn�x � a�n


y ��
�

n�0
cn�x � a�n�dx � �

�

n�0
y cn�x � a�n dx

It’s legitimate to move across the 
sigma sign because it doesn’t depend on . 
[Use Theorem 11.2.8(i) with .]c � x 3

n
x 3

In part (ii), is written as
, where , so all

the terms of the series have the same form.
C � C1 � ac0c0�x � a� � C

x c0 dx � c0 x � C1
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SECTION 11.9 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES 773

We know that, for finite sums, the derivative of a sum is the sum of the derivatives and the
integral of a sum is the sum of the integrals. Equations (iii) and (iv) assert that the same is
true for infinite sums, provided we are dealing with power series. (For other types of series
of functions the situation is not as simple; see Exercise 38.)

NOTE 2 Although Theorem 2 says that the radius of convergence remains the same
when a power series is differentiated or integrated, this does not mean that the interval of
convergence remains the same. It may happen that the original series converges at an end-
point, whereas the differentiated series diverges there. (See Exercise 39.)

NOTE 3 The idea of differentiating a power series term by term is the basis for a power-
ful method for solving differential equations. We will discuss this method in Chapter 17.

In Example 3 in Section 11.8 we saw that the Bessel function

is defined for all . Thus, by Theorem 2, is differentiable for all and its derivative is
found by term-by-term differentiation as follows:

Express as a power series by differentiating Equation 1. What
is the radius of convergence?

SOLUTION Differentiating each side of the equation

we get

If we wish, we can replace n by n � 1 and write the answer as

According to Theorem 2, the radius of convergence of the differentiated series is the
same as the radius of convergence of the original series, namely, .

Find a power series representation for and its radius of 
convergence.

SOLUTION We notice that the derivative of this function is . From Equation 1
we have

EXAMPLE 4

J0�x� � �
�

n�0

��1�nx 2n

22n�n!�2

xJ0x

J0��x� � �
�

n�0

d

dx

��1�nx 2n

22n�n!�2 � �
�

n�1

��1�n2nx 2n�1

22n�n!�2

1��1 � x�2EXAMPLE 5v

1

1 � x
� 1 � x � x 2 � x 3 � � � � � �

�

n�0
xn

1

�1 � x�2 � 1 � 2x � 3x 2 � � � � � �
�

n�1
nxn�1

1

�1 � x�2 � �
�

n�0
�n � 1�xn

R � 1

ln�1 � x�EXAMPLE 6

1��1 � x�

� x � � 1
1

1 � x
�

1

1 � ��x�
� 1 � x � x 2 � x 3 � � � �
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774 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Integrating both sides of this equation, we get

To determine the value of we put in this equation and obtain .
Thus and

The radius of convergence is the same as for the original series: .

Find a power series representation for .

SOLUTION We observe that and find the required series by integrating
the power series for found in Example 1.

To find we put and obtain . Therefore

Since the radius of convergence of the series for is 1, the radius of conver-
gence of this series for is also 1.

(a) Evaluate as a power series.

(b) Use part (a) to approximate correct to within .

SOLUTION
(a) The first step is to express the integrand, , as the sum of a power series.
As in Example 1, we start with Equation 1 and replace by :

ln�1 � x� � y
1

1 � x
dx � y �1 � x � x 2 � x 3 � � � �� dx

� x �
x 2

2
�

x 3

3
�

x 4

4
� � � � � C

� �
�

n�1
��1�n�1 xn

n
� C � x � � 1

ln�1 � 0� � Cx � 0C
C � 0

� x � � 1ln�1 � x� � x �
x 2

2
�

x 3

3
�

x 4

4
� � � � � �

�

n�1
��1�n�1 x

n

n

R � 1

f �x� � tan�1xEXAMPLE 7v

f ��x� � 1��1 � x 2�
1��1 � x 2�

tan�1x � y
1

1 � x 2 dx � y �1 � x 2 � x 4 � x 6 � � � �� dx

� C � x �
x 3

3
�

x 5

5
�

x 7

7
� � � �

x � 0C C � tan�1 0 � 0

tan�1x � x �
x 3

3
�

x 5

5
�

x 7

7
� � � � � �

�

n�0
��1�n x 2n�1

2n � 1

1��1 � x 2 �
tan�1x

EXAMPLE 8
x 	1��1 � x 7 �
 dx

10�7
x

0.5
0 	1��1 � x 7 �
 dx

1��1 � x 7�
�x 7x

1

1 � x 7 �
1

1 � ��x 7�
� �

�

n�0
��x 7�n

� �
�

n�0
��1�nx 7n � 1 � x 7 � x 14 � � � �

The power series for obtained 
in Example 7 is called Gregory’s series after
the Scottish mathematician James Gregory
(1638–1675), who had anticipated some of
Newton’s discoveries. We have shown that
Gregory’s series is valid when ,
but it turns out (although it isn’t easy to prove)
that it is also valid when . Notice that
when the series becomes

This beautiful result is known as the Leibniz 
formula for .	

	

4
� 1 �

1

3
�

1

5
�

1

7
� � � �

x � 1
x � 
1

�1 � x � 1

tan�1x
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SECTION 11.9 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES 775

Now we integrate term by term:

This series converges for , that is, for .

(b) In applying the Fundamental Theorem of Calculus, it doesn’t matter which anti-
derivative we use, so let’s use the antiderivative from part (a) with :

This infinite series is the exact value of the definite integral, but since it is an alternating
series, we can approximate the sum using the Alternating Series Estimation Theorem. If
we stop adding after the term with , the error is smaller than the term with :

So we have

y
1

1 � x 7 dx � y �
�

n�0
��1�nx 7n dx � C � �

�

n�0
��1�n x 7n�1

7n � 1

� C � x �
x 8

8
�

x 15

15
�

x 22

22
� � � �

� x � � 1� �x 7 � � 1

C � 0

y
0.5

0

1

1 � x 7 dx � �x �
x 8

8
�

x 15

15
�

x 22

22
� � � ��

0

1�2

�
1

2
�

1

8 � 28 �
1

15 � 215 �
1

22 � 222 � � � � �
��1�n

�7n � 1�27n�1 � � � �

n � 4n � 3

1

29 � 229 � 6.4 � 10�11

y
0.5

0

1

1 � x 7 dx �
1

2
�

1

8 � 28 �
1

15 � 215 �
1

22 � 222 � 0.49951374

This example demonstrates one way in 
which power series representations are useful.
Integrating by hand is incredibly
difficult. Different computer algebra systems
return different forms of the answer, but they
are all extremely complicated. (If you have a
CAS, try it yourself.) The infinite series answer
that we obtain in Exam ple 8(a) is actually much
easier to deal with than the finite answer 
provided by a CAS.

1��1 � x 7 �

1. If the radius of convergence of the power series 
is 10, what is the radius of convergence of the series

? Why?

2. Suppose you know that the series converges for
. What can you say about the following series? Why?

3–10 Find a power series representation for the function and deter-
mine the interval of convergence.

3. 4.

5. 6.

��
n�0 cn x n

��
n�1 ncn x n�1

��
n�0 bn x n

� x � � 2

�
�

n�0

bn

n � 1
 x n�1

f �x� �
1

1 � x
f �x� �

5

1 � 4x 2

f �x� �
2

3 � x
f �x� �

1

x � 10

7. 8.

9. 10.

11–12 Express the function as the sum of a power series by first
using partial fractions. Find the interval of convergence.

11. 12.

13. (a) Use differentiation to find a power series representation for

What is the radius of convergence?

f �x� �
1 � x

1 � x
f �x� �

x 2

a 3 � x 3

f �x� �
3

x 2 � x � 2
f �x� �

x � 2

2x 2 � x � 1

f �x� �
1

�1 � x�2

f �x� �
x

9 � x 2 f �x� �
x

2x 2 � 1

11.9 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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776 CHAPTER 11 INFINITE SEQUENCES AND SERIES

(b) Use part (a) to find a power series for

(c) Use part (b) to find a power series for

14. (a) Use Equation 1 to find a power series representation for
. What is the radius of convergence?

(b) Use part (a) to find a power series for .
(c) By putting in your result from part (a), express

as the sum of an infinite series.

15–20 Find a power series representation for the function and
determine the radius of convergence.

15. 16.

17. 18.

19. 20.

; 21–24 Find a power series representation for , and graph and
several partial sums on the same screen. What happens as
increases?

21. 22.

23. 24.

25–28 Evaluate the indefinite integral as a power series. What is
the radius of convergence?

25. 26.

27. 28.

29–32 Use a power series to approximate the definite integral to
six decimal places.

29. 30.

31. 32.

f �x� �
x 2

�1 � x�3

f �x� � ln�1 � x�
f �x� � x ln�1 � x�

x � 1
2 ln 2

f �x� � x 2 tan�1�x 3�f �x� � ln�5 � x�

f �x� �  x

2 � x�
3

f �x� �
x

�1 � 4x�2

f �x� �
x 2 � x

�1 � x�3f �x� �
1 � x

�1 � x�2

ff
nsn�x�

f �x� � ln�x 2 � 4�f �x� �
x

x 2 � 16

f �x� � tan�1�2x�f �x� � ln1 � x

1 � x�

y
t

1 � t 8 dt y
t

1 � t 3 dt

y x 2 ln�1 � x� dx y
tan�1x

x
dx

y
0.4

0
ln�1 � x 4� dxy

0.2

0

1

1 � x 5 dx

y
0.3

0

x 2

1 � x 4 dxy
0.1

0
 x arctan�3x� dx

f �x� �
1

�1 � x�3

33. Use the result of Example 7 to compute correct to
five decimal places.

34. Show that the function

is a solution of the differential equation

35. (a) Show that (the Bessel function of order 0 given in 
Example 4) satisfies the differential equation

(b) Evaluate correct to three decimal places.

36. The Bessel function of order 1 is defined by

(a) Show that satisfies the differential equation

(b) Show that .

37. (a) Show that the function

is a solution of the differential equation

(b) Show that .

38. Let . Show that the series
converges for all values of but the series of derivatives

diverges when , an integer. For what values
of does the series converge?

39. Let

Find the intervals of convergence for , , and .

40. (a) Starting with the geometric series , find the sum of
the series

(b) Find the sum of each of the following series.

(i) ,  (ii)

f ��x� � f �x� � 0

J0

x 2J0��x� � xJ0��x� � x 2J0�x� � 0

x
1

0 J0�x� dx

J1�x� � �
�

n�0

��1�n x 2n�1

n! �n � 1�!22n�1

J1

x 2J1��x� � xJ1��x� � �x 2 � 1�J1�x� � 0

J0��x� � �J1�x�

f �x� � �
�

n�0

x n

n!

f ��x� � f �x�

f �x� � e x

fn�x� � �sin nx��n2 � fn�x�
x

� fn��x� x � 2n	 n
x � fn��x�

f �x� � �
�

n�1

x n

n2

f f � f �

��
n�0 x n

�
�

n�1
nx n�1 � x � � 1 

f �x� � �
�

n�0

��1�nx 2n

�2n�!

arctan 0.2

�
�

n�1

n

2n� x � � 1�
�

n�1
nx n
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SECTION 11.10 TAYLOR AND MACLAURIN SERIES 777

(c) Find the sum of each of the following series.

(i) ,  

(ii) (iii)

41. Use the power series for to prove the following 
expression for as the sum of an infinite series:

�
�

n�2

n2 � n

2n �
�

n�1

n2

2n

�
�

n�2
n�n � 1�x n � x � � 1

tan �1x
	

	 � 2s3 �
�

n�0

��1�n

�2n � 1�3n

42. (a) By completing the square, show that 

(b) By factoring as a sum of cubes, rewrite the inte-
gral in part (a).  Then express as the sum of a
power series and use it to prove the following formula 
for :

x 3 � 1
1��x 3 � 1�

	

	 �
3s3

4
 �

�

n�0

��1�n

8 n  2

3n � 1
�

1

3n � 2�

y
1�2

0

dx

x 2 � x � 1
�

	

3s3

In the preceding section we were able to find power series representations for a certain
restricted class of functions. Here we investigate more general problems: Which functions
have power series representations? How can we find such representations?

We start by supposing that is any function that can be represented by a power series

Let’s try to determine what the coefficients must be in terms of . To begin, notice that if
we put in Equation 1, then all terms after the first one are 0 and we get

By Theorem 11.9.2, we can differentiate the series in Equation 1 term by term:

and substitution of in Equation 2 gives

Now we differentiate both sides of Equation 2 and obtain

Again we put in Equation 3. The result is

Let’s apply the procedure one more time. Differentiation of the series in Equation 3 gives

and substitution of in Equation 4 gives

By now you can see the pattern. If we continue to differentiate and substitute , we
obtain

f

1 f �x� � c0 � c1�x � a� � c2�x � a�2 � c3�x � a�3 � c4�x � a�4 � � � � � x � a � � R

cn f
x � a

f �a� � c0

2 f ��x� � c1 � 2c2�x � a� � 3c3�x � a�2 � 4c4�x � a�3 � � � � � x � a � � R

x � a

f ��a� � c1

� x � a � � Rf ��x� � 2c2 � 2 � 3c3�x � a� � 3 � 4c4�x � a�2 � � � �3

x � a

f ��a� � 2c2

� x � a � � Rf �x� � 2 � 3c3 � 2 � 3 � 4c4�x � a� � 3 � 4 � 5c5�x � a�2 � � � �4

x � a

f �a� � 2 � 3c3 � 3!c3

x � a

f �n��a� � 2 � 3 � 4 � � � � � ncn � n!cn

11.10 Taylor and Maclaurin Series
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778 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Solving this equation for the coefficient 

This formula remains valid even for if we adopt the conventions that and
. Thus we have proved the following theorem.

Theorem If has a power series representation (expansion) at , that is, if

then its coefficients are given by the formula

Substituting this formula for back into the series, we see that if has a power series
expansion at , then it must be of the following form.

The series in Equation 6 is called the Taylor series of the function f at a (or about a or
centered at a). For the special case the Taylor series becomes

This case arises frequently enough that it is given the special name Maclaurin series.

NOTE We have shown that if can be represented as a power series about , then is
equal to the sum of its Taylor series. But there exist functions that are not equal to the sum
of their Taylor series. An example of such a function is given in Exercise 74.

Find the Maclaurin series of the function and its radius of 
convergence.

SOLUTION If , then , so for all . Therefore the
Taylor series for at 0 (that is, the Maclaurin series) is

cn �
f �n��a�

n!

n � 0 0! � 1
f �0� � f

5 f a

f �x� � �
�

n�0
cn�x � a�n � x � a � � R

cn �
f �n��a�

n!

cn f
a

6 f �x� � �
�

n�0

f �n��a�
n!

 �x � a�n

� f �a� �
f ��a�
1!

 �x � a� �
f ��a�
2!

 �x � a�2 �
f �a�

3!
 �x � a�3 � � � �

a � 0

f �x� � �
�

n�0

f �n��0�
n!

 xn � f �0� �
f ��0�
1!

 x �
f ��0�
2!

 x 2 � � � �7

faf

f �x� � exEXAMPLE 1v

nf �n��0� � e 0 � 1f �n��x� � exf �x� � ex

f

cn, we getnth

�
�

n�0

f �n��0�
n!

 xn � �
�

n�0

xn

n!
� 1 �

x

1!
�

x 2

2!
�

x 3

3!
� � � �

Taylor and Maclaurin

The Taylor series is named after the English 
mathematician Brook Taylor (1685–1731) 
and the Maclaurin series is named in honor 
of the Scottish mathematician Colin Maclaurin
(1698–1746) despite the fact that the Maclaurin
series is really just a special case of the Taylor
series. But the idea of representing particular
functions as sums of power series goes back 
to Newton, and the general Taylor series 
was known to the Scottish mathematician
James Gregory in 1668 and to the Swiss 
mathematician John Bernoulli in the 1690s. 
Taylor was apparently unaware of the work of
Gregory and Bernoulli when he published his
discoveries on series in 1715 in his book 
Methodus incrementorum directa et inversa.
Maclaurin series are named after Colin Maclau-
rin because he popularized them in his calculus
textbook Treatise of Fluxions published in 1742.
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SECTION 11.10 TAYLOR AND MACLAURIN SERIES 779

To find the radius of convergence we let . Then

so, by the Ratio Test, the series converges for all and the radius of convergence 
is .

The conclusion we can draw from Theorem 5 and Example 1 is that if has a power
series expansion at 0, then

So how can we determine whether does have a power series representation?
Let’s investigate the more general question: Under what circumstances is a function

equal to the sum of its Taylor series? In other words, if has derivatives of all orders, when
is it true that

As with any convergent series, this means that is the limit of the sequence of partial
sums. In the case of the Taylor series, the partial sums are

Notice that is a polynomial of degree called the nth-degree Taylor polynomial of f at
a. For instance, for the exponential function , the result of Example 1 shows that
the Taylor polynomials at 0 (or Maclaurin polynomials) with , 2, and 3 are

The graphs of the exponential function and these three Taylor polynomials are drawn in
Figure 1.

In general, is the sum of its Taylor series if

If we let

so that    

then is called the remainder of the Taylor series. If we can somehow show that
, then it follows that

We have therefore proved the following theorem.

� an�1

an
� � � xn�1

�n � 1�!
�

n!

xn � � � x �
n � 1

l 0 � 1

x
R � �

ex

ex � �
�

n�0

x n

n!

e x

f

f �x� � �
�

n�0

f �n��a�
n!

 �x � a�n

f �x�

Tn�x� � �
n

i�0

f �i��a�
i!

 �x � a�i

� f �a� �
f ��a�
1!

 �x � a� �
f ��a�
2!

 �x � a�2 � � � � �
f �n��a�

n!
 �x � a�n

Tn n
f �x� � ex

n � 1

T1�x� � 1 � x T2�x� � 1 � x �
x 2

2!
T3�x� � 1 � x �

x 2

2!
�

x 3

3!

f �x�

f �x� � lim
n l �

Tn�x�

f �x� � Tn�x� � Rn�x�Rn�x� � f �x� � Tn�x�

Rn�x�
lim n l � Rn�x� � 0

lim
n l �

Tn�x� � lim
n l �

	 f �x� � Rn�x�
 � f �x� � lim
n l �

Rn�x� � f �x�

an � x n�n!

0 x

y

y=´

y=T£(x)

(0, 1)

y=T™(x)

y=T¡(x)

y=T™(x)

y=T£(x)

FIGURE 1

As increases, appears to approach in
Figure 1. This suggests that is equal to the
sum of its Taylor series.

e x

e xTn�x�n
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780 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Theorem If , where is the nth-degree Taylor polyno-
mial of at and

for , then is equal to the sum of its Taylor series on the interval
.

In trying to show that for a specific function , we usually use the fol-
lowing theorem.

Taylor’s Inequality If for , then the remainder
of the Taylor series satisfies the inequality

To see why this is true for n � 1, we assume that . In particular, we have
, so for we have

An antiderivative of is , so by Part 2 of the Fundamental Theorem of Calculus, we
have

Thus

But . So

A similar argument, using , shows that

So

Although we have assumed that , similar calculations show that this inequality is also
true for .

Tnf �x� � Tn�x� � Rn�x�8
af

lim
n l �

Rn�x� � 0

f� x � a � � R

� x � a � � R

flim n l � Rn�x� � 0

� x � a � � d� f �n�1��x� � � M9
Rn�x�

for � x � a � � d� Rn�x� � �
M

�n � 1�!
 � x � a �n�1

� f ��x� � � M
a � x � a � df ��x� � M

y
x

a
f ��t� dt � y

x

a
M dt

f �f �

f ��x� � f ��a� � M�x � a�orf ��x� � f ��a� � M�x � a�

y
x

a
f ��t� dt � y

x

a
	 f ��a� � M�t � a�
 dt

f �x� � f �a� � f ��a��x � a� � M
�x � a�2

2

f �x� � f �a� � f ��a��x � a� �
M

2
 �x � a�2

R1�x� � f �x� � T1�x� � f �x� � f �a� � f ��a��x � a�

R1�x� �
M

2
 �x � a�2

f ��x� � �M

R1�x� � �
M

2
 �x � a�2

� R1�x� � �
M

2
 � x � a �2

x � a
x � a

Formulas for the Taylor Remainder Term
As alternatives to Taylor’s Inequality, we have
the following formulas for the remainder term.
If is continuous on an interval and

, then

This is called the integral form of the remainder
term. Another formula, called Lagrange’s form 
of the remainder term, states that there is a num-
ber between and such that

This version is an extension of the Mean Value
Theorem (which is the case ).

Proofs of these formulas, together with 
discussions of how to use them to solve the
examples of Sections 11.10 and 11.11, are given 
on the website

www.stewartcalculus.com

Click on Additional Topics and then on Formulas
for the Remainder Term in Taylor series.

Rn�x� �
1

n!
 y

x

a
�x � t�n f �n�1��t� dt

n � 0

Rn�x� �
f �n�1��z�
�n � 1�!

 �x � a�n�1

axz

x � I
If �n�1�
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SECTION 11.10 TAYLOR AND MACLAURIN SERIES 781

This proves Taylor’s Inequality for the case where . The result for any n is proved
in a similar way by integrating times. (See Exercise 73 for the case .)

NOTE In Section 11.11 we will explore the use of Taylor’s Inequality in approximating
functions. Our immediate use of it is in conjunction with Theorem 8.

In applying Theorems 8 and 9 it is often helpful to make use of the following fact.

for every real number x

This is true because we know from Example 1 that the series converges for all and
so its term approaches 0.

Prove that is equal to the sum of its Maclaurin series.

SOLUTION If , then for all n. If d is any positive number and
, then . So Taylor’s Inequality, with and , says

that

for 

Notice that the same constant works for every value of n. But, from Equa -
tion 10, we have

It follows from the Squeeze Theorem that and therefore
for all values of x. By Theorem 8, is equal to the sum of its 

Maclaurin series, that is,

In particular, if we put in Equation 11, we obtain the following expression for the
number as a sum of an infinite series:

Find the Taylor series for at .

SOLUTION We have and so, putting in the definition of a Taylor series
, we get

n � 1 n � 2

10 lim
n l �

xn

n!
� 0

� xn�n! x
nth

e x

f �x� � ex f �n�1��x� � ex

� x � � d � f �n�1��x� � � ex � ed a � 0 M � ed

� Rn�x� � �
e d

�n � 1�!
 � x �n�1 � x � � d

M � ed

lim
n l �

ed

�n � 1�!
 � x �n�1 � ed lim

n l �

� x �n�1

�n � 1�!
� 0

lim n l � � Rn�x� � � 0
lim n l � Rn�x� � 0 ex

11 ex � �
�

n�0

x n

n!
for all x

v EXAMPLE 2

x � 1
e

12 e � �
�

n�0

1

n!
� 1 �

1

1!
�

1

2!
�

1

3!
� � � �

f �x� � ex a � 2

f �n��2� � e 2 a � 2

�
�

n�0

f �n��2�
n!

 �x � 2�n � �
�

n�0

e 2

n!
 �x � 2�n

EXAMPLE 3

6

n � 1

In 1748 Leonhard Euler used Equation 12 to 
find the value of correct to digits. In 2007
Shigeru Kondo, again using the series in ,
computed to more than 100 billion decimal
places. The special techniques employed to
speed up the computation are explained on the
website

numbers.computation.free.fr

e

23e
12
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782 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Again it can be verified, as in Example 1, that the radius of convergence is . As in
Example 2 we can verify that , so

We have two power series expansions for , the Maclaurin series in Equation 11 and the
Taylor series in Equation 13. The first is better if we are interested in values of near 0 and
the second is better if is near 2.

Find the Maclaurin series for and prove that it represents for all .

SOLUTION We arrange our computation in two columns as follows:

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as 
follows:

Since is or , we know that for all x. So we can
take in Taylor’s Inequality:

By Equation 10 the right side of this inequality approaches 0 as , so
by the Squeeze Theorem. It follows that as , so is equal to the sum
of its Maclaurin series by Theorem 8.

We state the result of Example 4 for future reference.

Find the Maclaurin series for .

R � �
lim n l � Rn�x� � 0

13 ex � �
�

n�0

e 2

n!
 �x � 2�n for all x

ex

x
x

sin x sin x x

f �x� � sin x f �0� � 0

f ��x� � cos x f ��0� � 1

f ��x� � �sin x f ��0� � 0

f ��x� � �cos x f ��0� � �1

f �4��x� � sin x f �4��0� � 0

f �0� �
f ��0�
1!

 x �
f ��0�
2!

 x 2 �
f ��0�

3!
 x 3 � � � �

� x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � � � �

�

n�0
��1�n x 2n�1

�2n � 1�!

f �n�1��x� 	sin x 	cos x � f �n�1��x� � 
 1
M � 1

14 � Rn�x� � 

M

�n � 1�! � x n�1 � � � x �n�1

�n � 1�!

n l � � Rn�x� �l 0
Rn�x� l 0 n l � sin x

15 sin x � x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � �

� �
�

n�0
��1�n x 2n�1

�2n � 1�!
for all x

cos x

EXAMPLE 4

EXAMPLE 5

FIGURE 2

0 x

y

1

1

y=sin x

T∞

T£

T¡

Figure 2 shows the graph of together with
its Taylor (or Maclaurin) polynomials

Notice that, as increases, becomes a
better approximation to .sin x

Tn�x�n

T5�x� � x �
x 3

3!
�

x 5

5!

T3�x� � x �
x 3

3!

T1�x� � x

sin x
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SECTION 11.10 TAYLOR AND MACLAURIN SERIES 783

SOLUTION We could proceed directly as in Example 4, but it’s easier to differentiate the
Maclaurin series for given by Equation 15:

Since the Maclaurin series for converges for all , Theorem 2 in Section 11.9 tells us
that the differentiated series for also converges for all . Thus

Find the Maclaurin series for the function .

SOLUTION Instead of computing derivatives and substituting in Equation 7, it’s easier to
multiply the series for (Equation 16) by :

Represent as the sum of its Taylor series centered at .

SOLUTION Arranging our work in columns, we have

and this pattern repeats indefinitely. Therefore the Taylor series at is

� 1 �
3x 2

3!
�

5x 4

5!
�

7x 6

7!
� � � � � 1 �

x 2

2!
�

x 4

4!
�

x 6

6!
� � � �

sin x x
cos x x

16 cos x � 1 �
x 2

2!
�

x 4

4!
�

x 6

6!
� � � �

� �
�

n�0
��1�n x 2n

�2n�!
for all x

f �x� � x cos x

cos x x

x cos x � x �
�

n�0
��1�n x 2n

�2n�!
� �

�

n�0
��1�n x 2n�1

�2n�!

sin x

cos x �
d

dx
�sin x� �

d

dx �x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � ��

EXAMPLE 6

f �x� � sin x ��3

f �x� � sin x f��

3 � �
s3

2

f ��x� � cos x f ���

3 � �
1

2

f ��x� � �sin x f ���

3 � � �
s3

2

f ��x� � �cos x f ���

3 � � �
1

2

��3

f��

3 � �

f ���

3 �
1!

 �x �
�

3 � �

f ���

3 �
2!

 �x �
�

3 �2

�

f ���

3 �
3!

 �x �
�

3 �3

� � � �

�
s3

2
�

1

2 � 1!
 �x �

�

3 � �
s3

2 � 2!
 �x �

�

3 �2

�
1

2 � 3!
 �x �

�

3 �3

� � � �

EXAMPLE 7

The Maclaurin series for , , and 
that we found in Examples 2, 4, and 5 were dis-
covered, using different methods, by Newton.
These equations are remarkable because they
say we know everything about each of these
functions if we know all its derivatives at the
single number 0.

cos xsin xe x

0 x

y

π
3

y=sin x

T£

FIGURE 3

We have obtained two different series 
representations for , the Maclaurin series
in Example 4 and the Taylor series in Example
7. It is best to use the Maclaurin series for val-
ues of near 0 and the Taylor series for near

. Notice that the third Taylor polynomial 
in Figure 3 is a good approximation to 
near but not as good near 0. Compare it
with the third Maclaurin polynomial in Fig-
 ure 2, where the opposite is true.

T3

��3
sin x

T3��3
xx

sin x
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784 CHAPTER 11 INFINITE SEQUENCES AND SERIES

The proof that this series represents for all is very similar to that in Example 4.
(Just replace by in .) We can write the series in sigma notation if we sepa-

rate the terms that contain :

The power series that we obtained by indirect methods in Examples 5 and 6 and in 
Section 11.9 are indeed the Taylor or Maclaurin series of the given functions because 
Theorem 5 asserts that, no matter how a power series representation is
obtained, it is always true that . In other words, the coefficients are uniquely
determined.

Find the Maclaurin series for , where is any real number.

SOLUTION Arranging our work in columns, we have

. .

. .

. .

Therefore the Maclaurin series of is

This series is called the binomial series. Notice that if is a nonnegative integer, then
the terms are eventually 0 and so the series is finite. For other values of none of the
terms is 0 and so we can try the Ratio Test. If the th term is 

Thus, by the Ratio Test, the binomial series converges if and diverges 
if .

The traditional notation for the coefficients in the binomial series is

and these numbers are called the binomial coefficients.

sin x x
x x � ��3

s3

sin x � �
�

n�0

��1�n
s3

2�2n�! �x �
�

3 �2n

� �
�

n�0

��1�n

2�2n � 1�!�x �
�

3 �2n�1

14

f �x� � 	 cn�x � a�n

cn � f �n��a��n!

f �x� � �1 � x�k k

f �x� � �1 � x�k f �0� � 1

f ��x� � k�1 � x�k�1  f ��0� � k

f ��x� � k�k � 1��1 � x�k�2  f ��0� � k�k � 1�

f ��x� � k�k � 1��k � 2��1 � x�k�3  f ��0� � k�k � 1��k � 2�

f �n��x� � k�k � 1� � � � �k � n � 1��1 � x�k�n f �n��0� � k�k � 1� � � � �k � n � 1�

f �x� � �1 � x�k

�
�

n�0

f �n��0�
n!

 xn � �
�

n�0

k�k � 1� � � � �k � n � 1�
n!

 xn

n an, then


 an�1

an

 � 
 k�k � 1� � � � �k � n � 1��k � n�xn�1

�n � 1�!
�

n!

k�k � 1� � � � �k � n � 1�x n 

� � k � n �

n � 1
 � x � �


1 �
k

n



1 �
1

n

� x � l � x � as n l �

� x � � 1

� x �  1

EXAMPLE 8

k
k

� k

n� �
k�k � 1��k � 2� � � � �k � n � 1�

n!
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SECTION 11.10 TAYLOR AND MACLAURIN SERIES 785

The following theorem states that is equal to the sum of its Maclaurin series. It
is possible to prove this by showing that the remainder term approaches 0, but that
turns out to be quite difficult. The proof outlined in Exercise 75 is much easier.

The Binomial Series If is any real number and , then

Although the binomial series always converges when , the question of whether
or not it converges at the endpoints, , depends on the value of . It turns out that the
series converges at 1 if and at both endpoints if . Notice that if is a pos-
itive integer and , then the expression for contains a factor , so for

. This means that the series terminates and reduces to the ordinary Binomial Theorem
when is a positive integer. (See Reference Page 1.)

Find the Maclaurin series for the function and its radius
of convergence.

SOLUTION We rewrite in a form where we can use the binomial series:

Using the binomial series with and with replaced by , we have

We know from that this series converges when , that is, , so the
radius of convergence is .

We collect in the following table, for future reference, some important Maclaurin series
that we have derived in this section and the preceding one.

Rn�x�

17 k � x � � 1

�1 � x�k � �
�

n�0
� k

n�xn � 1 � kx �
k�k � 1�

2!
x 2 �

k�k � 1��k � 2�
3!

x 3 � � � �

� x � � 1
	1 k

�1 � k 
 0 k � 0 k
n  k ( k

n ) �k � k� ( k
n ) � 0

n  k
k

f �x� �
1

s4 � x

f �x�

1

s4 � x
�

1

�4�1 �
x

4�
�

1

2�1 �
x

4

�
1

2
 �1 �

x

4��1�2

k � �
1
2 x �x�4

1

s4 � x
�

1

2
 �1 �

x

4��1�2

�
1

2
 �

�

n�0
��

1
2

n ���
x

4�n

�
1

2
 �1 � ��

1

2���
x

4� �
(� 1

2 )(� 3
2 )

2!
 ��

x

4�2

�
(� 1

2)(� 3
2)(� 5

2)
3!

 ��
x

4�3

� � � � �
(� 1

2)(� 3
2)(� 5

2) � � � (� 1
2 � n � 1)

n!
 ��

x

4�n

� � � �
�

1

2
 �1 �

1

8
 x �

1 � 3

2!82 x 2 �
1 � 3 � 5

3!83 x 3 � � � � �
1 � 3 � 5 � � � � � �2n � 1�

n!8n xn � � � �
� �x�4 � � 1 � x � � 4

R � 4
17

�1 � x�k

v EXAMPLE 9
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786 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Find the sum of the series .

SOLUTION With sigma notation we can write the given series as

Then from Table 1 we see that this series matches the entry for with . So

One reason that Taylor series are important is that they enable us to integrate functions
that we couldn’t previously handle. In fact, in the introduction to this chapter we mentioned
that Newton often integrated functions by first expressing them as power series and then
integrating the series term by term. The function can’t be integrated by tech-
niques discussed so far because its antiderivative is not an elementary function (see Sec-
tion 7.5). In the following example we use Newton’s idea to integrate this function.

(a) Evaluate as an infinite series.

(b) Evaluate correct to within an error of .

SOLUTION
(a) First we find the Maclaurin series for . Although it’s possible to use the
direct method, let’s find it simply by replacing with in the series for given in
Table 1. Thus, for all values of x,

1

1 � x
� �

�

n�0
 xn � 1 � x � x 2 � x 3 � � � � R � 1

ex � �
�

n�0

xn

n!
� 1 �

x

1!
�

x 2

2!
�

x 3

3!
� � � � R � �

sin x � �
�

n�0
��1�n x 2n�1

�2n � 1�!
� x �

x 3

3!
�

x 5

5!
�

x 7

7!
� � � � R � �

cos x � �
�

n�0
��1�n x 2n

�2n�!
� 1 �

x 2

2!
�

x 4

4!
�

x 6

6!
� � � � R � �

tan�1x � �
�

n�0
��1�n x 2n�1

2n � 1
� x �

x 3

3
�

x 5

5
�

x 7

7
� � � � R � 1

ln�1 � x� � �
�

n�1
��1�n�1 x n

n
� x �

x 2

2
�

x 3

3
�

x 4

4
� � � � R � 1

�1 � x�k � �
�

n�0
� k

n�xn � 1 � kx �
k�k � 1�

2!
x 2 �

k�k � 1��k � 2�
3!

x 3 � � � � R � 1

1

1 � 2
�

1

2 � 22 �
1

3 � 23 �
1

4 � 24 � ���

�
�

n�1
��1�n�1 1

n � 2n � �
�

n�1
��1�n�1 (1

2)
n

n

EXAMPLE 10

ln�1 � x� x � 1
2

�
�

n�1
��1�n�1 1

n � 2n � ln(1 �
1
2) � ln 32

f �x� � e�x2

x e�x2

dx

x
1
0 e�x2

dx 0.001

f �x� � e�x2

x �x 2 e x

EXAMPLE 11v

e�x2

� �
�

n�0

��x 2�n

n!
� �

�

n�0
��1�n x 2n

n!
� 1 �

x 2

1!
�

x 4

2!
�

x 6

3!
� � � �

TABLE 1

Important Maclaurin Series and 
Their Radii of Convergence

Module 11.10/11.11 enables you to see
how successive Taylor polynomials approach the
original function.

TEC
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SECTION 11.10 TAYLOR AND MACLAURIN SERIES 787

Now we integrate term by term:

This series converges for all because the original series for converges for all .

(b) The Fundamental Theorem of Calculus gives

The Alternating Series Estimation Theorem shows that the error involved in this approxi-
mation is less than

Another use of Taylor series is illustrated in the next example. The limit could be found
with l’Hospital’s Rule, but instead we use a series.

Evaluate .

SOLUTION Using the Maclaurin series for , we have

because power series are continuous functions.

Multiplication and Division of Power Series
If power series are added or subtracted, they behave like polynomials (Theorem 11.2.8
shows this). In fact, as the following example illustrates, they can also be multiplied and
divided like polynomials. We find only the first few terms because the calculations for the
later terms become tedious and the initial terms are the most important ones.

y e�x2

dx � y �1 �
x 2

1!
�

x 4

2!
�

x 6

3!
� � � � � ��1�n x 2n

n!
� � � �� dx

� C � x �
x 3

3 � 1!
�

x 5

5 � 2!
�

x 7

7 � 3!
� � � � � ��1�n x 2n�1

�2n � 1�n!
� � � �

x e�x2

x

y
1

0
e�x2

dx � �x �
x 3

3 � 1!
�

x 5

5 � 2!
�

x 7

7 � 3!
�

x 9

9 � 4!
� � � �

0

1

� 1 �
1
3 �

1
10 �

1
42 �

1
216 � � � �

� 1 �
1
3 �

1
10 �

1
42 �

1
216 � 0.7475

1

11 � 5!
�

1

1320
� 0.001

lim
x l 0

e x � 1 � x

x 2

e x

lim
x l 0

ex � 1 � x

x 2 � lim
x l 0

�1 �
x

1!
�

x 2

2!
�

x 3

3!
� � � �� � 1 � x

x 2

� lim
x l 0

x 2

2!
�

x 3

3!
�

x 4

4!
� � � �

x 2

� lim
x l 0

�1

2
�

x

3!
�

x 2

4!
�

x 3

5!
� � � �� �

1

2

EXAMPLE 12

We can take in the anti derivative 
in part (a).

C � 0

Some computer algebra systems compute 
limits in this way.
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788 CHAPTER 11 INFINITE SEQUENCES AND SERIES

Find the first three nonzero terms in the Maclaurin series for (a) 
and (b) .

SOLUTION
(a) Using the Maclaurin series for and in Table 1, we have

We multiply these expressions, collecting like terms just as for polynomials:

Thus

(b) Using the Maclaurin series in Table 1, we have

We use a procedure like long division:

Thus

Although we have not attempted to justify the formal manipulations used in Exam ple 13,
they are legitimate. There is a theorem which states that if both and

converge for and the series are multiplied as if they were polyno-
mials, then the resulting series also converges for and represents . For divi-
sion we require ; the resulting series converges for sufficiently small .

ex sin x

ex sin x � �1 �
x

1!
�

x 2

2!
�

x 3

3!
� � � ���x �

x 3

3!
� � � ��

1 � x �
1
2 x 2 �

1
6 x 3 � � � �

� x �
1
6 x 3 � � � �

x � x 2 �
1
2 x 3 �

1
6 x 4 � � � �

� �
1
6 x 3 �

1
6 x 4 � � � �

x � x 2 �
1
3 x 3 � � � �

e x sin x � x � x 2 �
1
3 x 3 � � � �

tan x �
sin x

cos x
�

x �
x 3

3!
�

x 5

5!
� � � �

1 �
x 2

2!
�

x 4

4!
� � � �

tan x � x �
1
3 x 3 �

2
15 x 5 � � � �

f �x� � 	 cnxn

t�x� � 	 bnxn � x � � R

� x � � R f �x�t�x�
b0 � 0 � x �

ex sin x
tan x

EXAMPLE 13

x �
1
3 x 3 �

2
15 x 5 � � � �

1 �
1
2 x 2 �

1
24 x 4 � � � �)x � 1

6 x 3 � 1
120 x 5 � � � �

x �
1
2 x 3 �

1
24 x 5 � � ��

1
3 x 3 �

1
30 x 5 � � � �

2
15 x 5 � � � �

1
3 x 3 �

1
6 x 5 � � � �
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SECTION 11.10 TAYLOR AND MACLAURIN SERIES 789

1. If for all , write a formula for .

2. The graph of is shown. 

(a) Explain why the series

is not the Taylor series of centered at 1.
(b) Explain why the series

is not the Taylor series of centered at 2.

3. If for find the Maclaurin
series for and its radius of convergence.

4. Find the Taylor series for centered at 4 if

What is the radius of convergence of the Taylor series?

5–12 Find the Maclaurin series for using the definition of a
Maclaurin series. [Assume that has a power series expan sion. 
Do not show that .] Also find the associated radius of
convergence.

5. 6.

7. 8.

9. 10.

11. 12.

13–20 Find the Taylor series for centered at the given value 
of . [Assume that has a power series expansion. Do not show
that .] Also find the associated radius of convergence.

13. ,  

14. ,  

15. ,  16. ,  

17. ,  18. ,  

19. ,  20. ,  

f �x� � 	�
n�0 bn�x � 5�n x b8

f

y

0 x

f

1

1

1.6 � 0.8�x � 1� � 0.4�x � 1�2 � 0.1�x � 1�3 � � � �

f

2.8 � 0.5�x � 2� � 1.5�x � 2�2 � 0.1�x � 2�3 � � � �

f

f �n��0� � �n � 1�! n � 0, 1, 2, . . . ,
f

f

f �n��4� �
��1�n n!

3n�n � 1�

f �x�
f

Rn�x� l 0

f �x� � �1 � x��2 f �x� � ln�1 � x�

f �x� � sin �x f �x� � e�2x

f �x� � 2x f �x� � x cos x

f �x� � sinh x f �x� � cosh x

f �x�
a f

Rn�x� l 0

f �x� � x 4 � 3x 2 � 1 a � 1

f �x� � x � x 3 a � �2

f �x� � ln x a � 2 f �x� � 1�x a � �3

f �x� � e 2x a � 3 f �x� � sin x a � ��2

f �x� � cos x a � � f �x� � sx a � 16

21. Prove that the series obtained in Exercise 7 represents
for all .

22. Prove that the series obtained in Exercise 18 represents
for all .

23. Prove that the series obtained in Exercise 11 represents
for all .

24. Prove that the series obtained in Exercise 12 represents
for all .

25–28 Use the binomial series to expand the function as a power
series. State the radius of convergence.

25. 26.

27. 28.

29–38 Use a Maclaurin series in Table 1 to obtain the Maclaurin
series for the given function.

29. 30.

31. 32.

33. 34.

35. 36.

37. Hint: Use 

38.

; 39–42 Find the Maclaurin series of (by any method) and its
radius of convergence. Graph and its first few Taylor polynomials
on the same screen. What do you notice about the relation  ship
between these polynomials and ?

39. 40.

41. 42.

43. Use the Maclaurin series for to compute correct to
five decimal places.

44. Use the Maclaurin series for to calculate correct to
five decimal places.

45. (a) Use the binomial series to expand .
(b) Use part (a) to find the Maclaurin series for .

46. (a) Expand as a power series.
(b) Use part (a) to estimate correct to three decimal

places.

sin �x
x

sin x
x

sinh x
x

cosh x
x

s
4 1 � x s

3 8 � x

1

�2 � x�3 �1 � x�2�3

f �x� � sin �x f �x� � cos��x�2�

f �x� � e x � e 2x f �x� � e x � 2e�x

f �x� � x cos( 1
2 x 2) f �x� � x 2 ln�1 � x 3�

f �x� �
x

s4 � x 2 
f �x� �

x 2

s2 � x

f �x� � sin2x [ sin2x � 1
2 �1 � cos 2x�.]

f �x� � �1
6

x � sin x

x 3 if x � 0

if x � 0

f
f

f

f �x� � cos�x 2 � f �x� � e�x2

� cos x

f �x� � xe�x f �x� � tan�1�x 3�

cos x cos 5�

e x 1�s
10 e

1�s1 � x 2 

sin�1x

1�s
4 1 � x

1�s
4 1.1

11.10 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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790 CHAPTER 11 INFINITE SEQUENCES AND SERIES

47–50 Evaluate the indefinite integral as an infinite series.

47. 48.

49. 50.

51–54 Use series to approximate the definite integral to within the
indicated accuracy.

51. (four decimal places)

52. (four decimal places)

53.

54.

55–57 Use series to evaluate the limit.

55. 56.

57.

58. Use the series in Example 13(b) to evaluate

We found this limit in Example 4 in Section 6.8 using 
l’Hospital’s Rule three times. Which method do you prefer?

59–62 Use multiplication or division of power series to find the
first three nonzero terms in the Maclaurin series for each function.

59. 60.

61. 62.

63–70 Find the sum of the series.

63. 64.

65. 66.

y x cos�x 3� dx y
e x � 1

x
dx

y
cos x � 1

x
dx y arctan�x 2� dx

y
1�2

0
x 3 arctan x dx

y
1

0
sin�x 4� dx

(� error � � 5 � 10�6)y
0.4

0
s1 � x 4 dx

(� error � � 0.001)y
0.5

0
x 2e�x2

dx

lim
x l0

1 � cos x

1 � x � e xlim
x l 0

x � ln�1 � x�
x 2

lim
x l0

sin x � x �
1
6 x 3

x 5

lim
x l 0

tan x � x

x 3

y � sec xy � e�x2

cos x

y � e x ln�1 � x�y �
x

sin x

�
�

n�0

��1�n � 2n

62n�2n�!�
�

n�0
��1�n x 4n

n!

�
�

n�0

3n

5n n!�
�

n�1
��1�n�1 3n

n 5n

67.

68.

69.

70.

71. Show that if is an th-degree polynomial, then

72. If , what is ?

73. Prove Taylor’s Inequality for , that is, prove that if
for , then

74. (a) Show that the function defined by

is not equal to its Maclaurin series.

; (b) Graph the function in part (a) and comment on its behavior
near the origin.

75. Use the following steps to prove .

(a) Let . Differentiate this series to show that

(b) Let and show that .
(c) Deduce that .

76. In Exercise 53 in Section 10.2 it was shown that the length of
the ellipse , , where , is

where is the eccentricity of the ellipse.
Expand the integrand as a binomial series and use the result

of Exercise 50 in Section 7.1 to express as a series in powers
of the eccentricity up to the term in .

1 � ln 2 �
�ln 2�2

2!
�

�ln 2�3

3!
� � � �

3 �
9

2!
�

27

3!
�

81

4!
� � � �

1

1 � 2
�

1

3 � 23 �
1

5 � 25 �
1

7 � 27 � � � �

p n

p�x � 1� � �
n

i�0

p �i��x�
i!

f �x� � �1 � x 3�30 f �58��0�

n � 2

� f ��x� � 
 M � x � a � 
 d

� R2�x� � 

M

6
 � x � a �3 for � x � a � 
 d

f �x� � �e�1�x2

0

if x � 0

if x � 0

t�x� � 	�
n�0 ( k

n )x n

t��x� �
kt�x�
1 � x

�1 � x � 1

h�x� � �1 � x��k
t�x� h��x� � 0

t�x� � �1 � x�k

x � a sin � y � b cos � a  b  0

L � 4a y
��2

0
s1 � e 2 sin2� d�

e � sa 2 � b 2 �a

L
e 6

17

�
�

n�0

��1�n� 2n�1

42n�1�2n � 1�!
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WRITING PROJECT HOW NEWTON DISCOVERED THE BINOMIAL SERIES 791

L A B O R AT O R Y  P R O J E C T AN ELUSIVE LIMIT

This project deals with the function

1. Use your computer algebra system to evaluate for and .
Does it appear that has a limit as ?

2. Use the CAS to graph near . Does it appear that has a limit as ?

3. Try to evaluate with l’Hospital’s Rule, using the CAS to find derivatives of the
numerator and denominator. What do you discover? How many applications of l’Hospital’s
Rule are required?

4. Evaluate by using the CAS to find sufficiently many terms in the Taylor series 
of the numerator and denominator. (Use the command taylor in Maple or Series in 
Mathematica.)

5. Use the limit command on your CAS to find directly. (Most computer algebra
systems use the method of Problem 4 to compute limits.)

6. In view of the answers to Problems 4 and 5, how do you explain the results of Problems 1 
and 2?

CAS

f �x� �
sin�tan x� � tan�sin x�

arcsin�arctan x� � arctan�arcsin x�

f �x� x � 1, 0.1, 0.01, 0.001, 0.0001
f x l 0

f x � 0 f x l 0

limx l 0 f �x�

limx l 0 f �x�

limx l 0 f �x�

Computer algebra system requiredCAS

W R I T I N G  P R O J E C T HOW NEWTON DISCOVERED THE BINOMIAL SERIES

The Binomial Theorem, which gives the expansion of , was known to Chinese mathe-
maticians many centuries before the time of Newton for the case where the exponent k is a 
positive integer. In 1665, when he was 22, Newton was the first to discover the infinite series
expansion of when k is a fractional exponent (positive or negative). He didn’t publish 
his discovery, but he stated it and gave examples of how to use it in a letter (now called the 
epistola prior) dated June 13, 1676, that he sent to Henry Oldenburg, secretary of the Royal Soci-
ety of London, to transmit to Leibniz. When Leibniz replied, he asked how Newton had discovered
the binomial series. Newton wrote a second letter, the epistola posterior of October 24, 1676, in
which he explained in great detail how he arrived at his discovery by a very indirect route. He was
investigating the areas under the curves from 0 to x for , 1, 2, 3, 4, . . . .
These are easy to calculate if n is even. By observing patterns and interpolating, Newton was able
to guess the answers for odd values of n. Then he realized he could get the same answers by
expressing as an infinite series.

Write a report on Newton’s discovery of the binomial series. Start by giving the statement of
the binomial series in Newton’s notation (see the epistola prior on page 285 of [4] or page 402 
of [2]). Explain why Newton’s version is equivalent to Theorem 17 on page 785. Then read
Newton’s epistola posterior (page 287 in [4] or page 404 in [2]) and explain the patterns that
Newton discovered in the areas under the curves . Show how he was able to 
guess the areas under the remaining curves and how he verified his answers. Finally, explain
how these discoveries led to the binomial series. The books by Edwards [1] and Katz [3] contain
commentaries on Newton’s letters.

1. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag,
1979), pp. 178–187.

�a � b�k

�a � b�k

y � �1 � x 2 �n�2 n � 0

�1 � x 2 �n�2

y � �1 � x 2 �n�2
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792 CHAPTER 11 INFINITE SEQUENCES AND SERIES

2. John Fauvel and Jeremy Gray, eds., The History of Mathematics: A Reader (London:
MacMillan Press, 1987).

3. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993), 
pp. 463–466.

4. D. J. Struik, ed., A Sourcebook in Mathematics, 1200–1800 (Princeton, NJ: Princeton 
University Press, 1969).

In this section we explore two types of applications of Taylor polynomials. First we look at
how they are used to approximate functions––computer scientists like them because poly-
nomials are the simplest of functions. Then we investigate how physicists and engineers
use them in such fields as relativity, optics, blackbody radiation, electric dipoles, the veloc-
ity of water waves, and building highways across a desert.

Approximating Functions by Polynomials
Suppose that is equal to the sum of its Taylor series at a:

In Section 11.10 we introduced the notation for the th partial sum of this series
and called it the th-degree Taylor polynomial of at . Thus

Since is the sum of its Taylor series, we know that as and so can
be used as an approximation to : .

Notice that the first-degree Taylor polynomial

is the same as the linearization of f at a that we discussed in Section 2.9. Notice also that
and its derivative have the same values at a that and have. In general, it can be 

shown that the derivatives of at agree with those of up to and including derivatives
of order .

To illustrate these ideas let’s take another look at the graphs of and its first few
Taylor polynomials, as shown in Figure 1. The graph of is the tangent line to 
at ; this tangent line is the best linear approximation to near . The graph 
of is the parabola , and the graph of is the cubic curve

, which is a closer fit to the exponential curve than .
The next Taylor polynomial would be an even better approximation, and so on.
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T1�x� � f �a� � f ��a��x � a�

T1 f f �
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n
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11.11 Applications of Taylor Polynomials
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SECTION 11.11 APPLICATIONS OF TAYLOR POLYNOMIALS 793

The values in the table give a numerical demonstration of the convergence of the Taylor
polynomials to the function . We see that when the convergence is very
rapid, but when it is somewhat slower. In fact, the farther is from 0, the more slowly

converges to .
When using a Taylor polynomial to approximate a function , we have to ask the ques-

tions: How good an approximation is it? How large should we take to be in order 
to achieve a desired accuracy? To answer these questions we need to look at the absolute
value of the remainder:

There are three possible methods for estimating the size of the error:

1. If a graphing device is available, we can use it to graph and thereby esti-
mate the error.

2. If the series happens to be an alternating series, we can use the Alternating Series
Estimation Theorem.

3. In all cases we can use Taylor’s Inequality (Theorem 11.10.9), which says that if
, then

(a) Approximate the function by a Taylor polynomial of degree 2 at .
(b) How accurate is this approximation when ?

SOLUTION
(a)

Thus the second-degree Taylor polynomial is

The desired approximation is

(b) The Taylor series is not alternating when , so we can’t use the Alternating
Series Estimation Theorem in this example. But we can use Taylor’s Inequality with 

and :

x � 3 x
Tn�x� ex

Tn f
n

� Rn�x� � � � f �x� � Tn�x� �

� Rn�x� �

� f �n�1��x� � � M

� Rn�x� � �
M

�n � 1�!
 � x � a �n�1

f �x� � s
3 x a � 8

7 � x � 9

f �x� � s
3 x � x 1�3 f �8� � 2

f ��x� � 1
3 x�2�3  f ��8� � 1
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9 x�5�3  f ��8� � �

1
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f 	�x� � 10
27 x�8�3
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1!
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1
12 �x � 8� �

1
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s
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 8
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1.220000 8.500000
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794 CHAPTER 11 INFINITE SEQUENCES AND SERIES

where . Because , we have and so

Therefore we can take . Also , so and
. Then Taylor’s Inequality gives

Thus, if , the approximation in part (a) is accurate to within .

Let’s use a graphing device to check the calculation in Example 1. Figure 2 shows that
the graphs of and are very close to each other when is near 8. Fig-
ure 3 shows the graph of computed from the expression

We see from the graph that

when . Thus the error estimate from graphical methods is slightly better than the
error estimate from Taylor’s Inequality in this case.

(a) What is the maximum error possible in using the approximation 

when ? Use this approximation to find correct to six decimal
places.
(b) For what values of is this approximation accurate to within ?

SOLUTION
(a) Notice that the Maclaurin series

is alternating for all nonzero values of , and the successive terms decrease in size
because , so we can use the Alternating Series Estimation Theorem. The error 
in approximating by the first three terms of its Maclaurin series is at most

If , then , so the error is smaller than

� f 	�x� � � M x � 7 x 8�3 � 78�3

f 	�x� �
10

27
�

1

x 8�3 �
10

27
�

1

78�3 
 0.0021

M � 0.0021 7 � x � 9 �1 � x � 8 � 1

� x � 8 � � 1

� R2�x� � �
0.0021

3!
� 13 �

0.0021

6

 0.0004

7 � x � 9 0.0004

y � s
3 x y � T2�x� x

� R2�x� �
� R2�x� � � � s

3 x � T2�x� �

� R2�x� � 
 0.0003

7 � x � 9

sin x � x �
x 3

3!
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x 5
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x 3
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 1
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SECTION 11.11 APPLICATIONS OF TAYLOR POLYNOMIALS 795

To find we first convert to radian measure:

Thus, correct to six decimal places, .

(b) The error will be smaller than if

Solving this inequality for , we get

So the given approximation is accurate to within when .

What if we use Taylor’s Inequality to solve Example 2? Since , we have
and so

So we get the same estimates as with the Alternating Series Estimation Theorem.
What about graphical methods? Figure 4 shows the graph of

and we see from it that when . This is the same estimate
that we obtained in Example 2. For part (b) we want , so we graph both

and in Figure 5. By placing the cursor on the right intersection
point we find that the inequality is satisfied when . Again this is the same esti-
mate that we obtained in the solution to Example 2.

If we had been asked to approximate instead of in Example 2, it would
have been wise to use the Taylor polynomials at (instead of ) because they
are better approximations to for values of close to . Notice that is close to

(or radians) and the derivatives of are easy to compute at .
Figure 6 shows the graphs of the Maclaurin polynomial approximations

to the sine curve. You can see that as increases, is a good approximation to on
a larger and larger interval.
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796 CHAPTER 11 INFINITE SEQUENCES AND SERIES

One use of the type of calculation done in Examples 1 and 2 occurs in calculators and
computers. For instance, when you press the or key on your calculator, or when a
computer programmer uses a subroutine for a trigonometric or exponential or Bessel func-
tion, in many machines a polynomial approximation is calculated. The polynomial is often
a Taylor polynomial that has been modified so that the error is spread more evenly through-
out an interval.

Applications to Physics
Taylor polynomials are also used frequently in physics. In order to gain insight into an equa-
tion, a physicist often simplifies a function by considering only the first two or three terms
in its Taylor series. In other words, the physicist uses a Taylor polynomial as an approxi-
mation to the function. Taylor’s Inequality can then be used to gauge the accuracy of the
approximation. The following example shows one way in which this idea is used in special
relativity.

In Einstein’s theory of special relativity the mass of an object moving
with velocity is

where is the mass of the object when at rest and is the speed of light. The kinetic
energy of the object is the difference between its total energy and its energy at rest:

(a) Show that when is very small compared with , this expression for agrees with
classical Newtonian physics: .
(b) Use Taylor’s Inequality to estimate the difference in these expressions for when

m�s.

SOLUTION
(a) Using the expressions given for and , we get 

With , the Maclaurin series for is most easily computed as a 
binomial series with . (Notice that because .) Therefore we have

and

If is much smaller than , then all terms after the first are very small when compared 
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The upper curve in Figure 7 is the graph of 
the expression for the kinetic energy of an
object with velocity in special relativity. The
lower curve shows the function used for in
classical Newtonian physics. When is much
smaller than the speed of light, the curves are
practically identical.
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SECTION 11.11 APPLICATIONS OF TAYLOR POLYNOMIALS 797

with the first term. If we omit them, we get

(b) If , , and M is a number such that
, then we can use Taylor’s Inequality to write

We have and we are given that m�s, so

Thus, with ,

So when m�s, the magnitude of the error in using the Newtonian expression
for kinetic energy is at most .

Another application to physics occurs in optics. Figure 8 is adapted from Optics,
4th ed., by Eugene Hecht (San Francisco, 2002), page 153. It depicts a wave from the point
source S meeting a spherical interface of radius R centered at C. The ray SA is refracted
toward P.

Using Fermat’s principle that light travels so as to minimize the time taken, Hecht derives
the equation

where and are indexes of refraction and , , , and are the distances indicated in
Figure 8. By the Law of Cosines, applied to triangles ACS and ACP, we have
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FIGURE 8
Refraction at a spherical interface
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798 CHAPTER 11 INFINITE SEQUENCES AND SERIES

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

; 1. (a) Find the Taylor polynomials up to degree 6 for
centered at . Graph and these 

polynomials on a common screen.
(b) Evaluate and these polynomials at , , 

and .
(c) Comment on how the Taylor polynomials converge 

to .

; 2. (a) Find the Taylor polynomials up to degree 3 for
centered at . Graph and these 

polynomials on a common screen.
(b) Evaluate and these polynomials at and 1.3.
(c) Comment on how the Taylor polynomials converge 

to .

; 3–10 Find the Taylor polynomial for the function
centered at the number . Graph and on the same screen.

3. ,  

4. ,  

5. ,  

6. ,  

7. ,  

f �x� � cos x a � 0 f

f x � ��4 ��2
�

f �x�

f �x� � 1�x a � 1 f

f x � 0.9

f �x�

T3�x� f
a f T3

f �x� � 1�x a � 2

f �x� � x � e�x a � 0

f �x� � cos x a � ��2

a � 0f �x� � e�x sin x

f �x� � ln x a � 1

8. ,  

9. ,  

10. ,  

11–12 Use a computer algebra system to find the Taylor poly-
nomials centered at for . Then graph these
polynomials and on the same screen.

11. ,  

12. ,  

13–22
(a) Approximate by a Taylor polynomial with degree at the

number .
(b) Use Taylor’s Inequality to estimate the accuracy of the

approx i ma tion when x lies in the given 
interval.

; (c) Check your result in part (b) by graphing .

13. ,  ,  ,  

14. ,  ,  ,  

CAS

Tn a n � 2, 3, 4, 5
f

f �x� � cot x a � ��4

f �x� � s
3 1 � x 2 a � 0

f n
a

f �x� � Tn�x�

� Rn�x� �
f �x� � sx a � 4 n � 2 4 � x � 4.2

f �x� � x�2 a � 1 n � 2 0.9 � x � 1.1

f �x� � x cos x a � 0

a � 0f �x� � xe �2x

f �x� � tan�1x a � 1

11.11 Exercises

Because Equation 1 is cumbersome to work with, Gauss, in 1841, simplified it by using the
linear approximation for small values of . (This amounts to using the Taylor
polynomial of degree 1.) Then Equation 1 becomes the following simpler equation [as you
are asked to show in Exercise 34(a)]:

The resulting optical theory is known as Gaussian optics, or first-order optics, and has
become the basic theoretical tool used to design lenses.

A more accurate theory is obtained by approximating by its Taylor polynomial of
degree 3 (which is the same as the Taylor polynomial of degree 2). This takes into account
rays for which is not so small, that is, rays that strike the surface at greater distances h
above the axis. In Exercise 34(b) you are asked to use this approximation to derive the more
accurate equation

The resulting optical theory is known as third-order optics.
Other applications of Taylor polynomials to physics and engineering are explored in

Exercises 32, 33, 35, 36, 37, and 38, and in the Applied Project on page 801.
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CHAPTER 11.11 APPLICATIONS OF TAYLOR POLYNOMIALS 799

15. ,  ,  ,  

16. ,  ,  ,  

17. ,  ,  ,  

18. ,  ,  ,  

19. ,  ,  ,  

20. ,  ,  ,  

21. ,  ,  ,  

22. ,  ,  ,  

23. Use the information from Exercise 5 to estimate cor-
rect to five decimal places.

24. Use the information from Exercise 16 to estimate 
correct to five decimal places.

25. Use Taylor’s Inequality to determine the number of terms of
the Maclaurin series for that should be used to estimate

to within .

26. How many terms of the Maclaurin series for do
you need to use to estimate to within ?

; 27–29 Use the Alternating Series Estimation Theorem or 
Taylor’s Inequality to estimate the range of values of for which
the given approximation is accurate to within the stated error.
Check your answer graphically.

27.

28.

29.

30. Suppose you know that

and the Taylor series of centered at 4 converges to 
for all in the interval of convergence. Show that the fifth-
degree Taylor polynomial approximates with error less
than 0.0002.

31. A car is moving with speed 20 m�s and acceleration 2 m�s
at a given instant. Using a second-degree Taylor polyno mial,
estimate how far the car moves in the next second. Would it
be reasonable to use this polynomial to estimate the distance
traveled during the next minute?

f �x� � sinh 2x a � 0 n � 5 �1 � x � 1
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sin 38�

e 0.1
e x

0.00001

ln�1 � x�
0.001ln 1.4

x

(� error � 
 0.01)sin x � x �
x 3

6

(� error � 
 0.005)cos x � 1 �
x 2

2
�

x 4

24

(� error � 
 0.05)arctan x � x �
x 3

3
�

x 5

5

f �n��4� �
��1�n n!

3n�n � 1�

f �x�f
x

f �5�

2

f �x� � ex2

a � 0 n � 3 0 � x � 0.1

f �x� � x ln x a � 1 n � 3 0.5 � x � 1.5

f �x� � x sin x a � 0 n � 4 �1 � x � 1

f �x� � sin x a � ��6 n � 4 0 � x � ��3

f �x� � sec x a � 0 n � 2 �0.2 � x � 0.2

f �x� � ln�1 � 2x� a � 1 n � 3 0.5 � x � 1.5

f �x� � x 2�3 a � 1 n � 3 0.8 � x � 1.2 32. The resistivity of a conducting wire is the reciprocal of the
conductivity and is measured in units of ohm-meters ( -m).
The resistivity of a given metal depends on the temperature
according to the equation

where is the temperature in . There are tables that list the
values of (called the temperature coefficient) and (the
resistivity at C) for various metals. Except at very low
temperatures, the resis tivity varies almost linearly with tem-
 perature and so it is common to approximate the expression
for by its first- or second-degree Taylor polynomial 
at .
(a) Find expressions for these linear and quadratic 

approximations.

; (b) For copper, the tables give C and
-m. Graph the resistivity of copper 

and the linear and quadratic approximations for 
C C.

; (c) For what values of does the linear approximation agree
with the exponential expression to within one percent?

33. An electric dipole consists of two electric charges of equal
magnitude and opposite sign. If the charges are and and
are located at a distance from each other, then the electric
field at the point in the figure is

By expanding this expression for as a series in powers of
, show that is approximately proportional to 

when is far away from the dipole.

34. (a) Derive Equation 3 for Gaussian optics from Equation 1 
by approximating in Equation 2 by its first-degree
Taylor polynomial.

(b) Show that if is replaced by its third-degree Taylor
polynomial in Equation 2, then Equation 1 becomes
Equation 4 for third-order optics. [Hint: Use the first two
terms in the binomial series for and . Also, use

.]

35. If a water wave with length moves with velocity across a
body of water with depth , as in the figure on page 800, then

(a) If the water is deep, show that .
(b) If the water is shallow, use the Maclaurin series for

to show that . (Thus in shallow water the veloc-

��t�
t � 20

� � 0.0039��
� 20 � 1.7  10�8 �

�250� � t � 1000�
t

q �q
d

E P

E �
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q

�D � d�2

E
d�D E 1�D 3

P

P
D d

q _q

cos �

cos �

�o
�1 �i

�1

� � sin �

L v
d

v 2 �
tL

2�
tanh 

2�d

L

v � stL��2��
tanh

v � std

�Ct
� 20�
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800 CHAPTER 11 INFINITE SEQUENCES AND SERIES

ity of a wave tends to be independent of the length of the
wave.)

(c) Use the Alternating Series Estimation Theorem to show that
if , then the estimate is accurate to within

.

36. A uniformly charged disk has radius and surface charge den-
sity as in the figure. The electric potential at a point at a
distance along the perpendicular central axis of the disk is

where is a constant (called Coulomb’s constant). Show that

for large 

37. If a surveyor measures differences in elevation when making
plans for a highway across a desert, corrections must be made
for the curvature of the earth.
(a) If is the radius of the earth and is the length of the

highway, show that the correction is

(b) Use a Taylor polynomial to show that

(c) Compare the corrections given by the formulas in parts (a)
and (b) for a highway that is 100 km long. (Take the radius
of the earth to be 6370 km.)

R
� V P

d

V � 2�ke� (sd 2 � R2 � d)

ke

V �
�keR2�

d
d

R

d
P

LR

C � R sec�L�R� � R

C �
L 2

2R
�

5L 4

24R 3

L � 10d v 2 � td
0.014tL

L

d

R

L C

R

38. The period of a pendulum with length that makes a maxi -
mum angle with the vertical is

where and is the acceleration due to gravity. (In
Exercise 42 in Section 7.7 we approximated this integral using
Simpson’s Rule.)
(a) Expand the integrand as a binomial series and use the result

of Exercise 50 in Section 7.1 to show that

If is not too large, the approximation ,
obtained by using only the first term in the series, is often
used. A better approximation is obtained by using two
terms:

(b) Notice that all the terms in the series after the first one have
coefficients that are at most . Use this fact to compare this
series with a geometric series and show that

(c) Use the inequalities in part (b) to estimate the period of a
pendulum with meter and . How does it
compare with the estimate ? What if

?

39. In Section 3.8 we considered Newton’s method for approxi-
mating a root of the equation , and from an initial
approximation we obtained successive approximations 

, , . . . , where

Use Taylor’s Inequality with , , and to show
that if exists on an interval containing , , and ,
and , for all , then

[This means that if is accurate to decimal places, then 
is accurate to about decimal places. More precisely, if the
error at stage is at most , then the error at stage is
at most .]

T � 2�� L

t
(1 �

1
4 k 2 )

1
4

2�� L

t
(1 �

1
4 k 2 ) � T � 2�� L

t

4 � 3k 2

4 � 4k 2

L � 1 �0 � 10�
T � 2�sL�t

�0 � 42�

r f �x� � 0
x1

x2 x3

xn�1 � xn �
f �xn�
f ��xn�

n � 1 a � xn x � r
f ��x� I r xn xn�1

� f ��x� � � M � f ��x� � � K x � I

� xn�1 � r � �
M

2K � xn � r �2

xn d xn�1

2d
n 10�m n � 1

�M�2K �10�2m

T � 2�� L

t
�1 �

12

22 k 2 �
1232

2242 k 4 �
123252

224262 k 6 � � � ��
T � 2�sL�t�0

tk � sin( 1
2 �0 )

L
�0

T � 4 � L

t
y

0

��2 dx

s1 � k 2 sin2x
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APPLIED PROJECT RADIATION FROM THE STARS 801

A P P L I E D  P R O J E C T RADIATION FROM THE STARS

Any object emits radiation when heated. A blackbody is a system that absorbs all the radiation that
falls on it. For instance, a matte black surface or a large cavity with a small hole in its wall (like a
blastfurnace) is a blackbody and emits blackbody radiation. Even the radiation from the sun is
close to being blackbody radiation.

Proposed in the late 19th century, the Rayleigh-Jeans Law expresses the energy density of
blackbody radiation of wavelength as

where is measured in meters, is the temperature in kelvins (K), and is Boltzmann’s con-
stant. The Rayleigh-Jeans Law agrees with experimental measurements for long wavelengths 
but disagrees drastically for short wavelengths. [The law predicts that as but
experiments have shown that .] This fact is known as the ultraviolet catastrophe.

In 1900 Max Planck found a better model (known now as Planck’s Law) for blackbody 
radiation:

where is measured in meters, is the temperature (in kelvins), and

1. Use l’Hospital’s Rule to show that

for Planck’s Law. So this law models blackbody radiation better than the Rayleigh-Jeans
Law for short wavelengths.

2. Use a Taylor polynomial to show that, for large wavelengths, Planck’s Law gives approxi-
mately the same values as the Rayleigh-Jeans Law.

; 3. Graph as given by both laws on the same screen and comment on the similarities and
differences. Use K (the temperature of the sun). (You may want to change from
meters to the more convenient unit of micrometers: �m m.)

4. Use your graph in Problem 3 to estimate the value of for which is a maximum
under Planck’s Law.

; 5. Investigate how the graph of changes as varies. (Use Planck’s Law.) In particular,
graph for the stars Betelgeuse ( ), Procyon ( ), and Sirius
( ), as well as the sun. How does the total radiation emitted (the area under the
curve) vary with ? Use the graph to comment on why Sirius is known as a blue star and
Betelgeuse as a red star.

�

f ��� �
8�kT

�4

� T k

f ��� l � � l 0�

f ��� l 0

f ��� �
8�hc��5

e hc���kT � � 1

� T

h � Planck’s constant � 6.6262  10�34 J�s

c � speed of light � 2.997925  108 m�s

k � Boltzmann’s constant � 1.3807  10�23 J�K

lim
� l 0�

f ��� � 0 and   lim
� l �

f ��� � 0

f
T � 5700 

1 � 10�6

� f ���

f T
f T � 3400 K T � 6400 K

T � 9200 K
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802 CHAPTER 11 INFINITE SEQUENCES AND SERIES

11 Review

1. (a) What is a convergent sequence?
(b) What is a convergent series?
(c) What does mean?
(d) What does mean?

2. (a) What is a bounded sequence?
(b) What is a monotonic sequence?
(c) What can you say about a bounded monotonic sequence?

3. (a) What is a geometric series? Under what circumstances is 
it convergent? What is its sum?

(b) What is a -series? Under what circumstances is it 
convergent?

4. Suppose and is the partial sum of the series.
What is ? What is ?

5. State the following.
(a) The Test for Divergence
(b) The Integral Test
(c) The Comparison Test
(d) The Limit Comparison Test
(e) The Alternating Series Test
(f ) The Ratio Test
(g) The Root Test

6. (a) What is an absolutely convergent series?
(b) What can you say about such a series?
(c) What is a conditionally convergent series?

7. (a) If a series is convergent by the Integral Test, how do you
estimate its sum?

(b) If a series is convergent by the Comparison Test, how do
you estimate its sum?

limn l � an � 3
��

n�1 an � 3

p

� an � 3 sn nth
limn l � an limn l � sn

(c) If a series is convergent by the Alternating Series Test, how
do you estimate its sum?

8. (a) Write the general form of a power series.
(b) What is the radius of convergence of a power series?
(c) What is the interval of convergence of a power series?

9. Suppose is the sum of a power series with radius of 
convergence .
(a) How do you differentiate ? What is the radius of conver-

gence of the series for ?
(b) How do you integrate ? What is the radius of convergence

of the series for ?

10. (a) Write an expression for the -degree Taylor polyno mial
of centered at .

(b) Write an expression for the Taylor series of centered at .
(c) Write an expression for the Maclaurin series of .
(d) How do you show that is equal to the sum of its 

Taylor series?
(e) State Taylor’s Inequality.

11. Write the Maclaurin series and the interval of convergence for
each of the following functions.
(a) (b)
(c) (d)
(e) (f )

12. Write the binomial series expansion of . What is the
radius of convergence of this series?

f �x�
R

f
f �
f

x f �x� dx

nth
f a

f a
f

f �x�

1��1 � x� e x

sin x cos x
tan�1x ln�1 � x�

�1 � x�k

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. If , then is convergent.

2. The series is convergent.

3. If , then .

4. If is convergent, then is convergent.

5. If is convergent, then is convergent.

6. If diverges when , then it diverges when .

7. The Ratio Test can be used to determine whether 
converges.

8. The Ratio Test can be used to determine whether 
converges.

9. If and diverges, then diverges.

limn l � an � 0 � an

��
n�1 n �sin 1

limn l � an � L limn l � a2n�1 � L

� cn6n � cn��2�n

� cn6n � cn��6�n

� cn x n x � 6 x � 10

� 1�n 3

� 1�n!

0 � an � bn � bn � an

10.

11. If , then .

12. If is divergent, then is divergent.

13. If converges for all , 
then .

14. If and are divergent, then is divergent.

15. If and are divergent, then is divergent.

16. If is decreasing and for all , then is 
convergent.

17. If and converges, then converges.

�
�

n�0

��1�n

n!
�

1

e

�1 � � � 1 limn l � � n � 0

� an � � an �
f �x� � 2x � x 2 �

1
3 x 3 � 	 	 	 x

f 
�0� � 2

�an 	 �bn 	 �an � bn 	

�an 	 �bn 	 �an bn 	

�an 	 an � 0 n �an 	

an � 0 � an � ��1�nan

True-False Quiz
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CHAPTER 11 REVIEW 803

; Graphing calculator or computer required

18. If and , then .

19.

20. If , then .lim
n l �

an � 2 lim
n l �

�an�3 � an� � 0

an � 0 limn l � �an�1�an� � 1 limn l � an � 0

0.99999 . . . � 1

21. If a finite number of terms are added to a convergent series,
then the new series is still convergent.

22. If and , then .�
�

n�1
an bn � AB�

�

n�1
bn � B�

�

n�1
an � A

1–8 Determine whether the sequence is convergent or divergent. 
If it is convergent, find its limit.

1. 2.

3. 4.

5. 6.

7. 8.

9. A sequence is defined recursively by the equations ,
. Show that is increasing and 

for all . Deduce that is convergent and find its limit.

; 10. Show that and use a graph to find the
smallest value of that corresponds to in the pre-
cise definition of a limit.

11–22 Determine whether the series is convergent or divergent.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23–26 Determine whether the series is conditionally conver-
gent, absolutely convergent, or divergent.

23. 24.

an �
2 � n3

1 � 2n3 an �
9n�1

10n

an �
n3

1 � n2 an � cos�n��2�

an �
n sin n

n2 � 1
an �

ln n

sn

��1 � 3�n�4n 	 ���10�n�n!	

a1 � 1
an�1 � 1

3 �an � 4� �an 	 an � 2
n �an 	

lim n l � n 4e �n � 0
N  � 0.1

�
�

n�1

n

n3 � 1 �
�

n�1

n2 � 1

n3 � 1

�
�

n�1

n3

5n �
�

n�1

��1�n

sn � 1

�
�

n�2

1

nsln n
�
�

n�1
ln
 n

3n � 1�
�
�

n�1

cos 3n

1 � �1.2�n �
�

n�1

n2n

�1 � 2n2�n

�
�

n�1

1 � 3 � 5 � 	 	 	 � �2n � 1�
5n n! �

�

n�1

��5�2n

n 2 9n

�
�

n�1
��1�n�1 sn

n � 1 �
�

n�1

sn � 1 � sn � 1

n

�
�

n�1
��1�n�1n �1�3 �

�

n�1
��1�n�1n �3

25. 26.

27–31 Find the sum of the series.

27. 28.

29. 30.

31.

32. Express the repeating decimal as a 
fraction.

33. Show that for all .

34. For what values of does the series converge?

35. Find the sum of the series correct to four deci-
mal places.

36. (a) Find the partial sum of the series and
estimate the error in using it as an approximation to the
sum of the series.

(b) Find the sum of this series correct to five decimal places.

37. Use the sum of the first eight terms to approximate the sum
of the series . Estimate the error involved in
this approximation.

38. (a) Show that the series is convergent.

(b) Deduce that .

39. Prove that if the series is absolutely convergent, then
the series

is also absolutely convergent.

40–43 Find the radius of convergence and interval of conver-
gence of the series.

40. 41.

�
�

n�1

��1�n�n � 1�3n

22n�1 �
�

n�2

��1�n
sn

ln n

�
�

n�1

��3�n�1

23n �
�

n�1

1

n�n � 3�

�
�

n�1
�tan�1�n � 1� � tan�1n �

�

n�0

��1�n� n

32n�2n�!

1 � e �
e 2

2!
�

e 3

3!
�

e 4

4!
� 	 	 	

4.17326326326 . . .

cosh x � 1 �
1
2 x 2 x

x ��
n�1 �ln x�n

�
�

n�1

��1�n�1

n 5

s5 ��
n�1 1�n6

��
n�1 �2 � 5n��1

�
�

n�1

n n

�2n�!

lim
n l �

n n

�2n�!
� 0

��
n�1 an

�
�

n�1

 n � 1

n �an

�
�

n�1
��1�n x n

n2 5n �
�

n�1

�x � 2�n

n 4n

Exercises
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804 CHAPTER 11 INFINITE SEQUENCES AND SERIES

42. 43.

44. Find the radius of convergence of the series

45. Find the Taylor series of at .

46. Find the Taylor series of at .

47–54 Find the Maclaurin series for and its radius of conver-
gence. You may use either the direct method (definition of a
Maclaurin series) or known series such as geometric series, 
binomial series, or the Maclaurin series for , , , 
and .

47. 48.

49. 50.

51. 52.

53. 54.

55. Evaluate as an infinite series.

56. Use series to approximate correct to two deci-
mal places.

57–58
(a) Approximate by a Taylor polynomial with degree at the

number .

; (b) Graph and on a common screen.
(c) Use Taylor’s Inequality to estimate the accuracy of the

approximation when lies in the given interval.

�
�

n�1

2n�x � 2�n

�n � 2�! �
�

n�0

2n�x � 3�n

sn � 3

�
�

n�1

�2n�!
�n!�2 x n

a � ��6f �x� � sin x

a � ��3f �x� � cos x

f

tan�1xsin xe x

f �x� � tan�1�x 2 �f �x� �
x 2

1 � x

f �x� � xe 2xf �x� � ln�4 � x�

f �x� � 10 xf �x� � sin�x 4 �

f �x� � �1 � 3x��5f �x� � 1�s
4 16 � x

y
e x

x
dx

x
1
0 s1 � x 4 dx

nf
a

Tnf

ln�1 � x�

xf �x� � Tn�x�

; (d) Check your result in part (c) by graphing .

57. ,  ,  ,  

58. ,  ,  ,  

59. Use series to evaluate the following limit.

60. The force due to gravity on an object with mass at a 
height above the surface of the earth is

where is the radius of the earth and is the acceleration
due to gravity.
(a) Express as a series in powers of .

; (b) Observe that if we approximate by the first term in the
series, we get the expression that is usually used
when is much smaller than . Use the Alter nating
Series Estimation Theorem to estimate the range of val-
ues of for which the approximation is accurate
to within one percent. (Use km.)

61. Suppose that for all .
(a) If is an odd function, show that

(b) If is an even function, show that

62. If , show that .

F h�R
F

F � mt

h R

h F � mt

R � 6400

f �x� � ��
n�0 cn x n x

f

c0 � c2 � c4 � 	 	 	 � 0

f

c1 � c3 � c5 � 	 	 	 � 0

f �x� � ex2

f �2n��0� �
�2n�!

n!

� Rn�x� �
0.9 � x � 1.1n � 3a � 1f �x� � sx

0 � x � ��6n � 2a � 0f �x� � sec x

lim
x l 0

sin x � x

x 3

m
h

F �
mtR2

�R � h�2

tR
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FIGURE FOR PROBLEM 4

Find the sum of the series .

SOLUTION The problem-solving principle that is relevant here is recognizing something
familiar. Does the given series look anything like a series that we already know? Well, it
does have some ingredients in common with the Maclaurin series for the exponential
function:

We can make this series look more like our given series by replacing by :

But here the exponent in the numerator matches the number in the denominator 
whose factorial is taken. To make that happen in the given series, let’s multiply and
divide by :

We see that the series between brackets is just the series for with the first three
terms missing. So

1. If , find .

2. A function is defined by

Where is continuous?

3. (a) Show that .
(b) Find the sum of the series

4. Let be a sequence of points determined as in the figure. Thus ,
, and angle is a right angle. Find .

f �x� � sin�x 3 � f �15��0�

f

f �x� � lim
n l �

x 2n � 1

x 2n � 1

f

tan 12 x � cot 12 x � 2 cot x

�
�

n�1

1

2n tan 
x

2n

�Pn 	 � AP1 � � 1

� Pn Pn�1 � � 2n�1 APn Pn�1 limn l � �Pn APn�1

�
�

n�0

�x � 2�n

�n � 3�!

ex � �
�

n�0

xn

n!
� 1 � x �

x 2

2!
�

x 3

3!
� 	 	 	

x x � 2

ex�2 � �
�

n�0

�x � 2�n

n!
� 1 � �x � 2� �

�x � 2�2

2!
�

�x � 2�3

3!
� 	 	 	

�x � 2�3

�
�

n�0

�x � 2�n

�n � 3�!
�

1

�x � 2�3 �
�

n�0

�x � 2�n�3

�n � 3�!

� �x � 2��3��x � 2�3

3!
�

�x � 2�4

4!
� 	 	 	�

e x�2

�
�

n�0

�x � 2�n

�n � 3�!
� �x � 2��3�e x�2 � 1 � �x � 2� �

�x � 2�2

2! �

EXAMPLEBefore you look at the solution of the example,
cover it up and first try to solve the problem
yourself.

Problems
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5. To construct the snowflake curve, start with an equilateral triangle with sides of length . 
Step 1 in the construction is to divide each side into three equal parts, construct an equilateral
triangle on the middle part, and then delete the middle part (see the figure). Step 2 is to repeat
step 1 for each side of the resulting polygon. This process is repeated at each succeeding step.
The snowflake curve is the curve that results from repeating this process indefinitely.
(a) Let , , and represent the number of sides, the length of a side, and the total length

of the th approximating curve (the curve obtained after step of the construction),
respectively. Find formulas for , , and .

(b) Show that as .
(c) Sum an infinite series to find the area enclosed by the snowflake curve. 

Note: Parts (b) and (c) show that the snowflake curve is infinitely long but encloses only a finite
area.

6. Find the sum of the series

where the terms are the reciprocals of the positive integers whose only prime factors are 2s
and 3s.

7. (a) Show that for ,

if the left side lies between and .

(b) Show that .

(c) Deduce the following formula of John Machin (1680–1751):

(d) Use the Maclaurin series for to show that

(e) Show that

(f ) Deduce that, correct to seven decimal places, .

Machin used this method in 1706 to find correct to 100 decimal places. Recently, with 
the aid of computers, the value of has been computed to increasingly greater accuracy. 
In 2009 T. Daisuke and his team computed the value of to more than two trillion decimal
places!

8. (a) Prove a formula similar to the one in Problem 7(a) but involving instead of .
(b) Find the sum of the series .

9. Find the interval of convergence of and find its sum.

10. If , show that

If you don’t see how to prove this, try the problem-solving strategy of using analogy (see
page 97). Try the special cases and first. If you can see how to prove the asser-
tion for these cases, then you will probably see how to prove it in general.

11. Find the sum of the series .
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12. Suppose you have a large supply of books, all the same size, and you stack them at the edge
of a table, with each book extending farther beyond the edge of the table than the one
beneath it. Show that it is possible to do this so that the top book extends entirely beyond the
table. In fact, show that the top book can extend any distance at all beyond the edge of the
table if the stack is high enough. Use the following method of stacking: The top book extends
half its length beyond the second book. The second book extends a quarter of its length
beyond the third. The third extends one-sixth of its length beyond the fourth, and so on. (Try
it yourself with a deck of cards.) Consider centers of mass.

13. If the curve , is rotated about the , the resulting solid looks like
an infinite decreasing string of beads.
(a) Find the exact volume of the bead. (Use either a table of integrals or a computer 

algebra system.)
(b) Find the total volume of the beads.

14. If , evaluate the expression

15. Suppose that circles of equal diameter are packed tightly in rows inside an equilateral tri-
angle. (The figure illustrates the case .) If is the area of the triangle and is the total
area occupied by the rows of circles, show that

16. A sequence is defined recursively by the equations

Find the sum of the series .

17. Taking the value of at 0 to be 1 and integrating a series term by term, show that

18. Starting with the vertices , , , of a square, we construct further
points as shown in the figure: is the midpoint of is the midpoint of is the
midpoint of , and so on. The polygonal spiral path approaches a
point inside the square.
(a) If the coordinates of are , show that and find a

similar equation for the -coordinates.
(b) Find the coordinates of .

19. Find the sum of the series .

20. Carry out the following steps to show that

(a) Use the formula for the sum of a finite geometric series (11.2.3) to get an expression for
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(b) Integrate the result of part (a) from 0 to 1 to get an expression for

as an integral.
(c) Deduce from part (b) that

(d) Use part (c) to show that the sum of the given series is .

21. Find all the solutions of the equation

Hint: Consider the cases and separately.

22. Right-angled triangles are constructed as in the figure. Each triangle has height 1 and its base
is the hypotenuse of the preceding triangle. Show that this sequence of triangles makes indef-
initely many turns around by showing that is a divergent series.

23. Consider the series whose terms are the reciprocals of the positive integers that can be written
in base 10 notation without using the digit 0. Show that this series is convergent and the sum
is less than 90.

24. (a) Show that the Maclaurin series of the function

is        

where is the Fibonacci number, that is, , , and 
for . [Hint: Write and multiply both
sides of this equation by .]

(b) By writing as a sum of partial fractions and thereby obtaining the Maclaurin series
in a different way, find an explicit formula for the Fibonacci number.

25. Let

Show that .

26 Prove that if , the partial sum of the harmonic series is not an integer. 

Hint: Let be the largest power of 2 that is less than or equal to and let be the product 
of all odd integers that are less than or equal to . Suppose that , an integer. Then

. The right side of this equation is even. Prove that the left side is odd by
showing that each of its terms is an even integer, except for the last one.
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Vectors and the 
Geometry of Space12

In this chapter we introduce vectors and coordinate systems for three-dimensional space. This will be the
setting for our study of the calculus of functions of two variables in Chapter 14 because the graph of such
a function is a surface in space. In this chapter we will see that vectors provide particularly simple
descriptions of lines and planes in space.

809

Examples of the surfaces and solids we
study in this chapter are paraboloids
(used for satellite dishes) and hyper-
boloids (used for cooling towers of
nuclear reactors).
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810 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

To locate a point in a plane, two numbers are necessary. We know that any point in 
the plane can be represented as an ordered pair of real numbers, where is the 
-coordinate and is the -coordinate. For this reason, a plane is called two-dimensional.

To locate a point in space, three numbers are required. We represent any point in space by
an ordered triple of real numbers.

In order to represent points in space, we first choose a fixed point (the origin) and 
three directed lines through that are perpendicular to each other, called the coordinate
axes and labeled the -axis, -axis, and -axis. Usually we think of the - and -axes as
being horizontal and the -axis as being vertical, and we draw the orientation of the axes 
as in Figure 1. The direction of the -axis is determined by the right-hand rule as illus-
trated in Figure 2: If you curl the fingers of your right hand around the -axis in the direc-
tion of a counterclockwise rotation from the positive -axis to the positive -axis, then
your thumb points in the positive direction of the -axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig-
ure 3(a). The -plane is the plane that contains the - and -axes; the -plane contains 
the - and -axes; the -plane contains the - and -axes. These three coordinate planes
divide space into eight parts, called octants. The first octant, in the foreground, is deter-
mined by the positive axes.

Because many people have some difficulty visualizing diagrams of three-dimensional
figures, you may find it helpful to do the following [see Figure 3(b)]. Look at any bottom
corner of a room and call the corner the origin. The wall on your left is in the -plane, the
wall on your right is in the -plane, and the floor is in the -plane. The -axis runs along
the intersection of the floor and the left wall. The -axis runs along the intersection of the
floor and the right wall. The -axis runs up from the floor toward the ceiling along the inter-
section of the two walls. You are situated in the first octant, and you can now imagine seven
other rooms situated in the other seven octants (three on the same floor and four on the 
floor below), all connected by the common corner point .

Now if is any point in space, let be the (directed) distance from the -plane to 
let be the distance from the -plane to and let be the distance from the -plane to 

. We represent the point by the ordered triple of real numbers and we call
, , and the coordinates of ; is the -coordinate, is the -coordinate, and is the 
-coordinate. Thus, to locate the point , we can start at the origin and move 
units along the -axis, then units parallel to the -axis, and then units parallel to the 

-axis as in Figure 4.
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SECTION 12.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 811

The point determines a rectangular box as in Figure 5. If we drop a perpen-
dicular from to the -plane, we get a point with coordinates called the pro-
jection of onto the -plane. Similarly, and are the projections of
onto the -plane and -plane, respectively.

As numerical illustrations, the points and are plotted in Fig-
ure 6.

The Cartesian product is the set of all ordered
triples of real numbers and is denoted by . We have given a one-to-one correspon-
dence between points in space and ordered triples in . It is called a three-
dimensional rectangular coordinate system. Notice that, in terms of coordinates, the 
first octant can be described as the set of points whose coordinates are all positive.

In two-dimensional analytic geometry, the graph of an equation involving and is a
curve in . In three-dimensional analytic geometry, an equation in , , and represents 
a surface in .

What surfaces in are represented by the following equations?
(a) (b)

SOLUTION
(a) The equation represents the set , which is the set of all points
in whose -coordinate is . This is the horizontal plane that is parallel to the -plane
and three units above it as in Figure 7(a).

(b) The equation represents the set of all points in whose -coordinate is 5.
This is the vertical plane that is parallel to the -plane and five units to the right of it as
in Figure 7(b).
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812 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

NOTE When an equation is given, we must understand from the context whether it rep-
resents a curve in or a surface in . In Example 1, represents a plane in , but 
of course can also represent a line in if we are dealing with two-dimensional ana-
lytic geometry. See Figure 7(b) and (c).

In general, if is a constant, then represents a plane parallel to the -plane, 
is a plane parallel to the -plane, and is a plane parallel to the -plane. In 

Figure 5, the faces of the rectangular box are formed by the three coordinate planes
(the -plane), (the -plane), and (the -plane), and the planes , ,
and .

(a) Which points satisfy the equations

and    

(b) What does the equation represent as a surface in ?

SOLUTION
(a) Because , the points lie in the horizontal plane from Example 1(a).
Because , the points lie on the circle with radius 1 and center on the -axis.
See Figure 8.

(b) Given that , with no restrictions on , we see that the point
could lie on a circle in any horizontal plane . So the surface in
consists of all possible horizontal circles , , and is therefore the circu-
lar cylinder with radius 1 whose axis is the -axis. See Figure 9.

Describe and sketch the surface in represented by the equation .

SOLUTION The equation represents the set of all points in whose - and -coordinates
are equal, that is, . This is a vertical plane that intersects the 

-plane in the line , . The portion of this plane that lies in the first octant is
sketched in Figure 10.

The familiar formula for the distance between two points in a plane is easily extended to
the following three-dimensional formula.

Distance Formula in Three Dimensions The distance between the points
and is

� 3y � 5� 3� 2
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xyz � kxzy � k

x � 0
y � bx � axyz � 0xzy � 0yz
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SECTION 12.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 813

To see why this formula is true, we construct a rectangular box as in Figure 11, where
and are opposite vertices and the faces of the box are parallel to the coordinate 

planes. If and are the vertices of the box indicated in the figure,
then

Because triangles and are both right-angled, two applications of the Pythago -
rean Theorem give

and

Combining these equations, we get

Therefore

The distance from the point to the point is

Find an equation of a sphere with radius and center .

SOLUTION By definition, a sphere is the set of all points whose distance from 
is . (See Figure 12.) Thus is on the sphere if and only if . Squaring both

sides, we have or

The result of Example 5 is worth remembering.

Equation of a Sphere An equation of a sphere with center and radius is

In particular, if the center is the origin , then an equation of the sphere is

Show that is the equation of a
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a sphere if we
complete squares:

P1 P2

B�x2, y2, z1�A�x2, y1, z1�

� BP2 � � � z2 � z1 �� AB � � � y2 � y1 �� P1A � � � x2 � x1 �
P1ABP1BP2

� P1P2 �2 � � P1B �2 � � BP2 �2
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814 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

1. Homework Hints available at stewartcalculus.com

1. Suppose you start at the origin, move along the -axis a
distance of 4 units in the positive direction, and then move
downward a distance of 3 units. What are the coordinates 
of your position?

2. Sketch the points , , , and
on a single set of coordinate axes.

3. Which of the points , , and
is closest to the -plane? Which point lies in the -plane?

4. What are the projections of the point (2, 3, 5) on the -, -,
and -planes? Draw a rectangular box with the origin and

as opposite vertices and with its faces parallel to the
coordinate planes. Label all vertices of the box. Find the length
of the diagonal of the box.

5. Describe and sketch the surface in represented by the equa-
tion .

6. (a) What does the equation represent in ? What does
it represent in ? Illustrate with sketches.

(b) What does the equation represent in ? What does
represent? What does the pair of equations ,
represent? In other words, describe the set of points

such that and . Illustrate with a sketch.

7–8 Find the lengths of the sides of the triangle . Is it a right
triangle? Is it an isosceles triangle?

7. ,  ,  

8. ,  ,  

x

�0, 5, 2� �4, 0, �1� �2, 4, 6� �1, �1, 2�

A��4, 0, �1�
yz xz

B�3, 1, �5� C�2, 4, 6�

xy yz
xz

�2, 3, 5�

�3

x � y � 2

x � 4 �2

�3

y � 3 �3

z � 5 y � 3
z � 5
�x, y, z� y � 3 z � 5

PQR

P�3, �2, �3� Q�7, 0, 1� R�1, 2, 1�

P�2, �1, 0� Q�4, 1, 1� R�4, �5, 4�

9. Determine whether the points lie on straight line.
(a) ,  ,  
(b) ,  ,  

10. Find the distance from to each of the following.
(a) The -plane (b) The -plane
(c) The -plane (d) The -axis
(e) The -axis (f ) The -axis

11. Find an equation of the sphere with center and
radius 4. What is the intersection of this sphere with the 

-plane?

12. Find an equation of the sphere with center and
radius 5. Describe its intersection with each of the coordinate
planes.

13. Find an equation of the sphere that passes through the point 
and has center .

14. Find an equation of the sphere that passes through the origin
and whose center is .

15–18 Show that the equation represents a sphere, and find its 
center and radius.

15.

16.

17.

18.

D�0, �5, 5� E�1, �2, 4� F�3, 4, 2�
C�1, 3, 3�B�3, 7, �2�A�2, 4, 2�

xy yz
xz x
y z

�4, �2, 6�

yz

��3, 2, 5�

�2, �6, 4�

�4, 3, �1� �3, 8, 1�

�1, 2, 3�

x 2 � y 2 � z2 � 2x � 4y � 8z � 15

x 2 � y 2 � z 2 � 8x � 6y � 2z � 17 � 0

2x 2 � 2y 2 � 2z 2 � 8x � 24z � 1

3x 2 � 3y 2 � 3z 2 � 10 � 6y � 12z

12.1 Exercises

Comparing this equation with the standard form, we see that it is the equation of a
sphere with center and radius .

What region in is represented by the following inequalities?

SOLUTION The inequalities

can be rewritten as

so they represent the points whose distance from the origin is at least 1 and at
most 2. But we are also given that , so the points lie on or below the xy-plane. 
Thus the given inequalities represent the region that lies between (or on) the spheres

and and beneath (or on) the xy-plane. It is sketched
in Figure 13.

��2, 3, �1� s8 � 2s2

� 3

1 � x 2 � y 2 � z2 � 4 z � 0

1 � x 2 � y 2 � z2 � 4

1 � sx 2 � y 2 � z 2 � 2

�x, y, z�
z � 0

x 2 � y 2 � z2 � 1 x 2 � y 2 � z2 � 4

EXAMPLE 7

FIGURE 13

0 

1 

2 

z 

y x 
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SECTION 12.2 VECTORS 815

19. (a) Prove that the midpoint of the line segment from
to is

(b) Find the lengths of the medians of the triangle with ver tices
, , and .

20. Find an equation of a sphere if one of its diameters has end -
points and .

21. Find equations of the spheres with center that touch
(a) the -plane, (b) the -plane, (c) the -plane.

22. Find an equation of the largest sphere with center (5, 4, 9) that
is contained in the first octant.

23–34 Describe in words the region of represented by the equa-
tions or inequalities.

23. 24.

25. 26.

27. 28.

29. ,  30.

31. 32.

33. 34.

35–38 Write inequalities to describe the region.

35. The region between the -plane and the vertical plane 

36. The solid cylinder that lies on or below the plane and on
or above the disk in the -plane with center the origin and
radius 2

37. The region consisting of all points between (but not on) the
spheres of radius and centered at the origin, where 

38. The solid upper hemisphere of the sphere of radius 2 centered
at the origin

39. The figure shows a line in space and a second line
which is the projection of on the -plane. (In other words, 

P1�x1, y1, z1� P2�x2, y2, z2 �

� x1 � x2

2
, 

 y1 � y2

2
, 

z1 � z2

2 �
A�1, 2, 3� B��2, 0, 5� C�4, 1, 5�

�2, 1, 4� �4, 3, 10�

�2, �3, 6�
xy yz xz

� 3

x � 5 y � �2

y � 8 x � �3

0 � z � 6 z 2 � 1

x 2 � y 2 � 4 z � �1 y 2 � z 2 � 16

x 2 � y 2 � z 2 � 3 x � z

x 2 � z 2 � 9 x 2 � y 2 � z 2 	 2z

yz x � 5

z � 8
xy

r R r � R

L1 L2, 
L1 xy

the points on are directly beneath, or above, the points 
on .)
(a) Find the coordinates of the point on the line .
(b) Locate on the diagram the points , , and , where 

the line intersects the -plane, the -plane, and the 
-plane, respectively.

40. Consider the points such that the distance from to
is twice the distance from to . Show

that the set of all such points is a sphere, and find its center and
radius.

41. Find an equation of the set of all points equidistant from the
points and . Describe the set.

42. Find the volume of the solid that lies inside both of the spheres

and

43. Find the distance between the spheres and
.

44. Describe and sketch a solid with the following properties.
When illuminated by rays parallel to the -axis, its shadow is a
circular disk. If the rays are parallel to the -axis, its shadow is
a square. If the rays are parallel to the -axis, its shadow is an
isosceles triangle.

L2

L1

P L1

A B C
L1 xy yz

xz

P P
A��1, 5, 3� P B�6, 2, �2�

A��1, 5, 3� B�6, 2, �2�

x 2 � y 2 � z2 � 4x � 2y � 4z � 5 � 0

x 2 � y 2 � z2 � 4

x 2 � y 2 � z 2 � 4
x 2 � y 2 � z 2 � 4x � 4y � 4z � 11

z
y

x

x

0

z

y

1

1 1

L¡

L™

P

The term vector is used by scientists to indicate a quantity (such as displacement or veloc-
ity or force) that has both magnitude and direction. A vector is often represented by an
arrow or a directed line segment. The length of the arrow represents the magnitude of the
vector and the arrow points in the direction of the vector. We denote a vector by printing a
letter in boldface or by putting an arrow above the letter 

For instance, suppose a particle moves along a line segment from point to point .
The corresponding displacement vector , shown in Figure 1, has initial point (the tail)
and terminal point (the tip) and we indicate this by writing AB

l
. Notice that the vec-

�v� �vl�.
A B

v A
v �B

12.2 Vectors

FIGURE 1
Equivalent vectors

A

B

v

C

D

u
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816 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

tor CD
l

has the same length and the same direction as even though it is in a different
position. We say that and are equivalent (or equal) and we write . The zero vec-
tor, denoted by 0, has length . It is the only vector with no specific direction.

Combining Vectors
Suppose a particle moves from , so its displacement vector is AB

l
. Then the particle

changes direction and moves from , with displacement vector BC
l

as in Figure 2. The
combined effect of these displacements is that the particle has moved from . The
resulting displacement vector AC

l
is called the sum of AB

l
and BC

l
and we write

AC
l

AB
l

BC
l

In general, if we start with vectors and , we first move so that its tail coincides with
the tip of and define the sum of and as follows.

Definition of Vector Addition If and are vectors positioned so the initial point of
is at the terminal point of , then the sum is the vector from the initial

point of to the terminal point of .

The definition of vector addition is illustrated in Figure 3. You can see why this defi nition
is sometimes called the Triangle Law.

In Figure 4 we start with the same vectors and as in Figure 3 and draw another 
copy of with the same initial point as . Completing the parallelogram, we see that

. This also gives another way to construct the sum: If we place and so
they start at the same point, then lies along the diagonal of the parallelogram with

and as sides. (This is called the Parallelogram Law.)

Draw the sum of the vectors shown in Figure 5.

SOLUTION First we translate and place its tail at the tip of , being careful to draw a
copy of that has the same length and direction. Then we draw the vector [see
Figure 6(a)] starting at the initial point of and ending at the terminal point of the copy
of .

Alternatively, we could place so it starts where starts and construct by the
Parallelogram Law as in Figure 6(b).

vu �
u � vvu

0

A to B
B to C

A to C

��

vvu
vuu

u
uv

v
u � v

vu

FIGURE 3 The Triangle Law

vu+v

u

FIGURE 4 The Parallelogram Law

v
v+

u

u

u

v

u+
v

vu
uv

vuu � v � v � u

u
u � v

v

a and bEXAMPLE 1v

ab
a � bb

a
b

a � bab

FIGURE 6

a

b

a+b

(a)

a

a+b
b

(b)

FIGURE 2

C

B

A

FIGURE 5

a b

Visual 12.2 shows how the Triangle and
Parallelogram Laws work for various vectors

.

TEC

a and b
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It is possible to multiply a vector by a real number . (In this context we call the real num-
ber a scalar to distinguish it from a vector.) For instance, we want to be the same 
vector as , which has the same direction as but is twice as long. In general, we mul-
tiply a vector by a scalar as follows.

Definition of Scalar Multiplication If is a scalar and is a vector, then the scalar
multiple is the vector whose length is times the length of and whose
direction is the same as if and is opposite to if . If or ,
then .

This definition is illustrated in Figure 7. We see that real numbers work like scaling fac-
tors here; that’s why we call them scalars. Notice that two nonzero vectors are parallel if
they are scalar multiples of one another. In particular, the vector has the same
length as but points in the opposite direction. We call it the negative of .

By the difference of two vectors we mean

So we can construct by first drawing the negative of , , and then adding it to
by the Parallelogram Law as in Figure 8(a). Alternatively, since the vec-
tor , when added to , gives . So we could construct as in Fig ure 8(b) by
means of the Triangle Law.

If are the vectors shown in Figure 9, draw .

SOLUTION We first draw the vector pointing in the direction opposite to and twice
as long. We place it with its tail at the tip of and then use the Triangle Law to draw

as in Figure 10.

Components
For some purposes it’s best to introduce a coordinate system and treat vectors algebra-
ically. If we place the initial point of a vector at the origin of a rectangular coordinate 
system, then the terminal point of has coordinates of the form or ,
depending on whether our coordinate system is two- or three-dimensional (see Figure 11). 

c 2v
v � v v

c v
cv � c � v

v c 	 0 v c � 0 c � 0 v � 0
cv � 0

�v � ��1�v
v v

u � v

u � v � u � ��v�

u � v v �v u
v � �u � v� � u,

u � v v u u � v

FIGURE 8
Drawing u-v (a)

uv

u-v

_v

(b)

v

u-v

u

a and b a � 2b

�2b b
a

a � ��2b�

a
a �a1, a2� �a1, a2, a3�

FIGURE 11 a=ka¡, a™l a=ka¡, a™, a£l

(a¡, a™)

O

y

x

a

z

x y

a

O

(a¡, a™, a£)

c

EXAMPLE 2

_1.5v

v 2v

_v

v1
2

FIGURE 7
Scalar multiples of v

FIGURE 9

a

b

FIGURE 10

a
_2b

a-2b
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818 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

These coordinates are called the components of and we write

or      

We use the notation for the ordered pair that refers to a vector so as not to confuse
it with the ordered pair that refers to a point in the plane.

For instance, the vectors shown in Figure 12 are all equivalent to the vector OP
l

whose terminal point is . What they have in common is that the terminal point is
reached from the initial point by a displacement of three units to the right and two upward.
We can think of all these geometric vectors as representations of the algebraic vector

. The particular representation OP
l

from the origin to the point is called
the position vector of the point .

In three dimensions, the vector OP
l

is the position vector of the 
point . (See Figure 13.) Let’s consider any other representation AB

l
of , where

the initial point is and the terminal point is . Then we must have
, , and and so , , and
. Thus we have the following result.

Given the points and , the vector with represen-
tation AB

l
is

Find the vector represented by the directed line segment with initial 
point ) and terminal point .

SOLUTION By , the vector corresponding to AB
l

is

The magnitude or length of the vector is the length of any of its representations and
is denoted by the symbol or . By using the distance formula to compute the length
of a segment , we obtain the following formulas.

The length of the two-dimensional vector is

The length of the three-dimensional vector is

How do we add vectors algebraically? Figure 14 shows that if and
, then the sum is , at least for the case where the

components are positive. In other words, to add algebraic vectors we add their compo-
nents. Similarly, to subtract vectors we subtract components. From the similar triangles in 

a

a � �a1, a2� a � �a1, a2, a3 �

�a1, a2 �
�a1, a2�

� �3, 2 �
P�3, 2�

a � �3, 2 � P�3, 2�
P

a � � �a1, a2, a3�
P�a1, a2, a3� a

A�x1, y1, z1� B�x2, y2, z2 �
x1 � a1 � x2 y1 � a2 � y2 z1 � a3 � z2 a1 � x2 � x1 a2 � y2 � y1

a3 � z2 � z1

1 A�x1, y1, z1� B�x2, y2, z2 � a

a � �x2 � x1, y2 � y1, z2 � z1�

A�2, �3, 4 B��2, 1, 1�

a � ��2 � 2, 1 � ��3�, 1 � 4 � � ��4, 4, �3 �

v

� v � � v �
OP

a � �a1, a2 �

� a � � sa 2
1 � a 2

2
 

a � �a1, a2, a3 �

� a � � sa 2
1 � a 2

2 � a 2
3

 

a � �a1, a2 �

v EXAMPLE 3

1

a � b � �a1 � b1, a2 � b2 �b � �b1, b2�

FIGURE 12
Representations of the vector a=k3, 2l

(1, 3)

(4, 5)

x

y

0

P(3, 2)

FIGURE 13
Representations of a=ka¡, a™, a£l

O

z

y
x

position
vector of P

P(a¡, a™, a£)

A(x, y, z) B(x+a¡, y+a™, z+a£)

FIGURE 14

0

y

xb¡a¡

b¡

b™b
a+b

a

(a¡+b¡, a™+b™)

a™ a™
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SECTION 12.2 VECTORS 819

Figure 15 we see that the components of are and . So to multiply a vector by a
scalar we multiply each component by that scalar.

If and , then

Similarly, for three-dimensional vectors,

If and , find and the vectors ,
, , and .

SOLUTION

We denote by the set of all two-dimensional vectors and by the set of all three-
dimensional vectors. More generally, we will later need to consider the set of all 
-dimensional vectors. An -dimensional vector is an ordered -tuple:

where are real numbers that are called the components of . Addition and
scalar multiplication are defined in terms of components just as for the cases and

.

Properties of Vectors If , , and are vectors in and and are scalars, then

1. 2.

3. 4.

5. 6.

7. 8.

ca2ca1ca

b � �b1, b2 �a � �a1, a2 �

a � b � �a1 � b1, a2 � b2�a � b � �a1 � b1, a2 � b2 �

ca � �ca1, ca2 �

�a1, a2, a3 � � �b1, b2, b3 � � �a1 � b1, a2 � b2, a3 � b3 �

�a1, a2, a3 � � �b1, b2, b3 � � �a1 � b1, a2 � b2, a3 � b3�

c �a1, a2, a3 � � �ca1, ca2, ca3 �

a � b� a �b � ��2, 1, 5 �a � �4, 0, 3 �EXAMPLE 4v
2a � 5b3ba � b

� a � � s4 2 � 0 2 � 32 � s25 � 5

a � b � �4, 0, 3 � � ��2, 1, 5 �

� �4 � ��2�, 0 � 1, 3 � 5 � � �2, 1, 8 �

a � b � �4, 0, 3 � � ��2, 1, 5 �

� �4 � ��2�, 0 � 1, 3 � 5 � � �6, �1, �2 �

3b � 3 ��2, 1, 5 � � �3��2�, 3�1�, 3�5�� � ��6, 3, 15 �

2a � 5b � 2 �4, 0, 3 � � 5 ��2, 1, 5 �

� �8, 0, 6 � � ��10, 5, 25 � � ��2, 5, 31 �

V3V2

Vn

nnn

a � �a1, a2, . . . , an�

aa1, a2, . . . , an

n � 2
n � 3

Vncba dc

a � �b � c� � �a � b� � ca � b � b � a

a � ��a� � 0a � 0 � a

�c � d �a � ca � dac�a � b� � ca � cb

1a � a�cd �a � c�da�

FIGURE 15

ca™

ca¡

ca
a™

a¡

a

Vectors in dimensions are used to list various
quantities in an organized way. For instance, the
components of a six-dimensional vector

might represent the prices of six dif ferent ingre-
dients required to make a particular product.
Four-dimensional vectors are used
in relativity theory, where the first three compo-
 nents specify a position in space and the fourth
represents time.

� x, y, z, t �

p � � p1, p2, p3, p4, p5, p6�

n
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820 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

FIGURE 16

b

c

a

(a+b)+c

P

Q

=a+(b+c)
a+b

b+c

FIGURE 18

(b) a=a¡i+a™ j+a£k

(a) a=a¡i+a™ j

0

a

a¡i

a™ j

(a¡, a™)

a™ j

a£k

(a¡, a™, a£)

a¡i

a

y

x

z

x
y

These eight properties of vectors can be readily verified either geometrically or alge-
braically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the Paral-
 lelogram Law) or as follows for the case :

We can see why Property 2 (the associative law) is true by looking at Figure 16 and
applying the Triangle Law several times: The vector PQ

l
is obtained either by first con-

structing a � b and then adding c or by adding a to the vector b � c.
Three vectors in play a special role. Let

These vectors , , and are called the standard basis vectors. They have length and
point in the directions of the positive -, -, and -axes. Similarly, in two dimensions we
define and . (See Figure 17.)

If , then we can write

Thus any vector in can be expressed in terms of , , and . For instance,

Similarly, in two dimensions, we can write

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with 
Figure 17.

n � 2

a � b � �a1, a2� � �b1, b2� � �a1 � b1, a2 � b2 �

� �b1 � a1, b2 � a2 � � �b1, b2 � � �a1, a2�

� b � a

V3

k � �0, 0, 1 �j � �0, 1, 0 �i � �1, 0, 0 �

1kji
zyx

j � �0, 1 �i � �1, 0 �

FIGURE 17
Standard basis vectors in V™ and V£ (a)

0

y

x

j

(1, 0)

i

(0, 1)

(b)

z

x
y

j

i

k

a � �a1, a2, a3 �

a � �a1, a2, a3� � �a1, 0, 0 � � �0, a2, 0 � � �0, 0, a3�

� a1�1, 0, 0 � � a2�0, 1, 0 � � a3�0, 0, 1 �

a � a1 i � a2 j � a3 k2

kjiV3

�1, �2, 6 � � i � 2 j � 6k

a � �a1, a2� � a1 i � a2 j3
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SECTION 12.2 VECTORS 821

If and , express the vector in terms
of , , and .

SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have

A unit vector is a vector whose length is 1. For instance, , , and are all unit vectors.
In general, if , then the unit vector that has the same direction as is

In order to verify this, we let . Then and is a positive scalar, so has
the same direction as . Also

Find the unit vector in the direction of the vector .

SOLUTION The given vector has length

so, by Equation 4, the unit vector with the same direction is

Applications
Vectors are useful in many aspects of physics and engineering. In Chapter 13 we will see
how they describe the velocity and acceleration of objects moving in space. Here we look
at forces.

A force is represented by a vector because it has both a magnitude (measured in pounds
or newtons) and a direction. If several forces are acting on an object, the resul tant force
experienced by the object is the vector sum of these forces.

A 100-lb weight hangs from two wires as shown in Figure 19. Find the ten-
sions (forces) and in both wires and the magnitudes of the tensions.

SOLUTION We first express and in terms of their horizontal and vertical compo-
nents. From Figure 20 we see that

The resultant of the tensions counterbalances the weight and so we must have

Thus

2a � 3bb � 4 i � 7 ka � i � 2 j � 3kEXAMPLE 5
kji

2a � 3b � 2�i � 2 j � 3k� � 3�4 i � 7k�

� 2 i � 4 j � 6k � 12 i � 21k � 14 i � 4 j � 15k

kji
aa � 0

u �
1

� a � a �
a

� a �4

ucu � cac � 1�� a �
a

� u � � � ca � � � c � � a � �
1

� a � � a � � 1

2 i � j � 2kEXAMPLE 6

� 2 i � j � 2k � � s22 � ��1�2 � ��2�2 � s9 � 3

1
3 �2 i � j � 2k� � 2

3 i �
1
3 j �

2
3 k

EXAMPLE 7
T2T1

T2T1

T1 � �� T1 � cos 50� i � � T1 � sin 50� j5

T2 � � T2 � cos 32� i � � T2 � sin 32� j6

wT1 � T2

T1 � T2 � �w � 100 j

(�� T1 � cos 50� � � T2 � cos 32�) i � (� T1 � sin 50� � � T2 � sin 32�) j � 100 jFIGURE 20

50°

w

T¡
50° 32°

32°

T™

FIGURE 19

100

T¡

50° 32°

T™

Gibbs

Josiah Willard Gibbs (1839–1903), a professor
of mathematical physics at Yale College, pub-
lished the first book on vectors, Vector Analysis,
in 1881. More complicated objects, called
quaternions, had earlier been invented by
Hamilton as mathematical tools for describing
space, but they weren’t easy for scientists to
use. Quaternions have a scalar part and a vec-
tor part. Gibb’s idea was to use the vector part
separately. Maxwell and Heaviside had similar
ideas, but Gibb’s approach has proved to be the
most convenient way to study space.
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822 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

1. Homework Hints available at stewartcalculus.com

1. Are the following quantities vectors or scalars? Explain.
(a) The cost of a theater ticket
(b) The current in a river
(c) The initial flight path from Houston to Dallas
(d) The population of the world

2. What is the relationship between the point (4, 7) and the 
vector ? Illustrate with a sketch.

3. Name all the equal vectors in the parallelogram shown.

4. Write each combination of vectors as a single vector.

(a) AB
l

BC
l

(b) CD
l

DB
l

(c) DB
l

AB
l

(d) DC
l

CA
l

AB
l

�4, 7 �

B

E

A

D C

�

� � �

A

D
C

B

�

5. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)
(e) (f )

6. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)
(e) (f )

7. In the figure, the tip of and the tail of are both the midpoint
of . Express and in terms of and .

u � v u � w
v � w u � v

wvu

v � u � w u � w � v

a � b a � b
1
2 a �3b
a � 2b 2b � a

b a

c d
QR c d a b

b
a c

d

P

Q

R

12.2 Exercises

Equating components, we get

Solving the first of these equations for and substituting into the second, we get

So the magnitudes of the tensions are

and

Substituting these values in and , we obtain the tension vectors

� T2 �

� T1 � sin 50� � � T1� cos 50�

cos 32�
sin 32� � 100

� T1 � �
100

sin 50� � tan 32� cos 50�
	 85.64 lb

� T2 � � � T1 � cos 50�

cos 32�
	 64.91 lb

T1 	 �55.05 i � 65.60 j T2 	 55.05 i � 34.40 j

�� T1 � cos 50� � � T2 � cos 32� � 0

� T1 � sin 50� � � T2 � sin 32� � 100

5 6

97817_12_ch12_p818-827.qk_97817_12_ch12_p818-827  11/8/10  8:52 AM  Page 822

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



SECTION 12.2 VECTORS 823

8. If the vectors in the figure satisfy and
, what is ?

9–14 Find a vector with representation given by the directed line
segment AB

l
. Draw AB

l
and the equivalent representation starting at

the origin.

9. ,  10. ,  

11. ,  12. ,  

13. ,  14. ,  

15–18 Find the sum of the given vectors and illustrate 
geometrically.

15. ,  16. ,  

17. ,  18. ,  

19–22 Find a � b, 2a � 3b, , and .

19. ,  

20. ,  

21. ,  

22. ,  

23–25 Find a unit vector that has the same direction as the given
vector.

23. 24.

25.

26. Find a vector that has the same direction as but has
length 6.

27–28 What is the angle between the given vector and the positive
direction of the -axis?

27. 28.

29. If lies in the first quadrant and makes an angle with the
positive -axis and , find in component form.

30. If a child pulls a sled through the snow on a level path with a
force of 50 N exerted at an angle of above the horizontal,
find the horizontal and vertical components of the force.

31. A quarterback throws a football with angle of elevation and
speed . Find the horizontal and vertical components of
the velocity vector.

�u � � �v � � 1
u � v � w � 0 �w �

u

v

w

a

A��1, 1� B�3, 2� A��4, �1� B�1, 2�

B�0, 6�A�2, 1�B�2, 2�A��1, 3�

B�4, 2, 1�A�4, 0, �2�B�2, 3, �1�A�0, 3, 1�

��1, 5 ��3, �1 ��6, �2 ���1, 4 �

�0, 0, 6 ��1, 3, �2 ��0, 8, 0 ��3, 0, 1 �

� a � b �� a �
b � ��3, �6 �a � �5, �12 �

b � i � 2 ja � 4 i � j

b � �2 i � j � 5ka � i � 2 j � 3k

b � 2 j � ka � 2 i � 4 j � 4 k

��4, 2, 4 ��3 i � 7 j

8 i � j � 4k

��2, 4, 2 �

x

i � s3 j 8 i � 6 j

��3v
v� v � � 4x

38 �

40 �
60 ft�s

32–33 Find the magnitude of the resultant force and the angle it
makes with the positive -axis.

32. 33.

34. The magnitude of a velocity vector is called speed. Suppose
that a wind is blowing from the direction N W at a speed of
50 km�h. (This means that the direction from which the wind
blows is west of the northerly direction.) A pilot is steering
a plane in the direction N E at an airspeed (speed in still air)
of 250 km�h. The true course, or track, of the plane is the
direction of the resul tant of the velocity vectors of the plane
and the wind. The ground speed of the plane is the magnitude
of the resultant. Find the true course and the ground speed of
the plane.

35. A woman walks due west on the deck of a ship at 3 mi�h. The
ship is moving north at a speed of 22 mi�h. Find the speed and
direction of the woman relative to the surface of the water.

36. Ropes 3 m and 5 m in length are fastened to a holiday decora-
tion that is suspended over a town square. The decoration has 
a mass of 5 kg. The ropes, fastened at different heights, make
angles of and with the horizontal. Find the tension in
each wire and the magnitude of each tension.

37. A clothesline is tied between two poles, 8 m apart. The line 
is quite taut and has negligible sag. When a wet shirt with a
mass of 0.8 kg is hung at the middle of the line, the mid point 
is pulled down 8 cm. Find the tension in each half of the
clothesline.

38. The tension T at each end of the chain has magnitude 25 N
(see the figure). What is the weight of the chain?

39. A boatman wants to cross a canal that is 3 km wide and wants
to land at a point 2 km upstream from his starting point. The
current in the canal flows at and the speed of his boat
is .
(a) In what direction should he steer?
(b) How long will the trip take?

x

20 lb

16 lb

45°
0

y

x30°
300 N

200 N

60°
0

y

x

45�

45�
60�

52� 40�

3 m 5 m

52°
40°

37° 37°

3.5 km�h
13 km�h
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824 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

40. Three forces act on an object. Two of the forces are at an angle
of to each other and have magnitudes 25 N and 12 N. The
third is perpendicular to the plane of these two forces and has
magnitude 4 N. Calculate the magnitude of the force that
would exactly counterbalance these three forces.

41. Find the unit vectors that are parallel to the tangent line to the
parabola at the point .

42. (a) Find the unit vectors that are parallel to the tangent line to
the curve at the point .

(b) Find the unit vectors that are perpendicular to the tangent
line.

(c) Sketch the curve and the vectors in parts (a) 
and (b), all starting at .

43. If , , and are the vertices of a triangle, find 

AB
l

� BC
l

� CA
l

.

44. Let be the point on the line segment that is twice as far 
from as it is from . If OA

l
, OB

l
, and OC

l
, show 

that .

45. (a) Draw the vectors , , and 

(b) Show, by means of a sketch, that there are scalars and
such that .

(c) Use the sketch to estimate the values of and .
(d) Find the exact values of and .

46. Suppose that and are nonzero vectors that are not parallel
and is any vector in the plane determined by and . Give 
a geometric argument to show that can be written as

for suitable scalars and Then give an argu-
ment using components.

47. If and , describe the set of all
points such that .

100�

�2, 4�y � x 2

���6, 1�y � 2 sin x

y � 2 sin x
���6, 1�

CBA

ABC
b �a �AB

c � 2
3 a �

1
3 b

b � �2, �1 �a � �3, 2 �
c � �7, 1 � .

ts
c � sa � tb

ts
ts

ba
bac

c
t.sc � sa � tb

r0 � �x0, y0, z0 �r � �x, y, z �
� r � r0 � � 1�x, y, z�

c �

48. If , , and , describe the 
set of all points such that ,
where .

49. Figure 16 gives a geometric demonstration of Property 2 of 
vectors. Use components to give an algebraic proof of this 
fact for the case .

50. Prove Property 5 of vectors algebraically for the case .
Then use similar triangles to give a geometric proof.

51. Use vectors to prove that the line joining the midpoints of 
two sides of a triangle is parallel to the third side and half 
its length.

52. Suppose the three coordinate planes are all mirrored and a 
light ray given by the vector first strikes the 

-plane, as shown in the figure. Use the fact that the angle of
incidence equals the angle of reflection to show that the direc-
tion of the reflected ray is given by . Deduce
that, after being reflected by all three mutually perpendicular
mirrors, the resulting ray is parallel to the initial ray. (American
space scientists used this principle, together with laser beams
and an array of corner mirrors on the moon, to calculate very
precisely the distance from the earth to the moon.)

k � � r1 � r2 �

n � 2

n � 3

a � �a1, a2, a3�
xz

b � �a1, �a2, a3 �

b
a

z

x

y

r2 � �x2, y2 �r1 � �x1, y1 �r � �x, y �
� r � r1 � � � r � r2 � � k�x, y�

So far we have added two vectors and multiplied a vector by a scalar. The question arises:
Is it possible to multiply two vectors so that their product is a useful quantity? One such
product is the dot product, whose definition follows. Another is the cross product, which is
discussed in the next section.

Definition If and , then the dot product of
and is the number given by

Thus, to find the dot product of and , we multiply corresponding components and
add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the dot
product is sometimes called the scalar product (or inner product). Although Definition 1
is given for three-dimensional vectors, the dot product of two-dimensional vectors is defined
in a similar fashion:

a � �a1, a2, a3 � b � �b1, b2, b3� a
b a � b

a � b � a1b1 � a2b2 � a3b3

a b

�a1, a2� � �b1, b2 � � a1b1 � a2b2

1

12.3 The Dot Product
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SECTION 12.3 THE DOT PRODUCT 825

The dot product obeys many of the laws that hold for ordinary products of real numbers.
These are stated in the following theorem.

Properties of the Dot Product If , , and are vectors in and is a 
scalar, then

1. 2.

3. 4.

5.

These properties are easily proved using Definition 1. For instance, here are the proofs
of Properties 1 and 3:

1.

3.

The proofs of the remaining properties are left as exercises.

The dot product can be given a geometric interpretation in terms of the angle
between and , which is defined to be the angle between the representations of and 

that start at the origin, where . In other words, is the angle between the 
line segments OA

l
and OB

l
in Figure 1. Note that if and are parallel vectors, then

or .
The formula in the following theorem is used by physicists as the definition of the dot

product.

Theorem If is the angle between the vectors and , then

PROOF If we apply the Law of Cosines to triangle in Figure 1, we get

(Observe that the Law of Cosines still applies in the limiting cases when or , or
or .) But , , and , so Equation 4

becomes

�2, 4 � � �3, �1 � � 2�3� � 4��1� � 2

��1, 7, 4 � � �6, 2, � 1
2 � � ��1��6� � 7�2� � 4(� 1

2 ) � 6

�i � 2 j � 3k� � �2 j � k� � 1�0� � 2�2� � ��3���1� � 7

EXAMPLE 1v

a b c V3 c

a � a � � a �2 a � b � b � a

a � �b � c� � a � b � a � c �ca� � b � c�a � b� � a � �cb�
0 � a � 0

2

a � a � a 2
1 � a 2

2 � a 2
3 � � a �2

a � �b � c� � �a1, a2, a3� � �b1 � c1, b2 � c2, b3 � c3�

� a1�b1 � c1� � a2�b2 � c2� � a3�b3 � c3�

� a1b1 � a1c1 � a2b2 � a2c2 � a3b3 � a3c3

� �a1b1 � a2b2 � a3b3� � �a1c1 � a2c2 � a3c3�

� a � b � a � c

a � b �
a b a

b 0 � � � � �

a b � � 0
� � �

� a b

a � b � � a � � b � cos �

OAB

� AB �2 � � OA �2 � � OB �2 � 2 � OA � � OB � cos �

� � 0 �
a � 0 b � 0 � OA � � � a � � OB � � � b � � AB � � � a � b �

3

4

� a � b �2 � � a �2 � � b �2 � 2 � a � � b � cos �5

FIGURE 1

z

x y

a
¨

b
a-b

B

0 A
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826 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this equa-
tion as follows:

Therefore Equation 5 gives

Thus

or

If the vectors a and b have lengths 4 and 6, and the angle between them is
, find .

SOLUTION Using Theorem 3, we have

The formula in Theorem 3 also enables us to find the angle between two vectors.

Corollary If is the angle between the nonzero vectors and , then

Find the angle between the vectors and .

SOLUTION Since

and    

and since

we have, from Corollary 6,

So the angle between and is

Two nonzero vectors and are called perpendicular or orthogonal if the angle
between them is . Then Theorem 3 gives

� a � b �2 � �a � b� � �a � b�

� a � a � a � b � b � a � b � b

� � a �2 � 2a � b � � b �2

� a �2 � 2a � b � � b �2 � � a �2 � � b �2 � 2 � a � � b � cos �

�2a � b � �2 � a � � b � cos �

a � b � � a � � b � cos �

��3 a � b

a � b � � a � � b � cos���3� � 4 � 6 � 1
2 � 12

� a b

cos � �
a � b

� a � � b �

EXAMPLE 2

6

a � �2, 2, �1 � b � �5, �3, 2 �

� a � � s22 � 22 � ��1�2 � 3 � b � � s52 � ��3�2 � 2 2 � s38

a � b � 2�5� � 2��3� � ��1��2� � 2

cos � �
a � b

� a � � b � �
2

3s38

a b

� � cos�1
 2

3s38 � 	 1.46 �or 84��

v EXAMPLE 3

ba
� � ��2

a � b � � a � � b � cos���2� � 0
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SECTION 12.3 THE DOT PRODUCT 827

and conversely if , then , so . The zero vector is considered
to be perpendicular to all vectors. Therefore we have the following method for determining
whether two vectors are orthogonal.

Two vectors 

Show that is perpendicular to .

SOLUTION Since

these vectors are perpendicular by .

Because if and if , we see that is
positive for and negative for . We can think of as measuring the
extent to which a and b point in the same direction. The dot product is positive if a
and b point in the same general direction, 0 if they are perpendicular, and negative if they
point in generally opposite directions (see Figure 2). In the extreme case where a and b
point in exactly the same direction, we have , so and

If a and b point in exactly opposite directions, then and so and
.

Direction Angles and Direction Cosines
The direction angles of a nonzero vector are the angles , , and (in the interval
that makes with the positive -, -, and -axes. (See Figure 3.)

The cosines of these direction angles, , , and , are called the direction
cosines of the vector . Using Corollary 6 with replaced by , we obtain

(This can also be seen directly from Figure 3.)
Similarly, we also have

By squaring the expressions in Equations 8 and 9 and adding, we see that

We can also use Equations 8 and 9 to write

7 a and b are orthogonal if and only if a � b � 0.

2 i � 2 j � k 5 i � 4 j � 2k

�2 i � 2 j � k� � �5 i � 4 j � 2k� � 2�5� � 2��4� � ��1��2� � 0

7

EXAMPLE 4

cos � � 0 0 � � 	 ��2 cos � 	 0 ��2 	 � � � a � b
� 	 ��2 � � ��2 a � b

a � b

� � 0 cos � � 1

a � b � � a � � b �
� � � cos � � �1

a � b � �� a � � b �

a 
 � � �0, ��
a x y z

cos 
 cos � cos �
a b i

cos 
 �
a � i

� a � � i � �
a1

� a �8

cos � �
a2

� a � cos � �
a3

� a �

cos2
 � cos2� � cos2� � 1

a � �a1, a2, a3� � �� a � cos 
, � a � cos �, � a � cos ��
� � a � �cos 
, cos �, cos ��

9

10

0� � ��2cos � � 0a � b � 0

FIGURE 2

a
b

a · b>0¨

a b
a · b=0

a
b

a · b<0
¨

¨ acute

¨ obtuse

¨=π/2

Visual 12.3A shows an animation 
of Figure 2.
TEC

FIGURE 3
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828 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

Therefore

which says that the direction cosines of are the components of the unit vector in the direc-
tion of .

Find the direction angles of the vector .

SOLUTION Since , Equations 8 and 9 give

and so

Projections
Figure 4 shows representations PQ

l
and PR

l
of two vectors and with the same initial

point . If is the foot of the perpendicular from to the line containing PQ
l

, then the vec-
tor with representation PS

l
is called the vector projection of onto and is denoted by

. (You can think of it as a shadow of ).
The scalar projection of onto (also called the component of along ) is defined

to be the signed magnitude of the vector projection, which is the number , where
is the angle between and . (See Figure 5.) This is denoted by . Observe that it

is negative if . The equation

shows that the dot product of and can be interpreted as the length of times the scalar
projection of onto . Since

the component of along can be computed by taking the dot product of with the unit
vector in the direction of . We summarize these ideas as follows.

Scalar projection of onto :

Vector projection of onto :

Notice that the vector projection is the scalar projection times the unit vector in the direc-
tion of a.

1

� a� a � �cos �, cos �, cos � �

a
a

a � �1, 2, 3 �

� a � � s12 � 22 � 3 2 � s14

cos � �
1

s14
cos � �

2

s14
cos � �

3

s14

� � cos�1� 1

s14 � � 74� � � cos�1� 2

s14 � � 58� � � cos�1� 3

s14 � � 37�

11

EXAMPLE 5

a b
P S R

b a
proja b b

b a b a

� b � cos �
� a b compa b

	�2 
 � � 	

a � b � � a � � b � cos � � � a �(� b � cos �)

a b a
b a

� b � cos � �
a � b

� a � �
a

� a � � b

b a b
a

b a compa b �
a � b

� a �

b a proja b � � a � b

� a � � a

� a � �
a � b

� a �2 a

Visual 12.3B shows how Figure 4
changes when we vary and .

TEC

ba

FIGURE 4
Vector projections

Q

R

P
S

b
a

proja b

R

S
P

Q
a

proja b

b

FIGURE 5
Scalar projection

�b � cos  ¨ =

b

a

R

S
Q¨

P compa b
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SECTION 12.3 THE DOT PRODUCT 829

Find the scalar projection and vector projection of 
onto .

SOLUTION Since , the scalar projection of onto is

The vector projection is this scalar projection times the unit vector in the direction of :

One use of projections occurs in physics in calculating work. In Section 5.4 we defined
the work done by a constant force in moving an object through a distance as , but
this applies only when the force is directed along the line of motion of the object. Suppose,
however, that the constant force is a vector PR

l
pointing in some other direction, as 

in Figure 6. If the force moves the object from to , then the displacement vector is
PQ
l

. The work done by this force is defined to be the product of the component of the
force along and the distance moved:

But then, from Theorem 3, we have

Thus the work done by a constant force is the dot product , where is the dis-
placement vector.

A wagon is pulled a distance of 100 m along a horizontal path by a constant
force of 70 N. The handle of the wagon is held at an angle of above the horizontal.
Find the work done by the force.

SOLUTION If are the force and displacement vectors, as pictured in Figure 7,
then the work done is

A force is given by a vector and moves a particle from
the point to the point . Find the work done.

SOLUTION The displacement vector is PQ
l

, so by Equation 12, the work
done is

If the unit of length is meters and the magnitude of the force is measured in newtons,
then the work done is 36 J.

b � �1, 1, 2 �
a � ��2, 3, 1 �

� a � � s	�2
2 � 32 � 12 � s14 b a

compa b �
a � b

� a � �
	�2
	1
 � 3	1
 � 1	2


s14
�

3

s14

a

proja b �
3

s14

a

� a � �
3

14
 a � ��

3

7
, 

9

14
, 

3

14�

EXAMPLE 6v

F d W � Fd

F �
P Q

D �
D

W � (� F � cos �) � D �

W � � F � � D � cos � � F � D12

F F � D D

35�

F and D

W � F � D � � F � � D � cos 35�

� 	70
	100
 cos 35� � 5734 N�m � 5734 J

EXAMPLE 7

F � 3 i � 4 j � 5k
P	2, 1, 0
 Q	4, 6, 2


D � � �2, 5, 2 �

W � F � D � �3, 4, 5 � � �2, 5, 2 �

� 6 � 20 � 10 � 36

EXAMPLE 8

D

F

35°

35°

FIGURE 7

Q

F

R

S

P

¨

D

FIGURE 6
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830 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

1. Which of the following expressions are meaningful? Which are
meaningless? Explain.
(a) (b)

(c) (d)

(e) (f )

2–10 Find .

2. ,  

3. ,

4. ,  

5. ,  

6. ,  

7. ,  

8. ,  

9. ,  ,  the angle between and is 

10. ,  ,  the angle between and is 

11–12 If u is a unit vector, find and .

11. 12.

13. (a) Show that .
(b) Show that .

14. A street vendor sells hamburgers, hot dogs, and soft
drinks on a given day. He charges $2 for a hamburger, $1.50
for a hot dog, and $1 for a soft drink. If and

, what is the meaning of the dot product ?

15–20 Find the angle between the vectors. (First find an exact
expression and then approximate to the nearest degree.)

15. ,  

16. ,  

17. ,  

18. ,  

19. ,  

20. ,  

	a � b
c	a � b
 � c

a � 	b � c
� a � 	b � c


� a � � 	b � c
a � b � c

a � b

b � �0.7, 1.2 �a � ��2, 3�

b � ��5, 12 �a � ��2, 13 �
b � �2, 5, �1 �a � �6, �2, 3�

b � �6, �3, �8 �a � �4, 1, 1
4 �

b � �2q, q, �q �a � �p, �p, 2p�

b � i � j � ka � 2 i � j

b � 4 i � 5ka � 3 i � 2 j � k

2	�3ba� b � � 5� a � � 6

45�ba� b � � s6� a � � 3

u � wu � v

w

u

v

w

u v

i � j � j � k � k � i � 0
i � i � j � j � k � k � 1

cba

A � �a, b, c �
A � PP � �2, 1.5, 1 �

b � �2, �1 �a � �4, 3 �

b � �5, 12 �a � ��2, 5 �

b � ��2, 4, 3 �a � �3, �1, 5 �

b � �2, �1, 0 �a � �4, 0, 2 �

b � 2i � ka � 4i � 3j � k

b � 4 i � 3ka � i � 2 j � 2k

21–22 Find, correct to the nearest degree, the three angles of the
triangle with the given vertices.

21. ,  ,  

22. ,  ,  

23–24 Determine whether the given vectors are orthogonal, 
parallel, or neither.

23. (a) ,  
(b) ,  
(c) ,  
(d) ,  

24. (a) ,  
(b) ,  
(c) ,  

25. Use vectors to decide whether the triangle with vertices
, , and is right-angled.

26. Find the values of such that the angle between the vectors
, and is .

27. Find a unit vector that is orthogonal to both and .

28. Find two unit vectors that make an angle of with
.

29–30 Find the acute angle between the lines.

29. ,  

30. ,  

31–32 Find the acute angles between the curves at their points of
intersection. (The angle between two curves is the angle between
their tangent lines at the point of intersection.)

31. ,  

32. ,  ,  

33–37 Find the direction cosines and direction angles of the vector.
(Give the direction angles correct to the nearest degree.)

33. 34.

35. 36.

37. ,  where 

38. If a vector has direction angles and , find the
third direction angle .

P	2, 0
 Q	0, 3
 R	3, 4


A	1, 0, �1
 B	3, �2, 0
 C	1, 3, 3


a � ��5, 3, 7 � b � �6, �8, 2 �
a � �4, 6 � b � ��3, 2 �
a � �i � 2 j � 5k b � 3 i � 4 j � k
a � 2 i � 6 j � 4k b � �3 i � 9 j � 6k

u � ��3, 9, 6 � v � �4, �12, �8 �
u � i � j � 2k v � 2 i � j � k
u � �a, b, c � v � ��b, a, 0 �

P	1, �3, �2
 Q	2, 0, �4
 R	6, �2, �5


x
�2, 1, �1 � �1, x, 0 � 45�

i � j i � k

60�
v � �3, 4 �

2x � y � 3 3x � y � 7

x � 2y � 7 5x � y � 2

y � x 2 y � x 3

y � sin x y � cos x 0 � x � 	�2

�2, 1, 2 � �6, 3, �2 �

i � 2 j � 3k 1
2 i � j � k

�c, c, c � c  0

� � 	�4 � � 	�3
�

12.3 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 12.3 THE DOT PRODUCT 831

39–44 Find the scalar and vector projections of onto .

39. ,  

40. ,  

41. ,  

42. ,  

43. ,  

44. ,  

45. Show that the vector is orthogonal to .
(It is called an orthogonal projection of .)

46. For the vectors in Exercise 40, find and illustrate by
drawing the vectors , , , and .

47. If , find a vector such that .

48. Suppose that and are nonzero vectors.
(a) Under what circumstances is ?
(b) Under what circumstances is ?

49. Find the work done by a force that moves
an object from the point to the point along
a straight line. The distance is measured in meters and the force
in newtons.

50. A tow truck drags a stalled car along a road. The chain makes
an angle of with the road and the tension in the chain is
1500 N. How much work is done by the truck in pulling the 
car 1 km?

51. A sled is pulled along a level path through snow by a rope. 
A 30-lb force acting at an angle of  above the horizontal
moves the sled 80 ft. Find the work done by the force.

52. A boat sails south with the help of a wind blowing in the direc-
tion S E with magnitude 400 lb. Find the work done by the
wind as the boat moves 120 ft.

53. Use a scalar projection to show that the distance from a point
to the line is

Use this formula to find the distance from the point to
the line .

54. If , and , show
that the vector equation represents a
sphere, and find its center and radius.

b a

a � ��5, 12 � b � �4, 6 �

a � �1, 4 � b � �2, 3 �

b � �1, 2, 3 �a � �3, 6, �2 �

b � �5, �1, 4 �a � ��2, 3, �6 �

b � j �
1
2 ka � 2 i � j � 4k

b � i � j � ka � i � j � k

aorth a b � b � proja b
b

orth a b
orth a bproja bba

comp a b � 2ba � �3, 0, �1 �

ba
comp a b � comp b a
proja b � projb a

F � 8 i � 6 j � 9k
	6, 12, 20
	0, 10, 8


30�

40�

36�

ax � by � c � 0P1	x1, y1


� ax1 � by1 � c �
sa 2 � b 2 

	�2, 3

3x � 4y � 5 � 0

b � �b1, b2, b3 �r � �x, y, z � , a � �a1, a2, a3 �
	r � a
 � 	r � b
 � 0

55. Find the angle between a diagonal of a cube and one of its
edges.

56. Find the angle between a diagonal of a cube and a diagonal of
one of its faces.

57. A molecule of methane, , is structured with the four hydro-
gen atoms at the vertices of a regular tetrahedron and the car-
bon atom at the centroid. The bond angle is the angle formed
by the H— C—H combination; it is the angle between the
lines that join the carbon atom to two of the hydrogen atoms.
Show that the bond angle is about . Hint: Take the 
vertices of the tetrahedron to be the points , ,

, and , as shown in the figure. Then the centroid
is .

58. If , where , , and are all nonzero vectors,
show that bisects the angle between and .

59. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).

60. Suppose that all sides of a quadrilateral are equal in length and
opposite sides are parallel. Use vector methods to show that the
diagonals are perpendicular.

61. Use Theorem 3 to prove the Cauchy-Schwarz Inequality:

62. The Triangle Inequality for vectors is

(a) Give a geometric interpretation of the Triangle Inequality.
(b) Use the Cauchy-Schwarz Inequality from Exercise 61 to

prove the Triangle Inequality. [Hint: Use the fact that
and use Property 3 of the

dot product.]

63. The Parallelogram Law states that 

(a) Give a geometric interpretation of the Parallelogram Law.
(b) Prove the Parallelogram Law. (See the hint in Exercise 62.)

64. Show that if and are orthogonal, then the vectors
and must have the same length.

CH4

109.5� [
	1, 0, 0
 	0, 1, 0


	0, 0, 1
 	1, 1, 1

( 1

2 , 1
2 , 1

2 ) ]

H

H
H

H

C

x

y

z

c � � a � b � � b � a a b c
c a b

� a � b � � � a � � b �

� a � b � � � a � � � b �

� a � b �2 � 	a � b
 � 	a � b


� a � b �2 � � a � b �2 � 2 � a �2 � 2 � b �2

u � v u � v
u v
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Given two nonzero vectors and , it is very useful to be able
to find a nonzero vector that is perpendicular to both and , as we will see in the next
section and in Chapters 13 and 14. If is such a vector, then and

and so

To eliminate we multiply by and by and subtract:

Equation 3 has the form , for which an obvious solution is and
. So a solution of is

Substituting these values into and , we then get

This means that a vector perpendicular to both and is

The resulting vector is called the cross product of and and is denoted by .

Definition If and , then the cross product of
and is the vector

Notice that the cross product of two vectors and , unlike the dot product, is
a vector. For this reason it is also called the vector product. Note that is defined
only when and are three-dimensional vectors.

In order to make Definition 4 easier to remember, we use the notation of determinants.
A determinant of order 2 is defined by

For example,

A determinant of order 3 can be defined in terms of second-order determinants as 
follows:

b � �b1, b2, b3 �a � �a1, a2, a3�
bac

a � c � 0c � �c1, c2, c3 �
b � c � 0

a1c1 � a2c2 � a3c3 � 01

b1c1 � b2c2 � b3c3 � 02

a32b31c3

	a1b3 � a3b1
c1 � 	a2b3 � a3b2
c2 � 03

c1 � qpc1 � qc2 � 0
3c2 � �p

c2 � a3b1 � a1b3c1 � a2b3 � a3b2

21

c3 � a1b2 � a2b1

ba

�c1, c2, c3� � �a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 �

a � bba

b � �b1, b2, b3�a � �a1, a2, a3 �4
ba

a � b � �a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 �

baa � b
a � b

ba

 a

c

b

d  � ad � bc

 2

�6

1

4  � 2	4
 � 1	�6
 � 14

� a1

b1

c1

a2

b2

c2

a3

b3

c3 � � a1  b2

c2

b3

c3
 � a2  b1

c1

b3

c3
 � a3  b1

c1

b2

c2
5

832 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

12.4 The Cross Product

Hamilton

The cross product was invented by the Irish
mathematician Sir William Rowan Hamilton
(1805–1865), who had created a precursor of
vectors, called quaternions. When he was five
years old Hamilton could read Latin, Greek, and
Hebrew. At age eight he added French and 
Italian and when ten he could read Arabic and
Sanskrit. At the age of 21, while still an under-
graduate at Trinity College in Dublin, Hamilton
was appointed Professor of Astronomy at the
university and Royal Astronomer of Ireland!
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SECTION 12.4 THE CROSS PRODUCT 833

Observe that each term on the right side of Equation 5 involves a number in the first row
of the determinant, and is multiplied by the second-order determinant obtained from the
left side by deleting the row and column in which appears. Notice also the minus sign in
the second term. For example,

If we now rewrite Definition 4 using second-order determinants and the standard basis
vectors , , and , we see that the cross product of the vectors and

is

In view of the similarity between Equations 5 and 6, we often write

Although the first row of the symbolic determinant in Equation 7 consists of vectors, if we
expand it as if it were an ordinary determinant using the rule in Equation 5, we obtain
Equation 6. The symbolic formula in Equation 7 is probably the easiest way of remem-
bering and computing cross products.

If and , then

Show that for any vector in .

SOLUTION If , then

ai

ai

ai

� 1

3

�5

2

0

4

�1

1

2 � � 1  0

4

1

2  � 2  3

�5

1

2  � 	�1
  3

�5

0

4 
� 1	0 � 4
 � 2	6 � 5
 � 	�1
	12 � 0
 � �38

a � a1 i � a2 j � a3 kkji
b � b1 i � b2 j � b3 k

a � b �  a2

b2

a3

b3
 i �  a1

b1

a3

b3
 j �  a1

b1

a2

b2
 k6

a � b � � i
a1

b1

j
a2

b2

k
a3

b3 �7

b � �2, 7, �5 �a � �1, 3, 4 �EXAMPLE 1v

a � b � � i
1

2

j
3

7

k
4

�5 �
�  3

7

4

�5  i �  1

2

4

�5  j �  1

2

3

7  k

� 	�15 � 28
 i � 	�5 � 8
 j � 	7 � 6
 k � �43 i � 13 j � k

V3aa � a � 0EXAMPLE 2v

a � �a1, a2, a3 �

a � a � � i
a1

a1

j
a2

a2

k
a3

a3 �
� 	a2a3 � a3a2
 i � 	a1a3 � a3a1
 j � 	a1a2 � a2a1
 k

� 0 i � 0 j � 0 k � 0
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834 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

We constructed the cross product so that it would be perpendicular to both and
. This is one of the most important properties of a cross product, so let’s emphasize and

verify it in the following theorem and give a formal proof.

Theorem The vector is orthogonal to both and .

PROOF In order to show that is orthogonal to , we compute their dot product as
follows:

A similar computation shows that . Therefore is orthogonal to both
and .

If and are represented by directed line segments with the same initial point (as in Fig-
ure 1), then Theorem 8 says that the cross product points in a direction perpendicu-
lar to the plane through and . It turns out that the direction of is given by the
right-hand rule: If the fingers of your right hand curl in the direction of a rotation (through
an angle less than ) from to , then your thumb points in the direction of .

Now that we know the direction of the vector , the remaining thing we need to
complete its geometric description is its length . This is given by the following 
theorem.

Theorem If is the angle between and (so ), then

PROOF From the definitions of the cross product and length of a vector, we have

(by Theorem 12.3.3)

Taking square roots and observing that because when
, we have

Since a vector is completely determined by its magnitude and direction, we can now say
that is the vector that is perpendicular to both and , whose orientation is deter-

a � b a
b

a � b a b

a � b a

	a � b
 � a �  a2

b2

a3

b3
 a1 �  a1

b1

a3

b3
 a2 �  a1

b1

a2

b2
 a3

� a1	a2b3 � a3b2
 � a2	a1b3 � a3b1
 � a3	a1b2 � a2b1


� a1a2b3 � a1b2a3 � a1a2b3 � b1a2a3 � a1b2a3 � b1a2a3

� 0

	a � b
 � b � 0 a � b
a b

8

a b
a � b

a b a � b

180� a b a � b
a � b

� a � b �

� a b 0 � � � 	

� a � b � � � a � � b � sin �

� a � b �2 � 	a2b3 � a3b2
2 � 	a3b1 � a1b3
2 � 	a1b2 � a2b1
2

� a 2
2 b 2

3 � 2a2a3b2b3 � a 2
3b 2

2 � a 2
3b 2

1 � 2a1a3b1b3 � a 2
1 b2

3

� a 2
1 b 2

2 � 2a1a2b1b2 � a 2
2b 2

1

� 	a 2
1 � a 2

2 � a 2
3 
	b 2

1 � b 2
2 � b 2

3 
 � 	a1b1 � a2b2 � a3b3
2

� � a �2� b �2 � 	a � b
2

� � a �2� b �2 � � a �2� b �2 cos2�

� � a �2� b �2 	1 � cos2�


� � a �2� b �2 sin2�

ssin 2� � sin � sin � � 0
0 � � � 	

� a � b � � � a � � b � sin �

9

baa � b

FIGURE 1
The right-hand rule gives
the direction of axb.

a b

axb

n

¨

Visual 12.4 shows how changes
as changes.
TEC

b
a � b

Geometric characterization of a � b
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SECTION 12.4 THE CROSS PRODUCT 835

mined by the right-hand rule, and whose length is . In fact, that is exactly how
physicists define .

Corollary Two nonzero vectors and are parallel if and only if

PROOF Two nonzero vectors and are parallel if and only if or . In either case
, so and therefore .

The geometric interpretation of Theorem 9 can be seen by looking at Figure 2. If and
are represented by directed line segments with the same initial point, then they determine

a parallelogram with base , altitude , and area

Thus we have the following way of interpreting the magnitude of a cross product.

The length of the cross product is equal to the area of the parallelogram
determined by and .

Find a vector perpendicular to the plane that passes through the points
, , and .

SOLUTION The vector PQ
l

PR
l

is perpendicular to both PQ
l

and PR
l

and is therefore
perpendicular to the plane through , , and . We know from (12.2.1) that

PQ
l

PR
l

We compute the cross product of these vectors:

PQ
l

PR
l

So the vector is perpendicular to the given plane. Any nonzero scalar
multiple of this vector, such as , is also perpendicular to the plane.

Find the area of the triangle with vertices , , 
and .

SOLUTION In Example 3 we computed that PQ
l

PR
l

. The area of
the parallelogram with adjacent sides and is the length of this cross product:

PQ
l

PR
l

The area of the triangle is half the area of this parallelogram, that is, .

� a � � b � sin �
a � b

ba10

a � b � 0

	� � 0ba
a � b � 0� a � b � � 0sin � � 0

b
a

� b � sin �� a �
A � � a � (� b � sin �) � � a � b �

a � b
ba

EXAMPLE 3
R	1, �1, 1
Q	�2, 5, �1
P	1, 4, 6


�
RQP

� 	�2 � 1
 i � 	5 � 4
 j � 	�1 � 6
 k � �3 i � j � 7k

� 	1 � 1
 i � 	�1 � 4
 j � 	1 � 6
 k � �5 j � 5k

� � i
�3

0

j
1

�5

k
�7

�5 ��

� 	�5 � 35
 i � 	15 � 0
 j � 	15 � 0
 k � �40 i � 15 j � 15k

��40, �15, 15 �
��8, �3, 3 �

Q	�2, 5, �1
P	1, 4, 6
EXAMPLE 4
R	1, �1, 1


� ��40, �15, 15 ��
PRPQ

� s	�40
2 � 	�15
2 � 152 � 5s82���
5
2 s82PQRA

a

b

¨

�b � sin ¨

FIGURE 2
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836 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

If we apply Theorems 8 and 9 to the standard basis vectors , , and using ,
we obtain

Observe that

| Thus the cross product is not commutative. Also

whereas

| So the associative law for multiplication does not usually hold; that is, in general,

However, some of the usual laws of algebra do hold for cross products. The following the-
orem summarizes the properties of vector products.

Theorem If , , and are vectors and is a scalar, then

1. a � b � �b � a

2. (ca) � b � c(a � b) � a � (cb)

3. a � (b � c) � a � b � a � c

4. (a � b) � c � a � c � b � c

5.

6.

These properties can be proved by writing the vectors in terms of their components 
and using the definition of a cross product. We give the proof of Property 5 and leave the
remaining proofs as exercises.

PROOF OF PROPERTY 5 If , , and , then

Triple Products
The product that occurs in Property 5 is called the scalar triple product of the
vectors , , and . Notice from Equation 12 that we can write the scalar triple product as
a determinant:

i j k � � 	�2

i � j � k j � k � i k � i � j

j � i � �k k � j � �i i � k � �j

i � j � j � i

i � 	i � j
 � i � k � �j

	i � i
 � j � 0 � j � 0

	a � b
 � c � a � 	b � c


a b c c

a � 	b � c
 � 	a � b
 � c

a � 	b � c
 � 	a � c
b � 	a � b
c

a � �a1, a2, a3� b � �b1, b2, b3� c � �c1, c2, c3�

a � 	b � c
 � a1	b2c3 � b3c2
 � a2	b3c1 � b1c3
 � a3	b1c2 � b2c1


� a1b2c3 � a1b3c2 � a2b3c1 � a2b1c3 � a3b1c2 � a3b2c1

� 	a2b3 � a3b2 
c1 � 	a3b1 � a1b3 
c2 � 	a1b2 � a2b1
c3

� 	a � b
 � c

a � 	b � c

a b c

11

12

a � 	b � c
 � � a1

b1

c1

a2

b2

c2

a3

b3

c3 �13
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SECTION 12.4 THE CROSS PRODUCT 837

The geometric significance of the scalar triple product can be seen by considering the par-
allelepiped determined by the vectors , , and . (See Figure 3.) The area of the base 
parallelogram is . If is the angle between and , then the height 
of the parallelepiped is . (We must use instead of in case

.) Therefore the volume of the parallelepiped is

Thus we have proved the following formula.

The volume of the parallelepiped determined by the vectors , , and is the
magnitude of their scalar triple product:

If we use the formula in and discover that the volume of the parallelepiped 
determined by a, b, and c is 0, then the vectors must lie in the same plane; that is, they are
coplanar.

Use the scalar triple product to show that the vectors ,
, and are coplanar.

SOLUTION We use Equation 13 to compute their scalar triple product:

Therefore, by , the volume of the parallelepiped determined by , , and is 0. This
means that , , and are coplanar.

The product that occurs in Property 6 is called the vector triple product
of , , and . Property 6 will be used to derive Kepler’s First Law of planetary motion in
Chapter 13. Its proof is left as Exercise 50.

Torque
The idea of a cross product occurs often in physics. In particular, we consider a force act-
ing on a rigid body at a point given by a position vector . (For instance, if we tighten a bolt
by applying a force to a wrench as in Figure 4, we produce a turning effect.) The torque
(relative to the origin) is defined to be the cross product of the position and force vectors

and measures the tendency of the body to rotate about the origin. The direction of the torque
vector indicates the axis of rotation. According to Theorem 9, the magnitude of the torque
vector is

a b c
A � � b � c � � a b � c h

h � � a � � cos � � � cos � � cos �
�  	�2

V � Ah � � b � c � � a � � cos � � � � a � 	b � c
 �

a b c

V � � a � 	b � c
 �

a � �1, 4, �7 �
b � �2, �1, 4 � c � �0, �9, 18 �

a � 	b � c
 � � 1

2

0

4

�1

�9

�7

4

18 �
� 1  �1

�9

4

18  � 4  2

0

4

18  � 7  2

0

�1

�9 
� 1	18
 � 4	36
 � 7	�18
 � 0

a b c
a b c

a � 	b � c

a b c

F
r

�

� � r � F

14

14

v EXAMPLE 5

14

� � � � � r � F � � � r � � F � sin �

a

b

¨

bxc

c
h

FIGURE 3

FIGURE 4

r

F

�

¨
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838 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

where is the angle between the position and force vectors. Observe that the only com-
ponent of that can cause a rotation is the one perpendicular to , that is, . The
magnitude of the torque is equal to the area of the parallelogram determined by and .

A bolt is tightened by applying a 40-N force to a 0.25-m wrench as shown in
Figure 5. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is

If the bolt is right-threaded, then the torque vector itself is

where is a unit vector directed down into the page.

�
F r � F � sin �

r F

EXAMPLE 6

� � � � � r � F � � � r � � F � sin 75� � �0.25��40� sin 75�

� 10 sin 75� � 9.66 N�m

� � � � � n � 9.66 n

nFIGURE 5

75°

40 N
0.25 m

1–7 Find the cross product and verify that it is orthogonal to
both a and b.

1. ,  

2. ,  

3. ,  

4. ,  

5. ,  

6. ,  

7. ,  

8. If a � i � 2k and b � j � k, find a � b. Sketch a, b, and 
a � b as vectors starting at the origin.

9–12 Find the vector, not with determinants, but by using proper-
ties of cross products.

9. 10.

11. 12.

13. State whether each expression is meaningful. If not, explain
why. If so, state whether it is a vector or a scalar.
(a) (b)
(c) (d)
(e) (f )

a � b

a � �6, 0, �2 � b � �0, 8, 0 �

a � �1, 1, �1 � b � �2, 4, 6 �

a � i � 3 j � 2k b � �i � 5k

a � j � 7k b � 2 i � j � 4k

a � i � j � k b � 1
2 i � j �

1
2 k

a � t i � cos t j � sin tk b � i � sin t j � cos tk

a � � t, 1, 1�t� b � � t 2, t 2, 1 �

�i � j� � k k � �i � 2 j�

� j � k� � �k � i� �i � j� � �i � j�

a � �b � c� a � �b � c�
a � �b � c� a � �b � c�
�a � b� � �c � d� �a � b� � �c � d�

14–15 Find and determine whether u � v is directed into
the page or out of the page.

14. 15.

16. The figure shows a vector in the -plane and a vector in
the direction of . Their lengths are and 
(a) Find .
(b) Use the right-hand rule to decide whether the com ponents

of are positive, negative, or 0.

17. If and , find and .

18. If , , and , show that
.

19. Find two unit vectors orthogonal to both and
.

� u � v �

45°

|u |=4

|v |=5 |v |=16

120°
|u |=12

a xy b
k � a � � 3 � b � � 2.

� a � b �
a � b

x

z

y

b

a

a � �2, �1, 3 � b � �4, 2, 1� a � b b � a

a � �1, 0, 1� b � �2, 1, �1 � c � �0, 1, 3 �
a � �b � c� � �a � b� � c

�3, 2, 1 �
��1, 1, 0 �

12.4 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 12.4 THE CROSS PRODUCT 839

20. Find two unit vectors orthogonal to both and .

21. Show that for any vector in .

22. Show that for all vectors and in .

23. Prove Property 1 of Theorem 11.

24. Prove Property 2 of Theorem 11.

25. Prove Property 3 of Theorem 11.

26. Prove Property 4 of Theorem 11.

27. Find the area of the parallelogram with vertices ,
, , and .

28. Find the area of the parallelogram with vertices ,
, , and .

29–32 (a) Find a nonzero vector orthogonal to the plane through
the points , , and , and (b) find the area of triangle .

29. ,  ,  

30. ,  ,  

31. ,  ,  

32. ,  ,  

33–34 Find the volume of the parallelepiped determined by the 
vectors , , and .

33. ,  ,  

34. ,  ,  

35–36 Find the volume of the parallelepiped with adjacent edges 
, , and .

35. ,  ,  ,  

36. ,  ,  ,  

37. Use the scalar triple product to verify that the vectors
, , and 

are coplanar.

38. Use the scalar triple product to determine whether the points
, , , and lie in the

same plane.

39. A bicycle pedal is pushed by a foot with a 60-N force as
shown. The shaft of the pedal is 18 cm long. Find the
magnitude of the torque about .

�a � b� � b � 0 a b V3

j � k i � j

V3a0 � a � 0 � a � 0

A��2, 1�
D�2, �1�C�4, 2�B�0, 4�

K�1, 2, 3�
N�3, 7, 3�M�3, 8, 6�L�1, 3, 6�

PQRRQP

R�5, 3, 1�Q�4, 1, �2�P�0, �2, 0�

R�4, 3, �1�Q�0, 5, 2�P��1, 3, 1�

P�1, 0, 1� Q��2, 1, 3� R�4, 2, 5�

P�0, 0, �3� Q�4, 2, 0� R�3, 3, 1�

cba

c � �2, 1, 4 �b � ��1, 1, 2 �a � �1, 2, 3 �

c � i � j � kb � j � ka � i � j

PSPRPQ

S�3, 6, 1�R�1, 4, �1�Q�2, 3, 2�P��2, 1, 0�

S�0, 4, 2�R�5, 1, �1�Q��1, 2, 5�P�3, 0, 1�

w � 5 i � 9 j � 4 kv � 3 i � ju � i � 5 j � 2 k

D�3, 6, �4�C�5, 2, 0�B�3, �1, 6�A�1, 3, 2�

P

10°

70°
60 N

P

40. Find the magnitude of the torque about if a 36-lb force is
applied as shown.

41. A wrench 30 cm long lies along the positive -axis and grips a
bolt at the origin. A force is applied in the direction
at the end of the wrench. Find the magnitude of the force
needed to supply of torque to the bolt.

42. Let v � 5 j and let u be a vector with length 3 that starts at 
the origin and rotates in the -plane. Find the maximum and
minimum values of the length of the vector u � v. In what
direction does u � v point?

43. If and , find the angle between
and .

44. (a) Find all vectors such that

(b) Explain why there is no vector such that

45. (a) Let be a point not on the line that passes through the
points and . Show that the distance from the point 
to the line is

where QR
l

and QP
l

.
(b) Use the formula in part (a) to find the distance from 

the point to the line through and
.

46. (a) Let be a point not on the plane that passes through the
points , , and . Show that the distance from to the
plane is

where QR
l

, QS
l

, and QP
l

.
(b) Use the formula in part (a) to find the distance from the

point to the plane through the points ,
, and .

47. Show that .

48. If , show that

P

30°
36 lb

4 ft

4 ft
P

y
�0, 3, �4 �

100 N�m

xy

a � b � s3 a � b � �1, 2, 2 � a
b

v

�1, 2, 1 � � v � �3, 1, �5 �

v

�1, 2, 1 � � v � �3, 1, 5 �

P L
Q R d P

L

d � � a � b �
� a �

a � b �

P�1, 1, 1� Q�0, 6, 8�
R��1, 4, 7�

P
Q R S d P

d � � a � �b � c� �
� a � b �

a � b � c �

P�2, 1, 4� Q�1, 0, 0�
R�0, 2, 0� S�0, 0, 3�

� a � b �2 � � a �2 � b �2 � �a � b�2

a � b � b � c � c � a

a � b � c � 0
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840 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

49. Prove that .

50. Prove Property 6 of Theorem 11, that is,

51. Use Exercise 50 to prove that

52. Prove that

53. Suppose that .
(a) If , does it follow that ?
(b) If , does it follow that ?
(c) If and , does it follow 

that ?

�a � b� � �a � b� � 2�a � b�

a � �b � c� � �a � c�b � �a � b�c

a � �b � c� � b � �c � a� � c � �a � b� � 0

�a � b� � �c � d� � 	 a � c
a � d

b � c
b � d 	

a � 0
b � ca � b � a � c

b � ca � b � a � c
a � b � a � c a � b � a � c

b � c

54. If , , and are noncoplanar vectors, let

(These vectors occur in the study of crystallography. Vectors 
of the form , where each is an integer,
form a lattice for a crystal. Vectors written similarly in terms of

, , and form the reciprocal lattice.)
(a) Show that is perpendicular to if .
(b) Show that for .

(c) Show that .

k1 k2 k3

k i vj i � j
k i � vi � 1 i � 1, 2, 3

k1 � �k2 � k3 � �
1

v1 � �v2 � v3 �

v3v2v1

k2 �
v3 � v1

v1 � �v2 � v3 �
k1 �

v2 � v3

v1 � �v2 � v3 �

k3 �
v1 � v2

v1 � �v2 � v3 �

nin1 v1 � n2 v2 � n3 v3

D I S C O V E R Y  P R O J E C T THE GEOMETRY OF A TETRAHEDRON

A tetrahedron is a solid with four vertices, , , , and , and four triangular faces, as shown in
the figure.

1. Let , , , and be vectors with lengths equal to the areas of the faces opposite the
vertices , , , and , respectively, and directions perpendicular to the respective faces and
pointing outward. Show that

2. The volume of a tetrahedron is one-third the distance from a vertex to the opposite face,
times the area of that face.
(a) Find a formula for the volume of a tetrahedron in terms of the coordinates of its vertices 

, , , and .
(b)  Find the volume of the tetrahedron whose vertices are , , ,

and .

3. Suppose the tetrahedron in the figure has a trirectangular vertex S. (This means that the
three angles at S are all right angles.) Let A, B, and C be the areas of the three faces that
meet at S, and let D be the area of the opposite face PQR. Using the result of Problem 1, 
or otherwise, show that

(This is a three-dimensional version of the Pythagorean Theorem.)

P Q R S

v1 v2 v3 v4

P Q R S

v1 � v2 � v3 � v4 � 0

V

P Q R S
P�1, 1, 1� Q�1, 2, 3� R�1, 1, 2�

S�3, �1, 2�

D 2 � A2 � B 2 � C 2

P

RQ

S

A line in the -plane is determined when a point on the line and the direction of the line
(its slope or angle of inclination) are given. The equation of the line can then be written
using the point-slope form.

Likewise, a line in three-dimensional space is determined when we know a point
on and the direction of . In three dimensions the direction of a line is con-

veniently described by a vector, so we let be a vector parallel to . Let be an arbi-
trary point on and let and be the position vectors of and (that is, they have

xy

L
P0�x0, y0, z0� L L

P�x, y, z�Lv
PP0rr0L

12.5 Equations of Lines and Planes
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SECTION 12.5 EQUATIONS OF L INES AND PLANES 841

representations OPA and OPA). If is the vector with representation P PA, as in Figure 1, then
the Triangle Law for vector addition gives . But, since and are parallel vec-
tors, there is a scalar such that . Thus 

which is a vector equation of . Each value of the parameter gives the position vector
of a point on . In other words, as varies, the line is traced out by the tip of the vector . As
Figure 2 indicates, positive values of correspond to points on that lie on one side 
of , whereas negative values of correspond to points that lie on the other side of 

If the vector that gives the direction of the line is written in component form as
, then we have . We can also write and

, so the vector equation becomes

Two vectors are equal if and only if corresponding components are equal. Therefore we
have the three scalar equations:

where . These equations are called parametric equations of the line through the
point and parallel to the vector . Each value of the parameter
gives a point on .

(a) Find a vector equation and parametric equations for the line that passes through the
point and is parallel to the vector .
(b) Find two other points on the line.

SOLUTION
(a) Here and , so the vector equa -
tion becomes

or

Parametric equations are

(b) Choosing the parameter value gives , , and so is a
point on the line. Similarly, gives the point .

The vector equation and parametric equations of a line are not unique. If we change the
point or the parameter or choose a different parallel vector, then the equations change. For
instance, if, instead of , we choose the point in Example 1, then the para-
metric equations of the line become

0 a 0

r � r0 � a a v
t a � tv

1 r � r0 � tv

L t r
L t r

t L
P0 t P0.

v L
v � �a, b, c � tv � � ta, tb, tc � r � �x, y, z �
r0 � �x0, y0, z0 �

�x, y, z � � �x0 � ta, y0 � tb, z0 � tc �

2 x � x0 � at y � y0 � bt z � z0 � ct

t � � L
P0�x0, y0, z0� v � �a, b, c � t

�x, y, z� L

1

�5, 1, 3� i � 4 j � 2k

r0 � �5, 1, 3 � � 5 i � j � 3k v � i � 4 j � 2k

r � �5 i � j � 3k� � t�i � 4 j � 2k�

r � �5 � t� i � �1 � 4t� j � �3 � 2t� k

x � 5 � t y � 1 � 4t z � 3 � 2t

t � 1 x � 6 y � 5 z � 1, �6, 5, 1�
t � �1 �4, �3, 5�

EXAMPLE 1

1

�6, 5, 1��5, 1, 3�

z � 1 � 2ty � 5 � 4tx � 6 � t

x

O

z

y

a

v
rr¸L

P¸(x¸, y¸, z¸)

P(x, y, z)

FIGURE 1

x

z

y

L
t=0 t>0

t<0

r¸

FIGURE 2

Figure 3 shows the line in Exam ple 1 and its
relation to the given point and to the vector that
gives its direction.

L

(5, 1, 3)
r¸

v=i+4j-2k

x

z

y

L

FIGURE 3
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842 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

Or, if we stay with the point but choose the parallel vector , we arrive
at the equations

In general, if a vector is used to describe the direction of a line , then the
numbers , , and are called direction numbers of . Since any vector parallel to could
also be used, we see that any three numbers proportional to , , and could also be used
as a set of direction numbers for .

Another way of describing a line is to eliminate the parameter from Equations 2. If
none of , , or is , we can solve each of these equations for , equate the results, and
obtain

These equations are called symmetric equations of . Notice that the numbers , , and
that appear in the denominators of Equations 3 are direction numbers of , that is, com-

ponents of a vector parallel to . If one of , , or is , we can still eliminate . For
instance, if , we could write the equations of as

This means that lies in the vertical plane .

(a) Find parametric equations and symmetric equations of the line that passes through
the points and .
(b) At what point does this line intersect the -plane?

SOLUTION
(a) We are not explicitly given a vector parallel to the line, but observe that the vector 
with representation is parallel to the line and

Thus direction numbers are , , and . Taking the point as 
,we see that parametric equations are

and symmetric equations are

(b) The line intersects the -plane when , so we put in the symmetric equa-
tions and obtain

This gives and , so the line intersects the -plane at the point .

�5, 1, 3� 2 i � 8 j � 4k

x � 5 � 2t y � 1 � 8t z � 3 � 4t

v � �a, b, c � L
a b c L v

a b c
L

L t
a b c 0 t

3
x � x0

a
�

y � y0

b
�

z � z0

c

L a b
c L

L a b c 0 t
a � 0 L

x � x0
y � y0

b
�

z � z0

c

L x � x0

A�2, 4, �3� B�3, �1, 1�
xy

v
AB
l

v � �3 � 2, �1 � 4, 1 � ��3�� � �1, �5, 4 �

a � 1 b � �5 c � 4 �2, 4, �3�
P0

x � 2 � t y � 4 � 5t z � �3 � 4t

x � 2

1
�

y � 4

�5
�

z � 3

4

xy z � 0 z � 0

EXAMPLE 2

2
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x � 2

1
�

y � 4

�5
�

3

4

(11
4 , 1

4 , 0)xyy � 1
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4

Figure 4 shows the line in Example 2 and the
point where it intersects the -plane.xyP

L
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SECTION 12.5 EQUATIONS OF L INES AND PLANES 843

In general, the procedure of Example 2 shows that direction numbers of the line through
the points and are , , and and so symmet-
ric equations of are

Often, we need a description, not of an entire line, but of just a line segment. How, for
instance, could we describe the line segment in Example 2? If we put in the para-
metric equations in Example 2(a), we get the point and if we put we get

. So the line segment is described by the parametric equations

or by the corresponding vector equation

In general, we know from Equation 1 that the vector equation of a line through the (tip
of the) vector in the direction of a vector is . If the line also passes through
(the tip of) , then we can take and so its vector equation is

The line segment from to is given by the parameter interval .

The line segment from to is given by the vector equation

Show that the lines and with parametric equations

are skew lines; that is, they do not intersect and are not parallel (and therefore do not lie
in the same plane).

SOLUTION The lines are not parallel because the corresponding vectors and
are not parallel. (Their components are not proportional.) If and had a

point of intersection, there would be values of and such that

But if we solve the first two equations, we get and , and these values don’t
satisfy the third equation. Therefore there are no values of and that satisfy the three
equations, so and do not intersect. Thus and are skew lines.

Planes
Although a line in space is determined by a point and a direction, a plane in space is 
more difficult to describe. A single vector parallel to a plane is not enough to convey the
“direction” of the plane, but a vector perpendicular to the plane does completely specify

L
x � x0

x1 � x0
�

y � y0

y1 � y0
�

z � z0

z1 � z0

AB t � 0
�2, 4, �3� t � 1

�3, �1, 1� AB

x � 2 � t y � 4 � 5t z � �3 � 4t 0 � t � 1

r�t� � �2 � t, 4 � 5t, �3 � 4 t � 0 � t � 1

r0 v r � r0 � tv
r1 v � r1 � r0

r � r0 � t �r1 � r0� � �1 � t�r0 � tr1

L
z1 � z0y1 � y0x1 � x0P1�x1, y1, z1�P0�x0, y0, z0 �

r0 r1 0 � t � 1

4 r0 r1

r�t� � �1 � t�r0 � tr1 0 � t � 1

L1 L 2

x � 1 � t y � �2 � 3t z � 4 � t

x � 2s y � 3 � s z � �3 � 4s

�1, 3, �1 �
�2, 1, 4 � L1 L 2

t s

1 � t � 2s

�2 � 3t � 3 � s

4 � t � �3 � 4s

t � 11
5 s � 8

5

v EXAMPLE 3

st
L 2L1L 2L1

The lines and in Example 3, shown in
Figure 5, are skew lines.
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844 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

its direction. Thus a plane in space is determined by a point in the plane and
a vector that is orthogonal to the plane. This orthogonal vector is called a normal
vector. Let be an arbitrary point in the plane, and let and be the position vec-
tors of and . Then the vector is represented by P PA. (See Figure 6.) The normal
vector is orthogonal to every vector in the given plane. In particular, is orthogonal to

and so we have

which can be rewritten as

Either Equation 5 or Equation 6 is called a vector equation of the plane.
To obtain a scalar equation for the plane, we write , , and

. Then the vector equation becomes

or

Equation 7 is the scalar equation of the plane through with normal vector
.

Find an equation of the plane through the point with normal
vector . Find the intercepts and sketch the plane.

SOLUTION Putting , , , , , and in Equation 7, we
see that an equation of the plane is

or

To find the -intercept we set in this equation and obtain . Similarly, the
-intercept is 4 and the -intercept is 3. This enables us to sketch the portion of the plane

that lies in the first octant (see Figure 7).

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equation
of a plane as

where . Equation 8 is called a linear equation in , , and . Con-
versely, it can be shown that if , , and are not all 0, then the linear equation repre-
sents a plane with normal vector . (See Exercise 81.)

P�x, y, z� r0 r
P0 P r � r0 0

n n
r � r0

5 n � �r � r0 � � 0

6 n � r � n � r0

P0�x0, y0, z0�
n n

n � �a, b, c � r � �x, y, z �
r0 � �x0, y0, z0 �

�a, b, c � � �x � x0, y � y0, z � z0� � 0

7 a�x � x0 � � b�y � y0 � � c�z � z0 � � 0

P0�x0, y0, z0 �
n � �a, b, c �

�2, 4, �1�
n � �2, 3, 4 �

a � 2 b � 3 c � 4 x0 � 2 y0 � 4 z0 � �1

2�x � 2� � 3�y � 4� � 4�z � 1� � 0

2x � 3y � 4z � 12

x y � z � 0 x � 6
y z

5

v EXAMPLE 4

ax � by � cz � d � 08

zyxd � ��ax0 � by0 � cz0 �
8cba
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FIGURE 6
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SECTION 12.5 EQUATIONS OF L INES AND PLANES 845

Find an equation of the plane that passes through the points ,
, and .

SOLUTION The vectors and corresponding to PQ
l

and PR
l

are

Since both and lie in the plane, their cross product is orthogonal to the plane
and can be taken as the normal vector. Thus

With the point and the normal vector , an equation of the plane is

or

Find the point at which the line with parametric equations ,
, intersects the plane .

SOLUTION We substitute the expressions for , , and from the parametric equations
into the equation of the plane:

This simplifies to , so . Therefore the point of intersection occurs
when the parameter value is . Then , ,

and so the point of intersection is 

Two planes are parallel if their normal vectors are parallel. For instance, the planes
and are parallel because their normal vectors are

and and . If two planes are not parallel, then
they intersect in a straight line and the angle between the two planes is defined as the acute
angle between their normal vectors (see angle in Figure 9).

(a) Find the angle between the planes and .
(b) Find symmetric equations for the line of intersection of these two planes.

SOLUTION
(a) The normal vectors of these planes are

and so, if is the angle between the planes, Corollary 12.3.6 gives

(b) We first need to find a point on . For instance, we can find the point where the line
intersects the -plane by setting in the equations of both planes. This gives the 

P�1, 3, 2�EXAMPLE 5
R�5, 2, 0�Q�3, �1, 6�

ba

b � �4, �1, �2 �a � �2, �4, 4 �

a � bba

n � a � b � � i
2

4

j
�4

�1

k
4

�2 � � 12 i � 20 j � 14 k

nP�1, 3, 2�

12�x � 1� � 20�y � 3� � 14�z � 2� � 0

6x � 10y � 7z � 50

x � 2 � 3tEXAMPLE 6
4x � 5y � 2z � 18z � 5 � ty � �4t

zyx

4�2 � 3t� � 5��4t� � 2�5 � t� � 18

t � �2�10t � 20
y � �4��2� � 8x � 2 � 3��2� � �4t � �2

��4, 8, 3�.z � 5 � 2 � 3

2x � 4y � 6z � 3x � 2y � 3z � 4
n2 � 2n1n2 � �2, 4, �6 �n1 � �1, 2, �3 �

�

EXAMPLE 7v
x � 2y � 3z � 1x � y � z � 1

L

n2 � �1, �2, 3 �n1 � �1, 1, 1 �

�

cos � �
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z � 0xy

Figure 8 shows the portion of the plane in
Example 5 that is enclosed by triangle .PQR
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846 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

equations and , whose solution is , . So the point
lies on .

Now we observe that, since lies in both planes, it is perpendicular to both of the
normal vectors. Thus a vector parallel to is given by the cross product

and so the symmetric equations of can be written as

NOTE Since a linear equation in , , and represents a plane and two nonparallel
planes intersect in a line, it follows that two linear equations can represent a line. The
points that satisfy both and
lie on both of these planes, and so the pair of linear equations represents the line of inter-
section of the planes (if they are not parallel). For instance, in Example 7 the line was
given as the line of intersection of the planes and . The
symmetric equations that we found for could be written as

which is again a pair of linear equations. They exhibit as the line of intersection of the
planes and . (See Figure 11.)

In general, when we write the equations of a line in the symmetric form

we can regard the line as the line of intersection of the two planes

Find a formula for the distance from a point to the 
plane .

SOLUTION Let be any point in the given plane and let be the vector

corresponding to P PA. Then

From Figure 12 you can see that the distance from to the plane is equal to the
absolute value of the scalar projection of onto the normal vector . (See
Section 12.3.) Thus

v L
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Another way to find the line of intersection is
to solve the equations of the planes for two of
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Figure 11 shows how the line in Example 7
can also be regarded as the line of intersection
of planes derived from its symmetric equations.
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SECTION 12.5 EQUATIONS OF L INES AND PLANES 847

Since lies in the plane, its coordinates satisfy the equation of the plane and so we
have . Thus the formula for can be written as

Find the distance between the parallel planes and
.

SOLUTION First we note that the planes are parallel because their normal vectors
and are parallel. To find the distance between the planes, we

choose any point on one plane and calculate its distance to the other plane. In particular,
if we put in the equation of the first plane, we get and so 
is a point in this plane. By Formula 9, the distance between and the plane

is

So the distance between the planes is .

In Example 3 we showed that the lines

are skew. Find the distance between them.

SOLUTION Since the two lines and are skew, they can be viewed as lying on two
parallel planes and . The distance between and is the same as the distance
between and , which can be computed as in Example 9. The common normal vec-
tor to both planes must be orthogonal to both (the direction of ) and

(the direction of ). So a normal vector is

If we put in the equations of , we get the point on and so an equa-
tion for is

If we now set in the equations for , we get the point on . So 
the distance between and is the same as the distance from to

. By Formula 9, this distance is
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v1 � �1, 3, �1 � L1

v2 � �2, 1, 4 � L2

n � v1 � v2 � � i
1

2

j
3

1

k
�1

4 � � 13 i � 6 j � 5k

s � 0 L2 �0, 3, �3� L2

P2

13�x � 0� � 6�y � 3� � 5�z � 3� � 0 or 13x � 6y � 5z � 3 � 0

t � 0 L1 �1, �2, 4� P1

L1 L2 �1, �2, 4�
13x � 6y � 5z � 3 � 0

D � � 13�1� � 6��2� � 5�4� � 3 �
s13 2 � ��6�2 � ��5�2 

�
8

s230
� 0.53

EXAMPLE 10
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848 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

1. Determine whether each statement is true or false.
(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f ) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
( i) Two planes either intersect or are parallel.
( j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

2–5 Find a vector equation and parametric equations for the line.

2. The line through the point and parallel to the 
vector 

3. The line through the point and parallel to the 
vector 

4. The line through the point and parallel to the line
, , 

5. The line through the point (1, 0, 6) and perpendicular to the
plane 

6–12 Find parametric equations and symmetric equations for the
line.

6. The line through the origin and the point 

7. The line through the points and 

8. The line through the points and 

9. The line through the points and 

10. The line through and perpendicular to both 
and 

11. The line through and parallel to the line

12. The line of intersection of the planes 
and 

13. Is the line through and parallel to the
line through and ?

14. Is the line through and perpendicular to the
line through and ?

15. (a) Find symmetric equations for the line that passes 
through the point and is parallel to the vector

.
(b) Find the points in which the required line in part (a) inter-

sects the coordinate planes.

�6, �5, 2�
�1, 3, �2

3 �
�2, 2.4, 3.5�

3 i � 2 j � k

�0, 14, �10�
z � 3 � 9ty � 6 � 3tx � �1 � 2t

x � 3y � z � 5

�4, 3, �1�

�2, 1, �3�(0, 12 , 1)
�1.0, 2.4, 4.6� �2.6, 1.2, 0.3�

��8, 1, 4� �3, �2, 4�

i � j�2, 1, 0�
j � k

�1, �1, 1�
x � 2 � 1

2 y � z � 3

x � 2y � 3z � 1
x � y � z � 1

��2, 0, �3���4, �6, 1�
�5, 3, 14��10, 18, 4�

�1, 1, 1���2, 4, 0�
�3, �1, �8��2, 3, 4�

�1, �5, 6�
��1, 2, �3 �

16. (a) Find parametric equations for the line through that
is perpendicular to the plane .

(b) In what points does this line intersect the coordinate
planes?

17. Find a vector equation for the line segment from 
to .

18. Find parametric equations for the line segment from
to .

19–22 Determine whether the lines and are parallel, skew, or
intersecting. If they intersect, find the point of intersection.

19. : ,  ,  

: ,  ,  

20. : ,  ,  

: ,  ,  

21. : 

: 

22. : 

: 

23–40 Find an equation of the plane.

23. The plane through the origin and perpendicular to the 
vector 

24. The plane through the point and with normal 
vector 

25. The plane through the point and with normal 
vector 

26. The plane through the point and perpendicular to the
line , , 

27. The plane through the point and parallel to the
plane 

28. The plane through the point and parallel to the plane

29. The plane through the point and parallel to the plane

30. The plane that contains the line , ,
and is parallel to the plane 

31. The plane through the points , , and 

32. The plane through the origin and the points 
and 

�2, �1, 4�
�4, 6, 1�

�10, 3, 1�
�5, 6, �3�

�2, 4, 6�
x � y � 3z � 7

L1 L2

L1 x � 3 � 2t y � 4 � t z � 1 � 3t

L2 x � 1 � 4s y � 3 � 2s z � 4 � 5s

L1 x � 5 � 12t y � 3 � 9t

L2 x � 3 � 8s y � �6s z � 7 � 2s

L1
x � 2

1
�

y � 3

�2
�

z � 1

�3

L2
x � 3

1
�

y � 4

3
�

z � 2

�7

L1
x

1
�

y � 1

�1
�

z � 2

3

L2
x � 2

2
�

y � 3

�2
�

z

7

�1, �2, 5 �

�5, 3, 5�
2 i � j � k

(�1, 1
2 , 3)

i � 4 j � k

�2, 0, 1�
x � 3t y � 2 � t z � 3 � 4t

�1, �1, �1�
5x � y � z � 6

�2, 4, 6�
z � x � y

(1, 1
2 , 1

3)
x � y � z � 0

x � 1 � t y � 2 � t
z � 4 � 3t 5x � 2y � z � 1

�0, 1, 1� �1, 0, 1� �1, 1, 0�

�2, �4, 6�
�5, 1, 3�

z � 1 � 3t

12.5 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 12.5 EQUATIONS OF L INES AND PLANES 849

33. The plane through the points , , and

34. The plane that passes through the point and contains
the line , , 

35. The plane that passes through the point and contains
the line , , 

36. The plane that passes through the point and 
contains the line with symmetric equations 

37. The plane that passes through the point and contains
the line of intersection of the planes and

38. The plane that passes through the points and
and is perpendicular to the plane 

39. The plane that passes through the point and is perpen-
dicular to the planes and 

40. The plane that passes through the line of intersection of the
planes and and is perpendicular to the
plane 

41–44 Use intercepts to help sketch the plane.

41. 42.

43. 44.

45–47 Find the point at which the line intersects the given plane.

45. , , ;

46. , , ;  

47. ;  

48. Where does the line through and intersect
the plane ?

49. Find direction numbers for the line of intersection of the planes
and .

50. Find the cosine of the angle between the planes
and .

51–56 Determine whether the planes are parallel, perpendicular, or
neither. If neither, find the angle between them.

51. ,  

52. ,  

53. ,  

54. ,  

55. ,  

56. ,  

�3, �1, 2� �8, 2, 4�
��1, �2, �3�

�1, 2, 3�
x � 3t y � 1 � t z � 2 � t

�6, 0, �2�
z � 7 � 4 ty � 3 � 5tx � 4 � 2t

�1, �1, 1�
x � 2y � 3z

��1, 2, 1�
x � y � z � 2

2x � y � 3z � 1

�0, �2, 5�
2z � 5x � 4y��1, 3, 1�

�1, 5, 1�
x � 3z � 42x � y � 2z � 2

y � 2z � 3x � z � 1
x � y � 2z � 1

3x � y � 2z � 62x � 5y � z � 10

6x � 5y � 3z � 156x � 3y � 4z � 6

x � y � 2z � 9z � 5ty � 2 � tx � 3 � t

x � 2y � z � 1 � 0z � 2 � 3ty � 4tx � 1 � 2t

4x � y � 3z � 8x � y � 1 � 2z

�4, �2, 2��1, 0, 1�
x � y � z � 6

x � z � 0x � y � z � 1

x � y � z � 0
x � 2y � 3z � 1

�3x � 6y � 7z � 0x � 4y � 3z � 1

3x � 12y � 6z � 12z � 4y � x

x � y � z � 1x � y � z � 1

x � 6y � 4z � 32x � 3y � 4z � 5

8y � 1 � 2x � 4zx � 4y � 2z

2x � y � 2z � 1x � 2y � 2z � 1

57–58 (a) Find parametric equations for the line of intersection of
the planes and (b) find the angle between the planes.

57. ,  

58. ,  

59–60 Find symmetric equations for the line of intersection of the
planes.

59. ,  

60. ,  

61. Find an equation for the plane consisting of all points that are
equidistant from the points and .

62. Find an equation for the plane consisting of all points that are
equidistant from the points and .

63. Find an equation of the plane with -intercept , -intercept ,
and -intercept .

64. (a) Find the point at which the given lines intersect:

(b) Find an equation of the plane that contains these lines.

65. Find parametric equations for the line through the point
that is parallel to the plane and 

perpendicular to the line , , .

66. Find parametric equations for the line through the point
that is perpendicular to the line , 

, and intersects this line.

67. Which of the following four planes are parallel? Are any of
them identical?

68. Which of the following four lines are parallel? Are any of them
identical?

,  ,  

,  ,  

69–70 Use the formula in Exercise 45 in Section 12.4 to find the 
distance from the point to the given line.

69. ;  , , 

70. ;  , , 

3x � 2y � z � 1 2x � y � 3z � 3

5x � 2y � 2z � 1 4x � y � z � 6

z � 2x � y � 5 z � 4x � 3y � 5

�1, 0, �2� �3, 4, 0�

�2, 5, 5� ��6, 3, 1�

x a y b
z c

r � �1, 1, 0 � � t �1, �1, 2 �

r � �2, 0, 2 � � s ��1, 1, 0 �

�0, 1, 2� x � y � z � 2
x � 1 � t y � 1 � t z � 2t

�0, 1, 2� x � 1 � t
y � 1 � t z � 2t

P1:  3x � 6y � 3z � 6 P2: 4x � 12y � 8z � 5

P3: 9y � 1 � 3x � 6z P4: z � x � 2y � 2

L1: x � 1 � 6t y � 1 � 3t z � 12t � 5

L2: x � 1 � 2t y � t z � 1 � 4t

L3: 2x � 2 � 4 � 4y � z � 1

L4: r � �3, 1, 5 � � t �4, 2, 8 �

�4, 1, �2� x � 1 � t y � 3 � 2t z � 4 � 3t

�0, 1, 3� x � 2t y � 6 � 2t z � 3 � t

x � 2y � 2z � 1x � y � z � 1
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850 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

71–72 Find the distance from the point to the given plane.

71. ,  

72. ,  

73–74 Find the distance between the given parallel planes.

73. ,  

74. ,  

75. Show that the distance between the parallel planes
and is

76. Find equations of the planes that are parallel to the plane
and two units away from it.

77. Show that the lines with symmetric equations and
are skew, and find the distance between

these lines.

2x � 3y � z � 4 4x � 6y � 2z � 3

6z � 4y � 2x 9z � 1 � 3x � 6y

ax � by � cz � d1 � 0 ax � by � cz � d2 � 0

D � � d1 � d2 �
sa 2 � b 2 � c 2 

x � 2y � 2z � 1

x � y � z
x � 1 � y�2 � z�3

3x � 2y � 6z � 5�1, �2, 4�

x � 2y � 4z � 8��6, 3, 5�

78. Find the distance between the skew lines with parametric 
equations , , , and ,

, .

79. Let be the line through the origin and the point .
Let be the line through the points and .
Find the distance between and .

80. Let be the line through the points and . 
Let be the line of intersection of the planes and , 
where is the plane and is the plane
through the points , , and . Calculate
the distance between and .

81. If , , and are not all 0, show that the equation
represents a plane and is 

a normal vector to the plane.
Hint: Suppose and rewrite the equation in the form

82. Give a geometric description of each family of planes.
(a) (b)
(c)

L1 �2, 0, �1�
L2 �1, �1, 1� �4, 1, 3�

L1 L2

L1 �1, 2, 6� �2, 4, 8�
L2 �1 �2

�1 x � y � 2z � 1 � 0 �2

�3, 2, �1� �0, 0, 1� �1, 2, 1�
L1 L2

a b c
ax � by � cz � d � 0 �a, b, c �

a � 0

a�x �
d

a	 � b�y � 0� � c�z � 0� � 0

x � y � z � c x � y � cz � 1
y cos � � z sin � � 1

x � 1 � 2sz � 2ty � 1 � 6tx � 1 � t
z � �2 � 6sy � 5 � 15s

L A B O R AT O R Y  P R O J E C T PUTTING 3D IN PERSPECTIVE

Computer graphics programmers face the same challenge as the great painters of the past: how 
to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or a
canvas). To create the illusion of perspective, in which closer objects appear larger than those
farther away, three-dimensional objects in the computer’s memory are projected onto a rect-
angular screen window from a viewpoint where the eye, or camera, is located. The viewing
volume––the portion of space that will be visible––is the region contained by the four planes that
pass through the viewpoint and an edge of the screen window. If objects in the scene extend
beyond these four planes, they must be truncated before pixel data are sent to the screen. These
planes are therefore called clipping planes.

1. Suppose the screen is represented by a rectangle in the -plane with vertices
and , and the camera is placed at . A line in the scene passes
through the points and . At what points should be clipped
by the clipping planes?

2. If the clipped line segment is projected on the screen window, identify the resulting line
segment.

3. Use parametric equations to plot the edges of the screen window, the clipped line segment,
and its projection on the screen window. Then add sight lines connecting the viewpoint to
each end of the clipped segments to verify that the projection is correct.

4. A rectangle with vertices , , , and
is added to the scene. The line intersects this rectangle. To make the rect-

angle appear opaque, a programmer can use hidden line rendering, which removes portions
of objects that are behind other objects. Identify the portion of that should be removed.

yz �0, �400, 0�
�0, �400, 600� �1000, 0, 0� L

�230, �285, 102� �860, 105, 264� L

�621, �147, 206� �563, 31, 242� �657, �111, 86�
�599, 67, 122� L

L
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SECTION 12.6 CYLINDERS AND QUADRIC SURFACES 851

We have already looked at two special types of surfaces : planes (in Section 12.5) and
spheres (in Section 12.1). Here we investigate two other types of surfaces: cylinders and
quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of intersec-
tion of the surface with planes parallel to the coordinate planes. These curves are called
traces (or cross-sections) of the surface.

Cylinders
A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given
line and pass through a given plane curve.

Sketch the graph of the surface .

SOLUTION Notice that the equation of the graph, , doesn’t involve y. This means
that any vertical plane with equation (parallel to the -plane) intersects the graph
in a curve with equation . So these vertical traces are parabolas. Figure 1 shows
how the graph is formed by taking the parabola in the -plane and moving it in
the direction of the y-axis. The graph is a surface, called a parabolic cylinder, made up
of infinitely many shifted copies of the same parabola. Here the rulings of the cylinder are
parallel to the y-axis.

We noticed that the variable y is missing from the equation of the cylinder in Exam ple 1.
This is typical of a surface whose rulings are parallel to one of the coordinate axes. If one
of the variables x, y, or is missing from the equation of a surface, then the surface is a
cylinder.

Identify and sketch the surfaces.
(a) (b)

SOLUTION
(a) Since is missing and the equations , represent a circle with
radius 1 in the plane , the surface is a circular cylinder whose axis is
the -axis. (See Figure 2.) Here the rulings are vertical lines.

(b) In this case x is missing and the surface is a circular cylinder whose axis is the 
x-axis. (See Figure 3.) It is obtained by taking the circle , in the 

-plane and moving it parallel to the x-axis.

| NOTE When you are dealing with surfaces, it is important to recognize that an equation
like represents a cylinder and not a circle. The trace of the cylinder

in the -plane is the circle with equations , .

Quadric Surfaces
A quadric surface is the graph of a second-degree equation in three variables , , and .
The most general such equation is

where , , are constants, but by translation and rotation it can be brought into one
of the two standard forms

or    

z � x 2

z � x 2

y � k xz
z � x 2

z � x 2 xz

v EXAMPLE 1

z

x 2 � y 2 � 1 y 2 � z 2 � 1

z x 2 � y 2 � 1 z � k
z � k x 2 � y 2 � 1

z

y 2 � z2 � 1 x � 0
yz

EXAMPLE 2

x 2 � y 2 � 1
z � 0x 2 � y 2 � 1xyx 2 � y 2 � 1

zyx

Ax 2 � By 2 � Cz2 � Dxy � Eyz � Fxz � Gx � Hy � Iz � J � 0

C, . . . , JBA

Ax 2 � By 2 � Iz � 0Ax 2 � By 2 � Cz2 � J � 0

12.6 Cylinders and Quadric Surfaces

FIGURE 2   ≈+¥=1

0

z

y
x

FIGURE 3   ¥+z@=1

z

y

x

FIGURE 1
The surface z=≈ is a  
parabolic cylinder.

x y

0

z
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852 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

FIGURE 4

The ellipsoid ≈+     +     =1 
z@ 

4 

y@ 

9 

(0, 3, 0) 
0 

(0, 0, 2) 

(1, 0, 0) 

x 

y 

z 

Quadric surfaces are the counterparts in three dimensions of the conic sections in the plane.
(See Section 10.5 for a review of conic sections.)

Use traces to sketch the quadric surface with equation

SOLUTION By substituting , we find that the trace in the xy-plane is ,
which we recognize as an equation of an ellipse. In general, the horizontal trace in the
plane is

which is an ellipse, provided that , that is, .
Similarly, the vertical traces are also ellipses:

Figure 4 shows how drawing some traces indicates the shape of the surface. It’s called
an ellipsoid because all of its traces are ellipses. Notice that it is symmetric with respect
to each coordinate plane; this is a reflection of the fact that its equation involves only
even powers of x, y, and .

Use traces to sketch the surface .

SOLUTION If we put , we get , so the -plane intersects the surface in a
parabola. If we put (a constant), we get . This means that if we 
slice the graph with any plane parallel to the -plane, we obtain a parabola that opens
upward. Similarly, if , the trace is , which is again a parabola that
opens upward. If we put , we get the horizontal traces , which we 
recognize as a family of ellipses. Knowing the shapes of the traces, we can sketch the
graph in Figure 5. Because of the elliptical and parabolic traces, the quadric surface

is called an elliptic paraboloid.

x 2 �
y 2

9
�

z2

4
� 1

z � 0 x 2 � y 2�9 � 1

z � k

x 2 �
y 2

9
� 1 �

k 2

4
z � k

k 2 � 4 �2 � k � 2

y 2

9
�

z2

4
� 1 � k 2  x � k �if �1 � k � 1�

x 2 �
z2

4
� 1 �

k 2

9
 y � k �if �3 � k � 3�

z

EXAMPLE 3

z � 4x 2 � y 2EXAMPLE 4

yzz � y 2x � 0
z � y 2 � 4k 2x � k

yz
z � 4x 2 � k 2y � k

4x 2 � y 2 � kz � k

z � 4x 2 � y 2

x y

0

z

FIGURE 5 
The surface z=4≈+¥  is an elliptic

paraboloid. Horizontal traces are ellipses;
vertical traces are parabolas.
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SECTION 12.6 CYLINDERS AND QUADRIC SURFACES 853

Sketch the surface .

SOLUTION The traces in the vertical planes are the parabolas , which
open upward. The traces in are the parabolas , which open down-
ward. The horizontal traces are , a family of hyperbolas. We draw the fami-
lies of traces in Figure 6, and we show how the traces appear when placed in their 
correct planes in Figure 7.

In Figure 8 we fit together the traces from Figure 7 to form the surface , 
a hyperbolic paraboloid. Notice that the shape of the surface near the origin resembles
that of a saddle. This surface will be investigated further in Section 14.7 when we dis-
cuss saddle points.

Sketch the surface .

SOLUTION The trace in any horizontal plane is the ellipse

FIGURE 6
Vertical traces are parabolas;
horizontal traces are hyperbolas.
All traces are labeled with the
value of k.

FIGURE 7
Traces moved to their
correct planes

Traces in x=k are z=¥-k@

0

�1

�2

Traces in z=k are ¥-≈=k

_1

1

1

0

_1

Traces in x=k

x

y

z

1

0

_1

Traces in y=k are z=_≈+k@

0

�1

�2

Traces in y=k

1

x
y

    
z

_1
0

Traces in z=k

x
y

z

1

0

_1

z

y

y

x

z

x

z � y 2 � x 2

x 2

4
� y 2 �

z 2

4
� 1EXAMPLE 6

z � k

x 2

4
� y 2 � 1 �

k 2

4
z � k

z � y 2 � x 2EXAMPLE 5v

z � y 2 � k 2x � k
z � �x 2 � k 2y � k

y 2 � x 2 � k

x 
y 

0 

z 

FIGURE 8
The surface z=¥-≈ is a

hyperbolic paraboloid.

In Module 12.6A you can investigate how
traces determine the shape of a surface.
TEC
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854 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

but the traces in the - and -planes are the hyperbolas

This surface is called a hyperboloid of one sheet and is sketched in Figure 9.

The idea of using traces to draw a surface is employed in three-dimensional graphing
software for computers. In most such software, traces in the vertical planes and
are drawn for equally spaced values of , and parts of the graph are eliminated using hid-
den line removal. Table 1 shows computer-drawn graphs of the six basic types of quadric
surfaces in standard form. All surfaces are symmetric with respect to the -axis. If a quadric
surface is symmetric about a different axis, its equation changes accordingly.

k

z

yzxz

x 2

4
�

z2

4
� 1 y � 0 and y2 �

z2

4
� 1 x � 0

y � kx � k

FIGURE 9 

(0, 1, 0)(2, 0, 0)

yx

z

Surface Equation Surface Equation

Ellipsoid Cone

Elliptic Paraboloid Hyperboloid of One Sheet

Hyperbolic Paraboloid Hyperboloid of Two Sheets
z

yx

z

y

x

z

yx

z

y
x

z

yx

z

yx

Horizontal traces are ellipses.

Vertical traces in the planes
and are

hyperbolas if but are
pairs of lines if .k � 0

k � 0
y � kx � k

z 2

c 2 �
x 2

a 2 �
y 2

b 2

All traces are ellipses.

If , the ellipsoid is
a sphere.

a � b � c

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are hyperbolas.

The axis of symmetry
corresponds to the variable
whose coefficient is negative.

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are parabolas.

The variable raised to the
first power indicates the axis
of the paraboloid.

z

c
�

x 2

a 2 �
y 2

b 2

Horizontal traces in are
ellipses if or .

Vertical traces are hyperbolas.

The two minus signs indicate
two sheets.

k � �ck � c
z � k

�
x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are
hyperbolas.

Vertical traces are parabolas.

The case where is
illustrated.

c � 0

z

c
�

x 2

a 2 �
y 2

b 2

TABLE 1 Graphs of quadric surfaces

97817_12_ch12_p848-857.qk_97817_12_ch12_p848-857  11/8/10  8:56 AM  Page 854

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



SECTION 12.6 CYLINDERS AND QUADRIC SURFACES 855

Identify and sketch the surface .

SOLUTION Dividing by , we first put the equation in standard form:

Comparing this equation with Table 1, we see that it represents a hyperboloid of two
sheets, the only difference being that in this case the axis of the hyperboloid is the 
-axis. The traces in the - and -planes are the hyperbolas

The surface has no trace in the -plane, but traces in the vertical planes for
are the ellipses

which can be written as

These traces are used to make the sketch in Figure 10.

Classify the quadric surface .

SOLUTION By completing the square we rewrite the equation as

Comparing this equation with Table 1, we see that it represents an elliptic paraboloid.
Here, however, the axis of the paraboloid is parallel to the -axis, and it has been shifted
so that its vertex is the point . The traces in the plane are the
ellipses

The trace in the -plane is the parabola with equation , . The
paraboloid is sketched in Figure 11.

4x 2 � y 2 � 2z2 � 4 � 0

�4

�x 2 �
y 2

4
�

z2

2
� 1

y xy yz

�x 2 �
y 2

4
� 1 z � 0 and

y 2

4
�

z2

2
� 1 x � 0

xz y � k

� k � � 2

x 2 �
z2

2
�

k 2

4
� 1 y � k

x 2

k 2

4
� 1

�
z 2

2� k 2

4
� 1	 � 1 y � k

x 2 � 2z2 � 6x � y � 10 � 0

y � 1 � �x � 3�2 � 2z2

y
�3, 1, 0� y � k �k � 1�

�x � 3�2 � 2z2 � k � 1 y � k

xy y � 1 � �x � 3�2 z � 0

FIGURE 11
≈+2z@-6x-y+10=0

(3, 1, 0)

0

y

x

z

v EXAMPLE 7

EXAMPLE 8

FIGURE 10
4≈-¥+2z@+4=0

0

z

y

x (0, 2, 0)

(0, _2, 0)

In Module 12.6B you can see how 
changing , , and in Table 1 affects the 
shape of the quadric surface.

cba

TEC
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856 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

Applications of Quadric Surfaces
Examples of quadric surfaces can be found in the world around us. In fact, the world itself
is a good example. Although the earth is commonly modeled as a sphere, a more accurate
model is an ellipsoid because the earth’s rotation has caused a flattening at the poles. (See
Exercise 47.)

Circular paraboloids, obtained by rotating a parabola about its axis, are used to collect
and reflect light, sound, and radio and television signals. In a radio telescope, for instance,
signals from distant stars that strike the bowl are all reflected to the receiver at the focus and
are therefore amplified. (The idea is explained in Problem 16 on page 196.) The same prin-
ciple applies to microphones and satellite dishes in the shape of paraboloids.

Cooling towers for nuclear reactors are usually designed in the shape of hyperboloids of
one sheet for reasons of structural stability. Pairs of hyperboloids are used to transmit rota-
tional motion between skew axes. (The cogs of the gears are the generating lines of the
hyperboloids. See Exercise 49.)

©
 D

av
id

 F
ra

zie
r /

 C
or

bi
s

©
 M

ar
k 

C.
 B

ur
ne

tt 
/ P

ho
to

 R
es

ea
rc

he
rs

, I
nc

A satellite dish reflects signals to 
the focus of a paraboloid.

Nuclear reactors have cooling towers 
in the shape of hyperboloids.

Hyperboloids produce gear transmission.

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1. (a) What does the equation represent as a curve in ?
(b) What does it represent as a surface in ?
(c) What does the equation represent?

2. (a) Sketch the graph of as a curve in .
(b) Sketch the graph of as a surface in .
(c) Describe and sketch the surface .

3–8 Describe and sketch the surface.

3. 4.

y � x 2 �2

�3

z � y 2

y � e x �2

y � e x �3

z � e y

x 2 � z 2 � 1 4x 2 � y 2 � 4

5. 6.

7. 8.

9. (a) Find and identify the traces of the quadric surface
and explain why the graph looks like 

the graph of the hyperboloid of one sheet in Table 1.
(b) If we change the equation in part (a) to ,

how is the graph affected?
(c) What if we change the equation in part (a) to

?

z � 1 � y 2 y � z 2

xy � 1 z � sin y

x 2 � y2 � z2 � 1

x 2 � y2 � z2 � 1

x 2 � y2 � 2y � z2 � 0

12.6 Exercises
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SECTION 12.6 CYLINDERS AND QUADRIC SURFACES 857

10. (a) Find and identify the traces of the quadric surface
and explain why the graph looks like

the graph of the hyperboloid of two sheets in Table 1.
(b) If the equation in part (a) is changed to ,

what happens to the graph? Sketch the new graph.

11–20 Use traces to sketch and identify the surface.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21–28 Match the equation with its graph (labeled I–VIII). Give 
reasons for your choice.

21. 22.

23. 24.

25. 26.

27. 28.

�x 2 � y2 � z2 � 1

x 2 � y2 � z2 � 1

9x 2 � y 2 � z2 � 0x � y 2 � 4z2

25x 2 � 4y 2 � z2 � 100x 2 � y 2 � 4z 2

4x 2 � 9y 2 � z � 0�x 2 � 4y 2 � z2 � 4

4x 2 � 16y 2 � z2 � 1636x 2 � y 2 � 36z2 � 36

x � y 2 � z2y � z2 � x 2

9x 2 � 4y 2 � z2 � 1x 2 � 4y 2 � 9z2 � 1

�x 2 � y 2 � z2 � 1x 2 � y 2 � z2 � 1

y 2 � x 2 � 2z2y � 2x 2 � z2

y � x 2 � z2x 2 � 2z2 � 1

29–36 Reduce the equation to one of the standard forms, classify
the surface, and sketch it.

29. 30.

31. 32.

33.

34.

35.

36.

; 37–40 Use a computer with three-dimensional graphing software to
graph the surface. Experiment with viewpoints and with domains
for the variables until you get a good view of the surface.

37. 38.

39. 40.

41. Sketch the region bounded by the surfaces 
and for .

42. Sketch the region bounded by the paraboloids 
and .

43. Find an equation for the surface obtained by rotating the
parabola about the -axis.

44. Find an equation for the surface obtained by rotating the line
about the -axis.

45. Find an equation for the surface consisting of all points that 
are equidistant from the point and the plane .
Identify the surface.

46. Find an equation for the surface consisting of all points for
which the distance from to the -axis is twice the distance
from to the -plane. Identify the surface.

47. Traditionally, the earth’s surface has been modeled as a sphere,
but the World Geodetic System of 1984 (WGS-84) uses an
ellipsoid as a more accurate model. It places the center of the
earth at the origin and the north pole on the positive -axis. 
The distance from the center to the poles is 6356.523 km and
the distance to a point on the equator is 6378.137 km.
(a) Find an equation of the earth’s surface as used by 

WGS-84.
(b) Curves of equal latitude are traces in the planes .

What is the shape of these curves?
(c) Meridians (curves of equal longitude) are traces in 

planes of the form . What is the shape of these
meridians?

48. A cooling tower for a nuclear reactor is to be constructed in 
the shape of a hyperboloid of one sheet (see the photo on 
page 856). The diameter at the base is 280 m and the minimum 

4x 2 � y � 2z 2 � 0y 2 � x 2 �
1
9 z 2

x 2 � 2y � 2z2 � 0

4x 2 � y 2 � 4z2 � 4y � 24z � 36 � 0

4y 2 � z 2 � x � 16y � 4z � 20 � 0

x 2 � y 2 � z2 � 4x � 2y � 2z � 4 � 0

x 2 � y 2 � z2 � 2x � 2y � 4z � 2 � 0

�4x 2 � y 2 � z2 � 1 x 2 � y 2 � z � 0

�4x 2 � y 2 � z2 � 0 x 2 � 6x � 4y 2 � z � 0

z � sx 2 � y 2 

x 2 � y 2 � 1 1 � z � 2

z � x 2 � y 2

z � 2 � x 2 � y 2

y � x 2 y

x � 3y x

��1, 0, 0� x � 1

P
P x

P yz

z

z � k

y � mx

y 2 � x 2 � 4z 2 � 4

I

III

V

z

yx

z

y
x

z

y
x

z

y

x

z

yx

z

y
x

z

yx

z

II

IV

VI

VII VIII
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858 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

diameter, 500 m above the base, is 200 m. Find an equation 
for the tower.

49. Show that if the point lies on the hyperbolic parabo-
loid , then the lines with parametric equations

, , and ,
, both lie entirely on this parabo-

loid. (This shows that the hyperbolic paraboloid is what is
called a ruled surface; that is, it can be generated by the
motion of a straight line. In fact, this exercise shows that
through each point on the hyperbolic paraboloid there are two 

�a, b, c�
z � y 2 � x 2

x � a � t y � b � t z � c � 2�b � a�t x � a � t
y � b � t z � c � 2�b � a�t

generating lines. The only other quadric surfaces that are ruled
surfaces are cylinders, cones, and hyperbo loids of one sheet.)

50. Show that the curve of intersection of the surfaces
and 

lies in a plane.

; 51. Graph the surfaces and on a common
screen using the domain , and observe the
curve of intersection of these surfaces. Show that the projection
of this curve onto the -plane is an ellipse.

x 2 � 2y 2 � z2 � 3x � 1 2x 2 � 4y 2 � 2z2 � 5y � 0

z � x 2 � y 2 z � 1 � y 2

� x � � 1.2 � y � � 1.2

xy

12 Review

1. What is the difference between a vector and a scalar?

2. How do you add two vectors geometrically? How do you add
them algebraically?

3. If a is a vector and c is a scalar, how is ca related to a
geo metrically? How do you find ca algebraically?

4. How do you find the vector from one point to another?

5. How do you find the dot product of two vectors if you
know their lengths and the angle between them? What if you
know their components?

6. How are dot products useful?

7. Write expressions for the scalar and vector projections of b
onto a. Illustrate with diagrams.

8. How do you find the cross product a � b of two vectors if you
know their lengths and the angle between them? What if you
know their components?

9. How are cross products useful?

10. (a) How do you find the area of the parallelogram deter mined
by a and b?

(b) How do you find the volume of the parallelepiped 
determined by a, b, and c?

a � b

11. How do you find a vector perpendicular to a plane?

12. How do you find the angle between two intersecting planes?

13. Write a vector equation, parametric equations, and sym metric
equations for a line.

14. Write a vector equation and a scalar equation for a plane.

15. (a) How do you tell if two vectors are parallel?
(b) How do you tell if two vectors are perpendicular?
(c) How do you tell if two planes are parallel?

16. (a) Describe a method for determining whether three points 
, , and lie on the same line.

(b) Describe a method for determining whether four points 
, , , and lie in the same plane.

17. (a) How do you find the distance from a point to a line?
(b) How do you find the distance from a point to a plane?
(c) How do you find the distance between two lines?

18. What are the traces of a surface? How do you find them?

19. Write equations in standard form of the six types of quadric
surfaces.

P Q R

P Q R S

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. If and , then .

2. For any vectors and in , .

3. For any vectors and in , .

4. For any vectors and in , .

5. For any vectors and in , .

u � �u1, u2� v � �v1, v2 � u � v � �u1v1, u2v2�

u v V3 � u � v � � � u � � � v �
u v V3 � u � v � � � u �� v �
u v V3 � u � v � � � u �� v �
u v V3 u � v � v � u

6. For any vectors and in , .

7. For any vectors and in , .

8. For any vectors and in and any scalar ,
.

9. For any vectors and in and any scalar ,
.

10. For any vectors , , and in ,
.

u v w V3

�u � v� � w � u � w � v � w

u v V3 u � v � v � u

u v V3 � u � v � � � v � u �
u v V3 k

k�u � v� � �ku� � v

u v V3 k
k�u � v� � �ku� � v

True-False Quiz
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CHAPTER 12 REVIEW 859

11. For any vectors , , and in , 
.

12. For any vectors , , and in ,
.

13. For any vectors and in , .

14. For any vectors and in , .

15. The vector is parallel to the plane
.

u v w V3

u � �v � w� � �u � v� � w

u v w V3

u � �v � w� � �u � v� � w

u v V3 �u � v� � u � 0

u v V3 �u � v� � v � u � v

�3, �1, 2 �
6x � 2y � 4z � 1

16. A linear equation represents a line 
in space.

17. The set of points is a circle.

18. In the graph of is a paraboloid.

19. If , then or .

20. If , then or .

21. If and , then or .

22. If and are in , then .

u � v � 0 u � 0 v � 0

u � v � 0 u � v � 0 u � 0 v � 0

u v V3 � u � v � � � u �� v �

{�x, y, z� � x 2 � y 2 � 1}
y � x 2�3

v � 0u � 0u � v � 0

Ax � By � Cz � D � 0

1. (a) Find an equation of the sphere that passes through the point
and has center .

(b) Find the curve in which this sphere intersects the -plane.
(c) Find the center and radius of the sphere

2. Copy the vectors in the figure and use them to draw each of the
following vectors.
(a) (b) (c) (d)

3. If u and v are the vectors shown in the figure, find and
. Is u � v directed into the page or out of it?

4. Calculate the given quantity if

(a) (b)
(c) (d)
(e) (f )
(g) (h)
( i ) ( j)
(k) The angle between and (correct to the nearest degree)

5. Find the values of such that the vectors and
are orthogonal.

�6, �2, 3� ��1, 2, 1�
yz

x 2 � y2 � z2 � 8x � 2y � 6z � 1 � 0

a � b a � b �
1
2 a 2a � b

a
b

u � v

� u � v �

45°

|v |=3

|u |=2

a � i � j � 2k

b � 3 i � 2 j � k

c � j � 5k

2a � 3b � b �
a � b a � b

� b � c � a � �b � c�
c � c a � �b � c�
comp a b proja b

a b

x �3, 2, x �
�2x, 4, x �

6. Find two unit vectors that are orthogonal to both 
and .

7. Suppose that . Find
(a) (b)

(c) (d)

8. Show that if , , and are in , then

9. Find the acute angle between two diagonals of a cube.

10. Given the points , , , and
, find the volume of the parallelepiped with adjacent

edges , , and .

11. (a) Find a vector perpendicular to the plane through the points
, , and .

(b) Find the area of triangle .

12. A constant force moves an object along
the line segment from to . Find the work done
if the distance is measured in meters and the force in newtons.

13. A boat is pulled onto shore using two ropes, as shown in the
diagram. If a force of 255 N is needed, find the magnitude of
the force in each rope.

14. Find the magnitude of the torque about if a 50-N force is
applied as shown.

j � 2k
i � 2 j � 3k

u � �v � w� � 2
�u � v� � w u � �w � v�
v � �u � w� �u � v� � v

a b c V3

�a � b� � ��b � c� � �c � a�� � �a � �b � c��2

A�1, 0, 1� B�2, 3, 0� C��1, 1, 4�
D�0, 3, 2�

AB AC AD

A�1, 0, 0� B�2, 0, �1� C�1, 4, 3�
ABC

F � 3 i � 5 j � 10k
�1, 0, 2� �5, 3, 8�

20°
30°

255 N

P

P

40 cm

50 N
30°

Exercises
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860 CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

15–17 Find parametric equations for the line.

15. The line through and 

16. The line through and parallel to the line

17. The line through and perpendicular to the 
plane 

18–20 Find an equation of the plane.

18. The plane through and parallel to 

19. The plane through , , and 

20. The plane through that contains the line 
, , 

21. Find the point in which the line with parametric equations
, , intersects the plane

.

22. Find the distance from the origin to the line 
, , .

23. Determine whether the lines given by the symmetric 
equations

and

are parallel, skew, or intersecting.

24. (a) Show that the planes and
are neither parallel nor perpendicular.

�4, �1, 2� �1, 1, 5�

�1, 0, �1�
1
3�x � 4� � 1

2 y � z � 2

��2, 2, 4�
2x � y � 5z � 12

x � 4y � 3z � 1�2, 1, 0�

�6, 3, 1��4, 0, 2��3, �1, 1�

�1, 2, �2�
z � 1 � 3ty � 3 � tx � 2t

z � 4ty � 1 � 3tx � 2 � t
2x � y � z � 2

z � �1 � 2ty � 2 � tx � 1 � t

x � 1

2
�

y � 2

3
�

z � 3

4

x � 1

6
�

y � 3

�1
�

z � 5

2

x � y � z � 1
2x � 3y � 4z � 5

(b) Find, correct to the nearest degree, the angle between these
planes.

25. Find an equation of the plane through the line of intersection of
the planes and and perpendicular to the
plane .

26. (a) Find an equation of the plane that passes through the points
, , and .

(b) Find symmetric equations for the line through that is 
perpendicular to the plane in part (a).

(c) A second plane passes through and has normal
vector . Show that the acute angle between the
planes is approximately .

(d) Find parametric equations for the line of intersection of the
two planes.

27. Find the distance between the planes 
and .

28–36 Identify and sketch the graph of each surface.

28. 29.

30. 31.

32. 33.

34.

35.

36.

37. An ellipsoid is created by rotating the ellipse
about the -axis. Find an equation of the ellipsoid.

38. A surface consists of all points such that the distance from
to the plane is twice the distance from to the point

. Find an equation for this surface and identify it.

4x � y � 2z � 4 �4x 2 � y 2 � 4z2 � 4

y 2 � z2 � 1 � x 2

4x 2 � 4y 2 � 8y � z2 � 0

x � y2 � z2 � 2y � 4z � 5

4x 2 � y 2 � 16
x

P P
y � 1 P

�0, �1, 0�

y � 2z � 3x � z � 1
x � y � 2z � 1

C�1, 3, �4�B��1, �1, 10�A�2, 1, 1�
B

�2, 0, 4�
�2, �4, �3 �

43�

3x � y � 4z � 2
3x � y � 4z � 24

x � zx � 3

x 2 � y 2 � 4z2y � z2
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1. Each edge of a cubical box has length 1 m. The box contains nine spherical balls with the
same radius . The center of one ball is at the center of the cube and it touches the other eight
balls. Each of the other eight balls touches three sides of the box. Thus the balls are tightly
packed in the box. (See the figure.) Find . (If you have trouble with this problem, read about
the problem-solving strategy entitled Use Analogy on page 97.)

2. Let be a solid box with length , width , and height . Let be the set of all points that
are a distance at most 1 from some point of . Express the volume of in terms of , , 
and .

3. Let be the line of intersection of the planes and , 
where is a real number.
(a) Find symmetric equations for .
(b) As the number varies, the line sweeps out a surface . Find an equation for the curve

of intersection of with the horizontal plane (the trace of in the plane ).
(c) Find the volume of the solid bounded by and the planes and .

4. A plane is capable of flying at a speed of 180 km	h in still air. The pilot takes off from an
airfield and heads due north according to the plane’s compass. After 30 minutes of flight time,
the pilot notices that, due to the wind, the plane has actually traveled 80 km at an angle 5°
east of north.
(a) What is the wind velocity?
(b) In what direction should the pilot have headed to reach the intended destination?

5. Suppose and are vectors with , , and . Let ,
, , and so on. Compute .

6. Find an equation of the largest sphere that passes through the point and is such that
each of the points inside the sphere satisfies the condition

7. Suppose a block of mass is placed on an inclined plane, as shown in the figure. The block’s
descent down the plane is slowed by friction; if is not too large, friction will prevent the
block from moving at all. The forces acting on the block are the weight , where
( is the acceleration due to gravity); the normal force (the normal component of the reac-
tionary force of the plane on the block), where ; and the force F due to friction,
which acts parallel to the inclined plane, opposing the direction of motion. If the block is at
rest and is increased, must also increase until ultimately reaches its maximum,
beyond which the block begins to slide. At this angle , it has been observed that is
proportional to . Thus, when is maximal, we can say that , where is 
called the coefficient of static friction and depends on the materials that are in contact.
(a) Observe that N � F � W � 0 and deduce that .
(b) Suppose that, for , an additional outside force is applied to the block, horizon-

tally from the left, and let . If is small, the block may still slide down the
plane; if is large enough, the block will move up the plane. Let be the smallest
value of that allows the block to remain motionless (so that is maximal).

By choosing the coordinate axes so that lies along the -axis, resolve each force into
components parallel and perpendicular to the inclined plane and show that

and    

(c) Show that

Does this equation seem reasonable? Does it make sense for ? As ?
Explain.

r

r

B L W H S
B S L W

H

L cx � y � z � c x � cy � cz � �1
c

L
c L S

S z � t S z � t
S z � 0 z � 1

v1 v2 � v1 � � 2 � v2 � � 3 v1 � v2 � 5 v3 � projv1v2

v4 � projv2v3 v5 � projv3v4 
�
n�1 � vn �

��1, 1, 4�
�x, y, z�

x 2 � y 2 � z 2 	 136 � 2�x � 2y � 3z�

m



W � W � � mt

t N

� N � � n


 � F � � F �

s � F �

n � F � � F � � �s n �s

�s � tan�
s�

 � 
s H

� H � � h h
h hmin

h � F �
F x

hmin sin 
 � mt cos 
 � n hmin cos 
 � �s n � mt sin 


hmin � mt tan�
 � 
s�


 � 
s 
 l 90�

Problems Plus

861

1 m

1 m
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FIGURE FOR PROBLEM 1
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W

FIGURE FOR PROBLEM 7

¨
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(d) Let be the largest value of that allows the block to remain motionless. (In which
direction is heading?) Show that

Does this equation seem reasonable? Explain.

8. A solid has the following properties. When illuminated by rays parallel to the -axis, its
shadow is a circular disk. If the rays are parallel to the -axis, its shadow is a square. If the
rays are parallel to the -axis, its shadow is an isosceles triangle. (In Exercise 44 in Sec-
tion 12.1 you were asked to describe and sketch an example of such a solid, but there are 
many such solids.) Assume that the projection onto the -plane is a square whose sides have
length 1.
(a) What is the volume of the largest such solid?
(b) Is there a smallest volume?

hmax h
F

hmax � mt tan�
 � 
s�

z
y

x

xz

862
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Vector Functions13

The functions that we have been using so far have been real-valued functions. We now study functions
whose values are vectors because such functions are needed to describe curves and surfaces in space. We
will also use vector-valued functions to describe the motion of objects through space. In particular, we
will use them to derive Kepler’s laws of planetary motion.

863

© Christos Georghiou / Shutterstock

Kepler’s First Law says that the planets
revolve around the sun in elliptical orbits.
In Section 13.4 you will see how the
material of this chapter is used in one of
the great achievements of calculus:
proving Kepler’s Laws.
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864 CHAPTER 13 VECTOR FUNCTIONS

In general, a function is a rule that assigns to each element in the domain an element in the
range. A vector-valued function, or vector function, is simply a function whose domain is
a set of real numbers and whose range is a set of vectors. We are most interested in vector
functions whose values are three-dimensional vectors. This means that for every number

in the domain of there is a unique vector in denoted by . If , , and are
the components of the vector , then , , and are real-valued functions called the com-
ponent functions of and we can write

We use the letter to denote the independent variable because it represents time in most
applications of vector functions.

If

then the component functions are

By our usual convention, the domain of consists of all values of for which the 
expression for is defined. The expressions , , and are all defined 
when and . Therefore the domain of is the interval .

The limit of a vector function is defined by taking the limits of its component functions
as follows.

If , then

provided the limits of the component functions exist.

Equivalently, we could have used an definition (see Exercise 51). Limits of vector
functions obey the same rules as limits of real-valued functions (see Exercise 49).

Find , where .

SOLUTION According to Definition 1, the limit of r is the vector whose components are
the limits of the component functions of r:

(by Equation 2.4.2)

r
t r V3 r�t� f �t� t�t� h�t�

r�t� f t h
r

r�t� � � f �t�, t�t�, h�t�� � f �t� i � t�t� j � h�t� k

t

r�t� � �t3, ln�3 � t�, st �

f �t� � t 3
t�t� � ln�3 � t� h�t� � st

r t
r�t� t 3 ln�3 � t� st

3 � t � 0 t � 0 r �0, 3�

r

1 r�t� � � f �t�, t�t�, h�t��

lim
t l a

r�t� � � lim
t l a

f �t�, lim
t l a

t�t�, lim
t l a

h�t��

EXAMPLE 1

�-�

lim
t l 0

r�t� r�t� � �1 � t 3� i � te�t j �
sin t

t
k

lim
t l 0

r�t� � � lim
t l 0

 �1 � t 3�� i � � lim
t l 0

te�t � j � �lim
t l 0

sin t

t 	k

� i � k

EXAMPLE 2

13.1 Vector Functions and Space Curves

If , this definition is equiva-
lent to saying that the length and direction 
of the vector approach the length and
direction of the vector .L

r�t�

lim t la r�t� � L
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES 865

A vector function is continuous at a if

In view of Definition 1, we see that is continuous at if and only if its component func-
tions , , and are continuous at .

There is a close connection between continuous vector functions and space curves. Sup-
pose that , , and are continuous real-valued functions on an interval . Then the set of
all points in space, where

and varies throughout the interval , is called a space curve. The equations in are called
parametric equations of C and is called a parameter. We can think of as being traced
out by a moving particle whose position at time is . If we now consider the
vector function , then is the position vector of the point

on . Thus any continuous vector function defines a space curve that
is traced out by the tip of the moving vector , as shown in Figure 1.

Describe the curve defined by the vector function

SOLUTION The corresponding parametric equations are

which we recognize from Equations 12.5.2 as parametric equations of a line passing
through the point and parallel to the vector . Alternatively, we could
observe that the function can be written as , where and

, and this is the vector equation of a line as given by Equation 12.5.1.

Plane curves can also be represented in vector notation. For instance, the curve given by
the parametric equations and (see Example 1 in Section 10.1) could
also be described by the vector equation

where and .

Sketch the curve whose vector equation is

SOLUTION The parametric equations for this curve are

Since , the curve must lie on the circular cylinder
. The point lies directly above the point , which moves 

counterclockwise around the circle in the xy-plane. (The projection of the
curve onto the -plane has vector equation . See Example 2 in
Section 10.1.) Since , the curve spirals upward around the cylinder as increases.
The curve, shown in Figure 2, is called a helix.

r a
f t h a

f t h I C
�x, y, z�

2 x � f �t� y � t�t� z � h�t�

t I
t C

t � f �t�, t�t�, h�t��
r�t� � � f �t�, t�t�, h�t�� r�t�

P� f �t�, t�t�, h�t�� C r C
r�t�

r�t� � �1 � t, 2 � 5t, �1 � 6t �

x � 1 � t y � 2 � 5t z � �1 � 6t

�1, 2, �1� �1, 5, 6 �
r � r0 � tv r0 � �1, 2, �1 �

v � �1, 5, 6 �

x � t 2 � 2t y � t � 1

r�t� � � t 2 � 2t, t � 1 � � �t 2 � 2t� i � �t � 1� j

i � �1, 0 � j � �0, 1 �

r�t� � cos t i � sin t j � t k

x � cos t y � sin t z � t

x 2 � y 2 � cos2t � sin2t � 1
x 2 � y 2 � 1 �x, y, z� �x, y, 0�

x 2 � y 2 � 1
xy r�t� � �cos t, sin t, 0�

z � t t

r

lim
t l a

r�t� � r�a�

v EXAMPLE 3

v EXAMPLE 4

2

FIGURE 1
C is traced out by the tip of a moving
position vector r(t).

C

0

z

x
y

P{f(t), g(t), h(t)}

r(t)=kf(t), g(t), h(t)l

Visual 13.1A shows several curves being
traced out by position vectors, including those in
Figures 1 and 2.

TEC

FIGURE 2

 ”0, 1,    ’
π
2

(1, 0, 0)

z

x

y
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866 CHAPTER 13 VECTOR FUNCTIONS

The corkscrew shape of the helix in Example 4 is familiar from its occurrence in coiled
springs. It also occurs in the model of DNA (deoxyribonucleic acid, the genetic material of
living cells). In 1953 James Watson and Francis Crick showed that the structure of the DNA
molecule is that of two linked, parallel helixes that are intertwined as in Figure 3.

In Examples 3 and 4 we were given vector equations of curves and asked for a geo-
metric description or sketch. In the next two examples we are given a geometric descrip-
tion of a curve and are asked to find parametric equations for the curve.

Find a vector equation and parametric equations for the line segment that
joins the point to the point .

SOLUTION In Section 12.5 we found a vector equation for the line segment that joins the
tip of the vector to the tip of the vector :

(See Equation 12.5.4.) Here we take and to obtain a
vector equation of the line segment from to :

or

The corresponding parametric equations are

Find a vector function that represents the curve of intersection of the
cylinder and the plane .

SOLUTION Figure 5 shows how the plane and the cylinder intersect, and Figure 6 shows
the curve of intersection C, which is an ellipse.

P�1, 3, �2� Q�2, �1, 3�

r 0 r1

r�t� � �1 � t�r 0 � tr1 0 � t � 1

r 0 � �1, 3, �2 � r1 � �2, �1, 3 �
P Q

r�t� � �1 � t� �1, 3, �2 � � t �2, �1, 3 � 0 � t � 1

r�t� � �1 � t, 3 � 4t, �2 � 5t � 0 � t � 1

x � 1 � t y � 3 � 4t z � �2 � 5t 0 � t � 1

x 2 � y 2 � 1 y � z � 2

FIGURE 5 FIGURE 6

C

(0, _1, 3)

(1, 0, 2)

(_1, 0, 2)

(0, 1, 1)

y+z=2

≈+¥=1

z

y

0

x

z

yx

EXAMPLE 5

v EXAMPLE 6

FIGURE 4

Q(2, _1, 3)

P(1, 3, _2)

z

x y

FIGURE 3
A double helix

Figure 4 shows the line segment in 
Example 5.

PQ
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES 867

The projection of C onto the xy-plane is the circle . So we know
from Example 2 in Section 10.1 that we can write

From the equation of the plane, we have

So we can write parametric equations for C as

The corresponding vector equation is

This equation is called a parametrization of the curve C. The arrows in Figure 6 indicate
the direction in which C is traced as the parameter t increases.

Using Computers to Draw Space Curves
Space curves are inherently more difficult to draw by hand than plane curves; for an accu-
rate representation we need to use technology. For instance, Figure 7 shows a computer-
generated graph of the curve with parametric equations

It’s called a toroidal spiral because it lies on a torus. Another interesting curve, the trefoil
knot, with equations

is graphed in Figure 8. It wouldn’t be easy to plot either of these curves by hand.

Even when a computer is used to draw a space curve, optical illusions make it difficult
to get a good impression of what the curve really looks like. (This is especially true in Fig-
ure 8. See Exercise 50.) The next example shows how to cope with this problem.

Use a computer to draw the curve with vector equation This
curve is called a twisted cubic.

SOLUTION We start by using the computer to plot the curve with parametric equations
, , for . The result is shown in Figure 9(a), but it’s hard to 

x 2 � y 2 � 1, z � 0

x � cos t y � sin t 0 � t � 2	

z � 2 � y � 2 � sin t

x � cos t y � sin t z � 2 � sin t 0 � t � 2	

r�t� � cos t i � sin t j � �2 � sin t� k 0 � t � 2	

x � �4 � sin 20t� cos t y � �4 � sin 20t� sin t z � cos 20t

x � �2 � cos 1.5t� cos t y � �2 � cos 1.5t� sin t z � sin 1.5t

FIGURE 7 A toroidal spiral FIGURE 8 A trefoil knot

z

x

y

z

x
y

r�t� � � t, t 2, t 3�.

x � t y � t 2 z � t 3 �2 � t � 2

EXAMPLE 7
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868 CHAPTER 13 VECTOR FUNCTIONS

see the true nature of the curve from that graph alone. Most three-dimensional computer
graphing programs allow the user to enclose a curve or surface in a box instead of dis-
playing the coordinate axes. When we look at the same curve in a box in Figure 9(b), we
have a much clearer picture of the curve. We can see that it climbs from a lower corner
of the box to the upper corner nearest us, and it twists as it climbs.

We get an even better idea of the curve when we view it from different vantage
points. Part (c) shows the result of rotating the box to give another viewpoint. Parts (d),
(e), and (f ) show the views we get when we look directly at a face of the box. In par -
ticular, part (d) shows the view from directly above the box. It is the projection of the
curve on the -plane, namely, the parabola . Part (e) shows the projection on 
the -plane, the cubic curve . It’s now obvious why the given curve is called a
twisted cubic.

Another method of visualizing a space curve is to draw it on a surface. For instance, the
twisted cubic in Example 7 lies on the parabolic cylinder . (Eliminate the parameter
from the first two parametric equations, and .) Figure 10 shows both the cylin-
der and the twisted cubic, and we see that the curve moves upward from the origin along
the surface of the cylinder. We also used this method in Example 4 to visualize the helix
lying on the circular cylinder (see Figure 2).
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FIGURE 9 Views of the twisted cubic

xy y � x 2

xz z � x 3

y � x 2

x � t y � t 2

FIGURE 10

z

x
y

In Visual 13.1B you can rotate the box 
in Figure 9 to see the curve from any viewpoint.
TEC
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES 869

1–2 Find the domain of the vector function.

1.

2.

r�t� � �s4 � t 2 , e�3 t, ln�t � 1� �

r�t� �
t � 2

t � 2
 i � sin t j � ln�9 � t2� k

3–6 Find the limit.

3.

4.

lim
t l 0

e�3 t i �

t 2

sin2t
j � cos 2t k�

lim
t l 1

 t 2 � t

t � 1
 i � st � 8 j �

sin 	 t

ln t
k�

13.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

A third method for visualizing the twisted cubic is to realize that it also lies on the cylin-
der . So it can be viewed as the curve of intersection of the cylinders and

. (See Figure 11.)

We have seen that an interesting space curve, the helix, occurs in the model of DNA.
Another notable example of a space curve in science is the trajectory of a positively charged
particle in orthogonally oriented electric and magnetic fields E and B. Depending on the 
initial velocity given the particle at the origin, the path of the particle is either a space curve
whose projection on the horizontal plane is the cycloid we studied in Section 10.1 [Fig-
ure 12(a)] or a curve whose projection is the trochoid investigated in Exercise 40 in Sec-
tion 10.1 [Figure 12(b)].

For further details concerning the physics involved and animations of the trajectories of
the particles, see the following web sites:

■ www.phy.ntnu.edu.tw/java/emField/emField.html

■ www.physics.ucla.edu/plasma-exp/Beam/

z � x 3 y � x 2

z � x 3

FIGURE 11

8

4

0z

0
x

1 0 2
y

4

_4

_8
_1

(a)  r(t) = kt-sin t, 1-cos t, tl

B

E

t

(b)  r(t) = kt-    sin t, 1-    cos t, tl3
2

3
2

B

E

t

FIGURE 12
Motion of a charged particle in 
orthogonally oriented electric 
and magnetic fields

FIGURE 13

Visual 13.1C shows how curves arise 
as intersections of surfaces.
TEC

Some computer algebra systems provide us
with a clearer picture of a space curve by
enclosing it in a tube. Such a plot enables us
to see whether one part of a curve passes in
front of or behind another part of the curve. 
For example, Figure 13 shows the curve of 
Figure 12(b) as rendered by the tubeplot
command in Maple.
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870 CHAPTER 13 VECTOR FUNCTIONS

5.

6.

7–14 Sketch the curve with the given vector equation. Indicate with
an arrow the direction in which increases.

7. 8.

9. 10.

11. 12.

13.

14.

15–16 Draw the projections of the curve on the three coordinate
planes. Use these projections to help sketch the curve.

15. 16.

17–20 Find a vector equation and parametric equations for the line
segment that joins to .

17. ,  18. ,  

19. ,  20. ,  

21–26 Match the parametric equations with the graphs 
(labeled I–VI). Give reasons for your choices.

lim
t l 


� 1 � t 2

1 � t 2 , tan�1 t, 
1 � e�2t

t 
lim
t l 


�te�t, 
t 3 � t

2t 3 � 1
, t sin 

1

t

t

r�t� � �sin t, t � r�t� � � t 3, t 2 �

r�t� � � t, 2 � t, 2t � r�t� � �sin 	 t, t, cos 	 t �

r�t� � �1, cos t, 2 sin t � r�t� � t 2 i � t j � 2k

r�t� � t 2 i � t 4 j � t 6 k

r�t� � cos t i � cos t j � sin t k

r�t� � � t, sin t, 2 cos t � r�t� � � t, t, t 2 �

P Q

P�2, 0, 0� Q�6, 2, �2� P��1, 2, �2� Q��3, 5, 1�

P�0, �1, 1� Q(1
2, 

1
3, 

1
4) P�a, b, c� Q�u, v, w�

III IV

I II

V VIz

x y
y

z

x

x
y

z z

x y

yx

z

x
y

z

21. ,  ,  ,  

22. ,  ,  

23. ,  ,  

24. ,  ,  

25. ,  ,  ,  

26. ,  ,  

27. Show that the curve with parametric equations ,
, lies on the cone , and use this

fact to help sketch the curve.

28. Show that the curve with parametric equations ,
, is the curve of intersection of the surfaces

and . Use this fact to help sketch the curve.

29. At what points does the curve intersect
the paraboloid ?

30. At what points does the helix intersect
the sphere ?

; 31–35 Use a computer to graph the curve with the given vector
equation. Make sure you choose a parameter domain and view-
points that reveal the true nature of the curve.

31.

32.

33.

34.

35.

; 36. Graph the curve with parametric equations ,
. Explain its shape by graphing its projections onto

the three coordinate planes.

; 37. Graph the curve with parametric equations

Explain the appearance of the graph by showing that it lies on
a cone.

; 38. Graph the curve with parametric equations

Explain the appearance of the graph by showing that it lies on
a sphere.

x � cos t y � sin t z � 1��1 � t 2�

x � t y � 1��1 � t 2 � z � t 2

x � cos t y � sin t z � cos 2t

x � cos 8t y � sin 8t z � e 0.8 t t � 0

x � cos2 t y � sin2 t z � t

x � t cos t
y � t sin t z � t z2 � x 2 � y 2

x � sin t
y � cos t z � sin2t
z � x 2 x 2 � y 2 � 1

r�t� � t i � �2t � t 2� k
z � x 2 � y 2

r�t� � �sin t, cos t, t�
x 2 � y 2 � z2 � 5

r�t� � �cos t sin 2t, sin t sin 2t, cos 2t �

t � 0z � t sin ty � tx � t cos t

r�t� � � t 2, ln t, t�

r�t� � � t, t sin t, t cos t �

r�t� � � t, e t, cos t �

r�t� � �cos 2t, cos 3t, cos 4t �

x � sin t y � sin 2t,
z � cos 4 t

x � �1 � cos 16t� cos t

y � �1 � cos 16t� sin t

z � 1 � cos 16t

x � s1 � 0.25 cos 2 10t cos t

y � s1 � 0.25 cos 2 10t sin t

z � 0.5 cos 10t
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SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS 871

39. Show that the curve with parametric equations ,
, passes through the points (1, 4, 0)

and (9, �8, 28) but not through the point (4, 7, �6).

40–44 Find a vector function that represents the curve of inter-
section of the two surfaces.

40. The cylinder and the surface 

41. The cone and the plane 

42. The paraboloid and the parabolic 
cylinder 

43. The hyperboloid and the cylinder 

44. The semiellipsoid , , and the 
cylinder 

; 45. Try to sketch by hand the curve of intersection of the circu-
lar cylinder and the parabolic cylinder . 
Then find parametric equations for this curve and use these
equations and a computer to graph the curve.

; 46. Try to sketch by hand the curve of intersection of the 
parabolic cylinder and the top half of the ellipsoid

. Then find parametric equations for 
this curve and use these equations and a computer to graph 
the curve.

47. If two objects travel through space along two different
curves, it’s often important to know whether they will
collide. (Will a missile hit its moving target? Will two
aircraft collide?) The curves might intersect, but we need to
know whether the objects are in the same position at the
same time. Suppose the trajectories of two particles are
given by the vector functions

for . Do the particles collide?

z � 1 � t 3y � 1 � 3t

z � xyx 2 � y 2 � 4

z � 1 � yz � sx 2 � y 2 

z � 4x 2 � y 2

y � x 2

x 2 � y 2 � 1z � x 2 � y 2

y � 0x 2 � y 2 � 4z 2 � 4
x 2 � z 2 � 1

z � x 2x 2 � y 2 � 4

y � x 2

x 2 � 4y 2 � 4z2 � 16

r2 �t� � �4t � 3, t 2, 5t � 6 �r1 �t� � � t 2, 7t � 12, t 2�

t � 0

x � t 2 48. Two particles travel along the space curves

Do the particles collide? Do their paths intersect?

49. Suppose and are vector functions that possess limits as
and let be a constant. Prove the following prop erties

of limits.

(a)

(b)

(c)

(d)

50. The view of the trefoil knot shown in Figure 8 is accurate,
but it doesn’t reveal the whole story. Use the parametric
equations

to sketch the curve by hand as viewed from above, with
gaps indicating where the curve passes over itself. Start by
showing that the projection of the curve onto the -plane
has polar coordinates and , so
varies between 1 and 3. Then show that has maximum and
minimum values when the projection is halfway between

and .

; When you have finished your sketch, use a computer to
draw the curve with viewpoint directly above and compare
with your sketch. Then use the computer to draw the curve
from several other viewpoints. You can get a better impres-
sion of the curve if you plot a tube with radius 0.2 around 
the curve. (Use the tubeplot command in Maple or the
tubecurve or Tube command in Mathematica.)

51. Show that if and only if for every 
there is a number such that 

if then  

t l a c

lim
t l a

�u�t� � v�t�� � lim
t l a

u�t� � lim
t l a

v�t�

lim
t l a

cu�t� � c lim
t l a

u�t�

lim
t l a

�u�t� � v�t�� � lim
t l a

u�t� � lim
t l a

v�t�

lim
t l a

�u�t� � v�t�� � lim
t l a

u�t� � lim
t l a

v�t�

x � �2 � cos 1.5t� cos t

y � �2 � cos 1.5t� sin t

z � sin 1.5t

xy
r � 2 � cos 1.5t � � t r

z

r � 1 r � 3

lim t l a r�t� � b � � 0
	 � 0

0 
 � t � a � 
 	 � r�t� � b � 
 �

vu

r2 �t� � �1 � 2t, 1 � 6t, 1 � 14t �r1 �t� � � t, t 2, t 3 �

13.2 Derivatives and Integrals of Vector Functions

Later in this chapter we are going to use vector functions to describe the motion of planets
and other objects through space. Here we prepare the way by developing the calculus of vec-
tor functions.

Derivatives
The derivative of a vector function is defined in much the same way as for real-
valued functions:

r� r

1
dr
dt

� r��t� � lim
h l 0

r�t � h� � r�t�
h
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872 CHAPTER 13 VECTOR FUNCTIONS

if this limit exists. The geometric significance of this definition is shown in Figure 1. If the
points and have position vectors and , then PQ

l
represents the vector

, which can therefore be regarded as a secant vector. If , the scalar
multiple has the same direction as . As , it
appears that this vector approaches a vector that lies on the tangent line. For this reason, the
vector is called the tangent vector to the curve defined by at the point , provided
that exists and . The tangent line to at is defined to be the line through
parallel to the tangent vector . We will also have occasion to consider the unit tangent
vector, which is

The following theorem gives us a convenient method for computing the derivative of a
vector function : just differentiate each component of .

Theorem If , where , , and
are differentiable functions, then

PROOF

P Q r�t� r�t � h�
r�t � h� � r�t� h � 0

�1�h��r�t � h� � r�t�� r�t � h� � r�t� h l 0

r��t� r P
r��t� r��t� � 0 C P P

r��t�

T�t� �
r��t�

� r��t� �

FIGURE 1 (b) The tangent vector rª(t)(a) The secant vector PQ

0

P

C

Q

r(t+h)-r(t)

r(t)

r(t+h)

0

C

P
Q

r(t+h)
r(t)

rª(t)

y

z

x x

z

y

r(t+h)-r(t)
h

r r

2 r�t� � � f �t�, t�t�, h�t�� � f �t� i � t�t� j � h�t� k f t

h

r��t� � � f ��t�, t��t�, h��t�� � f ��t� i � t��t� j � h��t� k

r��t� � lim
�t l 0

1

�t
�r�t � �t� � r�t�	

� lim
�t l 0

1

�t
�� f �t � �t�, t�t � �t�, h�t � �t�� � � f �t�, t�t�, h�t��	

� lim
�t l 0


 f �t � �t� � f �t�
�t

, 
t�t � �t� � t�t�

�t
, 

h�t � �t� � h�t�
�t �

� 
 lim
�t l 0

f �t � �t� � f �t�
�t

, lim
�t l 0

t�t � �t� � t�t�
�t

, lim
�t l 0

h�t � �t� � h�t�
�t �

� � f ��t�, t��t�, h��t��

Visual 13.2 shows an animation 
of Figure 1.
TEC
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SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS 873

(a) Find the derivative of .
(b) Find the unit tangent vector at the point where .

SOLUTION
(a) According to Theorem 2, we differentiate each component of r:

(b) Since and , the unit tangent vector at the point is

For the curve , find and sketch the position 
vector and the tangent vector .

SOLUTION We have

The curve is a plane curve and elimination of the parameter from the equations 
, gives , . In Figure 2 we draw the position vector

starting at the origin and the tangent vector starting at the correspond-
ing point .

Find parametric equations for the tangent line to the helix with para-
metric equations

at the point .

SOLUTION The vector equation of the helix is , so

The parameter value corresponding to the point is , so the tangent
vector there is . The tangent line is the line through
parallel to the vector , so by Equations 12.5.2 its parametric equations are

r�t� � �1 � t 3� i � te�t j � sin 2t k
t � 0

r��t� � 3t 2 i � �1 � t�e�t j � 2 cos 2t k

r�0� � i r��0� � j � 2k �1, 0, 0�

T�0� �
r��0�

� r��0� � �
j � 2k
s1 � 4

�
1

s5
j �

2

s5
k

r�t� � st i � �2 � t� j r��t�
r�1� r��1�

r��t� �
1

2st
i � j and r��1� �

1

2
 i � j

x � st y � 2 � t y � 2 � x 2 x � 0
r�1� � i � j r��1�

�1, 1�

x � 2 cos t y � sin t z � t

�0, 1, ��2�

r�t� � �2 cos t, sin t, t �

r��t� � ��2 sin t, cos t, 1 �

�0, 1, ��2� t � ��2
r����2� � ��2, 0, 1 � �0, 1, ��2�

��2, 0, 1 �

x � �2t y � 1 z �
�

2
� t

EXAMPLE 1v

EXAMPLE 2

v EXAMPLE 3

FIGURE 3

z

0

12

1
0

_1
2

0
_2

y
x

8

4

_0.5 0.5

r(1) rª(1)

(1, 1)

FIGURE 2

0

y

2

x1

Notice from Figure 2 that the tangent vector
points in the direction of increasing . (See
Exercise 56.)

t

The helix and the tangent line in Example 3 are
shown in Figure 3.
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874 CHAPTER 13 VECTOR FUNCTIONS

Just as for real-valued functions, the second derivative of a vector function r is the 
derivative of , that is, . For instance, the second derivative of the function in
Example 3 is

Differentiation Rules
The next theorem shows that the differentiation formulas for real-valued functions have
their counterparts for vector-valued functions.

Theorem Suppose and are differentiable vector functions, is a scalar,
and is a real-valued function. Then

1.

2.

3.

4.

5.

6. (Chain Rule)

This theorem can be proved either directly from Definition 1 or by using Theorem 2 and
the corresponding differentiation formulas for real-valued functions. The proof of Formula 4
follows; the remaining formulas are left as exercises.

PROOF OF FORMULA 4 Let

Then

so the ordinary Product Rule gives

Show that if (a constant), then is orthogonal to for 
all .

r� r	 � �r���

r	�t� � ��2 cos t, �sin t, 0 �

3 u v c
f

d

dt
�u�t� � v�t�	 � u��t� � v��t�

d

dt
�cu�t�	 � cu��t�

d

dt
� f �t� u�t�	 � f ��t� u�t� � f �t� u��t�

d

dt
�u�t� � v�t�	 � u��t� � v�t� � u�t� � v��t�

d

dt
�u�t� 
 v�t�	 � u��t� 
 v�t� � u�t� 
 v��t�

d

dt
�u� f �t��	 � f ��t�u�� f �t��

u�t� � � f1�t�, f2�t�, f3�t�� v�t� � � t1�t�, t2�t�, t3�t��

u�t� � v�t� � f1�t� t1�t� � f2�t� t2�t� � f3�t� t3�t� � �
3

i�1
fi�t� ti�t�

d

dt
�u�t� � v�t�	 �

d

dt �
3

i�1
fi�t� ti�t� � �

3

i�1

d

dt
� fi�t� ti�t�	

� �
3

i�1
� f �i �t� ti�t� � fi�t� t�i�t�	

� �
3

i�1
f �i �t� ti�t� � �

3

i�1
fi�t� t�i�t�

� u��t� � v�t� � u�t� � v��t�

� r�t� � � c r��t� r�t�
t

v EXAMPLE 4

In Section 13.4 we will see how and 
can be interpreted as the velocity and accelera-
tion vectors of a particle moving through space
with position vector at time .tr�t�

r	�t�r��t�
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SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS 875

SOLUTION Since

and is a constant, Formula 4 of Theorem 3 gives

Thus , which says that is orthogonal to .
Geometrically, this result says that if a curve lies on a sphere with center the origin,

then the tangent vector is always perpendicular to the position vector .

Integrals
The definite integral of a continuous vector function can be defined in much the same
way as for real-valued functions except that the integral is a vector. But then we can express
the integral of in terms of the integrals of its component functions , , and as follows.
(We use the notation of Chapter 4.)

and so

This means that we can evaluate an integral of a vector function by integrating each com-
ponent function.

We can extend the Fundamental Theorem of Calculus to continuous vector functions as
follows:

where is an antiderivative of , that is, . We use the notation for indefi-
nite integrals (antiderivatives).

If , then

where is a vector constant of integration, and

r�t� � r�t� � � r�t� �2 � c 2

c 2

0 �
d

dt
�r�t� � r�t�	 � r��t� � r�t� � r�t� � r��t� � 2r��t� � r�t�

r��t� � r�t� � 0 r��t� r�t�

r��t� r�t�

r�t�

r f t h

y
b

a
r�t� dt � lim

n l �
�
n

i�1
r�t*i � �t

� lim
n l �

��
n

i�1
f �t*i � �t� i � ��

n

i�1
t�t*i � �t� j � ��

n

i�1
h�t*i � �t� k�

y
b

a
r�t� dt � �y

b

a
f �t� dt� i � �y

b

a
t�t� dt� j � �y

b

a
h�t� dt� k

y
b

a
r�t� dt � R�t�]b

a � R�b� � R�a�

R r R��t� � r�t� x r�t� dt

r�t� � 2 cos t i � sin t j � 2t k

y r�t� dt � �y 2 cos t dt� i � �y sin t dt� j � �y 2t dt� k

� 2 sin t i � cos t j � t 2 k � C

C

y
��2

0
r�t� dt � [2 sin t i � cos t j � t 2 k]0

��2
� 2 i � j �

� 2

4
 k

EXAMPLE 5
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876 CHAPTER 13 VECTOR FUNCTIONS

1. The figure shows a curve given by a vector function .
(a) Draw the vectors and .
(b) Draw the vectors

(c) Write expressions for and the unit tangent vector T(4).
(d) Draw the vector T(4).

2. (a) Make a large sketch of the curve described by the vector
function , , and draw the vectors
r(1), r(1.1), and r(1.1) � r(1).

(b) Draw the vector starting at (1, 1), and compare it with
the vector

Explain why these vectors are so close to each other in
length and direction.

3–8
(a) Sketch the plane curve with the given vector equation.
(b) Find .
(c) Sketch the position vector and the tangent vector for

the given value of .

3. ,  

4. ,  

5. ,  

6. ,  

7. ,  

8. ,  

9–16 Find the derivative of the vector function.

9.

10.

11.

12.

C r�t�
r�4.5� � r�4� r�4.2� � r�4�

r�4.5� � r�4�
0.5

and
r�4.2� � r�4�

0.2

r��4�

x0 1

1

y
RC

Q

P

r(4.5)

r(4.2)

r(4)

r�t� � � t 2, t � 0 � t � 2

r��1�

r�1.1� � r�1�
0.1

r��t�
r�t� r��t�

t

r�t� � � t � 2, t 2 � 1 � t � �1

r�t� � � t 2, t 3 � t � 1

r�t� � sin t i � 2 cos t j t � ��4

r�t� � e t i � e �t j t � 0

r�t� � e2 t i � et j t � 0

r�t� � �1 � cos t� i � �2 � sin t� j t � ��6

r�t� � � t sin t, t 2, t cos 2t �

r�t� � � tan t, sec t, 1�t 2�

r�t� � t i � j � 2st k

r�t� �
1

1 � t
i �

t

1 � t
j �

t 2

1 � t
k

13.

14.

15.

16.

17–20 Find the unit tangent vector at the point with the given
value of the parameter .

17. ,  

18. ,  

19. ,  

20. ,  

21. If , find and 

22. If , find , , and 

23–26 Find parametric equations for the tangent line to the curve
with the given parametric equations at the specified point.

23. ,  ,  ;  

24. ,  ,  ;  

25. ,  ,  ;  

26. ,  ,  ;  

27. Find a vector equation for the tangent line to the curve of inter-
section of the cylinders and at the
point .

28. Find the point on the curve ,
, where the tangent line is parallel to the plane

.

29–31 Find parametric equations for the tangent line to the curve
with the given parametric equations at the specified point. Illus-
trate by graphing both the curve and the tangent line on a common
screen.

29. , , ;  

30. , , ;  

31. , , ;  

32. (a) Find the point of intersection of the tangent lines to the
curve at the points where

and .

; (b) Illustrate by graphing the curve and both tangent lines.

33. The curves and inter-
sect at the origin. Find their angle of intersection correct to the
nearest degree.

r�t� � at cos 3t i � b sin3t j � c cos 3t k

r�t� � a � t b � t 2 c

r�t� � t a 
 �b � t c�

T�t�
t

r�t� � � te�t, 2 arctan t, 2e t� t � 0

r�t� � � t 3 � 3t, t 2 � 1, 3t � 4 � t � 1

r�t� � cos t i � 3t j � 2 sin 2t k t � 0

r�t� � sin2t i � cos2t j � tan2 t k t � ��4

r�t� � � t, t 2, t 3 � r��t�, T�1�, r	�t�, r��t� 
 r	�t�.

r�t� � �e 2 t, e�2 t, te 2 t� T�0� r	�0� r��t� � r	�t�.

x � 1 � 2st y � t 3 � t z � t 3 � t �3, 0, 2�

x � e t y � te t z � te t2

�1, 0, 0�

x � e�t cos t y � e�t sin t z � e�t �1, 0, 1�

x � st 2 � 3 y � ln�t 2 � 3� z � t �2, ln 4, 1�

x 2 � y 2 � 25 y 2 � z 2 � 20
�3, 4, 2�

r�t� � �2 cos t, 2 sin t, e t�
0 � t � �
s3 x � y � 1

CAS

x � t y � e�t z � 2t � t 2 �0, 1, 0�

x � 2 cos t y � 2 sin t z � 4 cos 2t (s3 , 1, 2)
x � t cos t y � t z � t sin t ���, �, 0�

r�t� � �sin � t, 2 sin � t, cos � t �
t � 0 t � 0.5

r2�t� � �sin t, sin 2t, t �r1�t� � � t, t 2, t 3 �

r�t� � e t 2

i � j � ln�1 � 3t� k

13.2 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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SECTION 13.3 ARC LENGTH AND CURVATURE 877

34. At what point do the curves and
intersect? Find their angle of inter-

section correct to the nearest degree.

35–40 Evaluate the integral.

35.

36.

37.

38.

39.

40.

41. Find if and .

42. Find if and .

43. Prove Formula 1 of Theorem 3.

44. Prove Formula 3 of Theorem 3.

45. Prove Formula 5 of Theorem 3.

46. Prove Formula 6 of Theorem 3.

47. If and , use 
Formula 4 of Theorem 3 to find 

y
2

0
�t i � t 3 j � 3t 5 k� dt

y
1

0
� 4

1 � t 2 j �
2t

1 � t 2 k� dt

y
��2

0
�3 sin 2t cos t i � 3 sin t cos 2t j � 2 sin t cos t k� dt

y
2

1
(t 2 i � tst � 1 j � t sin � t k) dt

y �sec2 t i � t�t 2 � 1�3 j � t 2 ln t k� dt

y �te 2t i �
t

1 � t
j �

1

s1 � t 2
k� dt

r�t� r��t� � 2t i � 3t 2 j � st k r�1� � i � j

r�t� r��t� � t i � e t j � te t k r�0� � i � j � k

r2�s� � �3 � s, s � 2, s 2 �
r1�t� � � t, 1 � t, 3 � t 2 �

v�t� � � t, cos t, sin t �u�t� � �sin t, cos t, t �

d

dt
�u�t� � v�t�	

48. If and are the vector functions in Exercise 47, use For-
mula 5 of Theorem 3 to find 

49. Find , where , ,
, and .

50. If , where are the vector functions in
Exercise 49, find .

51. Show that if is a vector function such that exists, then

52. Find an expression for .

53. If , show that .

[Hint: ]

54. If a curve has the property that the position vector is
always perpendicular to the tangent vector , show that 
the curve lies on a sphere with center the origin.

55. If , show that

56. Show that the tangent vector to a curve defined by a vector
function points in the direction of increasing . [Hint: Refer
to Figure 1 and consider the cases and separately.]

d

dt
�u�t� 
 v�t�	

f ��2� f �t� � u�t� � v�t� u�2� � �1, 2, �1 �
u��2� � �3, 0, 4 � v�t� � � t, t 2, t 3 �

r�t� � u�t� 
 v�t� u and v
r��2�

r r	

d

dt
�r�t� 
 r��t�	 � r�t� 
 r	�t�

d

dt
�u�t� � �v�t� 
 w�t��	

r�t� � 0
d

dt � r�t� � �
1

� r�t� � r�t� � r��t�

� r�t� �2 � r�t� � r�t�

r�t�
r��t�

u�t� � r�t� � �r��t� 
 r	�t�	

u��t� � r�t� � �r��t� 
 r�t�	

r�t� t
h � 0 h � 0

vu

In Section 10.2 we defined the length of a plane curve with parametric equations ,
, , as the limit of lengths of inscribed polygons and, for the case where

and are continuous, we arrived at the formula

The length of a space curve is defined in exactly the same way (see Figure 1). Suppose
that the curve has the vector equation , , or, equivalently,
the parametric equations , , , where , , and are continuous. If
the curve is traversed exactly once as increases from to , then it can be shown that its
length is

x � f �t�
y � t�t� a � t � b
f � t�

1 L � y
b

a
s� f ��t�	2 � �t��t�	2 dt � y

b

a
��dx

dt �2

� �dy

dt �2 

dt

r�t� � � f �t�, t�t�, h�t�� a � t � b
x � f �t� y � t�t� z � h�t� f � t� h�

t a b

2 L � y
b

a
s� f ��t�	2 � �t��t�	2 � �h��t�	2 dt

� y
b

a
��dx

dt �2

� �dy

dt �2

� �dz

dt �2 

dt

13.3 Arc Length and Curvature

FIGURE 1
The length of a space curve is the limit
of lengths of inscribed polygons.

0

z

x
y
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878 CHAPTER 13 VECTOR FUNCTIONS

Notice that both of the arc length formulas and can be put into the more compact
form

because, for plane curves ,

and for space curves ,

Find the length of the arc of the circular helix with vector equation
from the point to the point .

SOLUTION Since , we have

The arc from to is described by the parameter interval
and so, from Formula 3, we have

A single curve can be represented by more than one vector function. For instance, the
twisted cubic

could also be represented by the function

where the connection between the parameters and is given by . We say that Equa-
tions 4 and 5 are parametrizations of the curve . If we were to use Equation 3 to com-
pute the length of using Equations 4 and 5, we would get the same answer. In general, it
can be shown that when Equation 3 is used to compute arc length, the answer is indepen-
dent of the parametrization that is used.

Now we suppose that is a curve given by a vector function

where is continuous and is traversed exactly once as increases from to . We define
its arc length function by

Thus is the length of the part of between and . (See Figure 3.) If we differ-
entiate both sides of Equation 6 using Part 1 of the Fundamental Theorem of Cal cu lus, we
obtain

3 L � y
b

a
� r��t� � dt

r�t� � f �t� i � t�t� j

� r��t� � � � f ��t� i � t��t� j � � s� f ��t�	2 � �t��t�	2 

r�t� � f �t� i � t�t� j � h�t� k

� r��t� � � � f ��t� i � t��t� j � h��t� k � � s� f ��t�	2 � �t��t�	2 � �h��t�	2 

r�t� � cos t i � sin t j � t k �1, 0, 0� �1, 0, 2��

r��t� � �sin t i � cos t j � k

� r��t� � � s��sin t�2 � cos2t � 1 � s2

�1, 0, 0� �1, 0, 2�� 0 � t � 2�

L � y
2�

0
� r��t� � dt � y

2�

0
s2 dt � 2s2�

C

4 r1�t� � � t, t 2, t 3 � 1 � t � 2

5 r2�u� � �eu, e 2u, e 3u� 0 � u � ln 2

t u t � eu

C
C

C

r�t� � f �t� i � t�t�j � h�t�k a � t � b

r� C t a b
s

6 s�t� � y
t

a
� r��u� � du � y

t

a
�� dx

du�2

� � dy

du�2

� � dz

du�2 

du

s�t� C r�a� r�t�

7
ds

dt
� � r��t� �

1 2

v EXAMPLE 1Figure 2 shows the arc of the helix 
whose length is computed in Example 1.

FIGURE 2

(1, 0, 2π)

z

x
y

(1, 0, 0)

FIGURE 3

z

0

x
y

C

r(t)

r(a)

s(t)
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SECTION 13.3 ARC LENGTH AND CURVATURE 879

It is often useful to parametrize a curve with respect to arc length because arc length
arises naturally from the shape of the curve and does not depend on a particular coordinate
system. If a curve is already given in terms of a parameter and is the arc length
function given by Equation 6, then we may be able to solve for as a function of :
Then the curve can be reparametrized in terms of by substituting for : . Thus,
if for instance, is the position vector of the point 3 units of length along the
curve from its starting point.

Reparametrize the helix with respect to arc
length measured from in the direction of increasing .

SOLUTION The initial point corresponds to the parameter value . From 
Example 1 we have

and so

Therefore and the required reparametrization is obtained by substituting for :

Curvature
A parametrization is called smooth on an interval if is continuous and 
on . A curve is called smooth if it has a smooth parametrization. A smooth curve has no
sharp corners or cusps; when the tangent vector turns, it does so continuously.

If is a smooth curve defined by the vector function , recall that the unit tangent vec-
tor is given by

and indicates the direction of the curve. From Figure 4 you can see that changes direc-
tion very slowly when is fairly straight, but it changes direction more quickly when
bends or twists more sharply.

The curvature of at a given point is a measure of how quickly the curve changes direc-
tion at that point. Specifically, we define it to be the magnitude of the rate of change of the
unit tangent vector with respect to arc length. (We use arc length so that the curvature will
be independent of the parametrization.)

Definition The curvature of a curve is

where is the unit tangent vector.

The curvature is easier to compute if it is expressed in terms of the parameter instead
of , so we use the Chain Rule (Theorem 13.2.3, Formula 6) to write

r�t� t s�t�
t s t � t�s�.

s t r � r�t�s��
s � 3 r�t�3��

r�t� � cos t i � sin t j � t k
�1, 0, 0� t

�1, 0, 0� t � 0

ds

dt
� � r��t� � � s2

s � s�t� � y
t

0
� r��u� � du � y

t

0
s2 du � s2 t

t � s�s2 t

r�t�s�� � cos(s�s2 ) i � sin(s�s2 ) j � (s�s2 ) k

r�t� I r� r��t� � 0
I

C r
T�t�

T�t� �
r��t�

� r��t� �
T�t�

C C

C

8

� � � dT
ds �

T

t
s

dT
dt

�
dT
ds

ds

dt
and � � � dT

ds � � � dT�dt

ds�dt �

EXAMPLE 2

FIGURE 4
Unit tangent vectors at equally spaced
points on C

z

0

x y
C

Visual 13.3A shows animated unit 
tangent vectors, like those in Figure 4, for 
a variety of plane curves and space curves.

TEC
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880 CHAPTER 13 VECTOR FUNCTIONS

But from Equation 7, so

Show that the curvature of a circle of radius is .

SOLUTION We can take the circle to have center the origin, and then a parametrization is

Therefore

so

and

This gives , so using Equation 9, we have

The result of Example 3 shows that small circles have large curvature and large circles
have small curvature, in accordance with our intuition. We can see directly from the defi-
nition of curvature that the curvature of a straight line is always 0 because the tangent vec-
tor is constant.

Although Formula 9 can be used in all cases to compute the curvature, the formula given
by the following theorem is often more convenient to apply.

Theorem The curvature of the curve given by the vector function is

PROOF Since and , we have

so the Product Rule (Theorem 13.2.3, Formula 3) gives

Using the fact that (see Example 2 in Section 12.4), we have

ds�dt � � r��t� �

9 ��t� � � T��t� �
� r��t� �

a 1�a

r�t� � a cos t i � a sin t j

r��t� � �a sin t i � a cos t j and � r��t� � � a

T�t� �
r��t�

� r��t� � � �sin t i � cos t j

T��t� � �cos t i � sin t j

� T��t� � � 1

��t� � � T��t��
� r��t� � �

1

a

10 r

��t� � � r��t� 
 r	�t� �
� r��t� �3

T � r��� r�� � r�� � ds�dt

r� � � r��T �
ds

dt
T

r 	 �
d 2s

dt 2 T �
ds

dt
T�

T 
 T � 0

r� 
 r	 � �ds

dt �2

�T 
 T��

v EXAMPLE 3
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SECTION 13.3 ARC LENGTH AND CURVATURE 881

Now for all , so and are orthogonal by Example 4 in Section 13.2.
Therefore, by Theorem 12.4.9,

Thus

and

Find the curvature of the twisted cubic at a general point
and at .

SOLUTION We first compute the required ingredients:

Theorem 10 then gives

At the origin, where , the curvature is .

For the special case of a plane curve with equation , we choose as the 
parameter and write . Then and .
Since and , it follows that . We also have

and so, by Theorem 10,

Find the curvature of the parabola at the points , , 
and .

SOLUTION Since and , Formula 11 gives

� r� 
 r	 � � �ds

dt�2

� T 
 T� � � � ds

dt �2

� T � � T� � � �ds

dt�2

� T� �

� T� � � � r� 
 r	 �
�ds�dt�2 � � r� 
 r	 �

� r� �2

� � � T� �
� r� � � � r� 
 r	 �

� r� �3

r�t� � � t, t 2, t 3 �
�0, 0, 0�

r��t� � �1, 2t, 3t 2 � r	�t� � �0, 2, 6t �

� r��t� � � s1 � 4t 2 � 9t 4 

r��t� 
 r	�t� � � i
1

0

j
2t

2

k
3t 2

6t � � 6t 2 i � 6t j � 2 k

� r��t� 
 r	�t� � � s36t 4 � 36t 2 � 4 � 2s9t 4 � 9t 2 � 1

��t� � � r��t� 
 r	�t� �
� r��t� �3 �

2s1 � 9t 2 � 9t 4 

�1 � 4t 2 � 9t 4 �3�2

t � 0 ��0� � 2

y � f �x� x
r�x� � x i � f �x� j r��x� � i � f ��x� j r	�x� � f 	�x� j

i 
 j � k j 
 j � 0 r��x� 
 r	�x� � f 	�x� k

� r��x� � � s1 � � f ��x�	2 

11 ��x� � � f 	�x� �
�1 � � f ��x��2 	3�2

y � x 2 �0, 0� �1, 1�
�2, 4�

y� � 2x y	 � 2

��x� � � y	 �
�1 � �y��2	3�2 �

2

�1 � 4x 2�3�2

T�Tt� T�t� � � 1

EXAMPLE 5

EXAMPLE 4
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882 CHAPTER 13 VECTOR FUNCTIONS

The curvature at is . At it is . At it is
. Observe from the expression for or the graph of in Fig-

ure 5 that as . This corresponds to the fact that the parabola appears
to become flatter as .

The Normal and Binormal Vectors
At a given point on a smooth space curve , there are many vectors that are orthogonal
to the unit tangent vector . We single out one by observing that, because for
all , we have by Example 4 in Section 13.2, so is orthogonal to .
Note that is itself not a unit vector. But at any point where we can define the
principal unit normal vector (or simply unit normal) as

The vector is called the binormal vector. It is perpendicular to both
and and is also a unit vector. (See Figure 6.)

Find the unit normal and binormal vectors for the circular helix

SOLUTION We first compute the ingredients needed for the unit normal vector:

This shows that the normal vector at any point on the helix is horizontal and points
toward the -axis. The binormal vector is

�0, 0� ��0� � 2 �1, 1� ��1� � 2�53�2 � 0.18 �2, 4�
��2� � 2�173�2 � 0.03 ��x� �

��x� l 0 x l ��
x l ��

FIGURE 5
The parabola y=≈ and its

curvature function

2

1 x0

y

y=≈

y=k(x)

r�t�
T�t� � T�t� � � 1

t T�t� � T��t� � 0 T��t� T�t�
T��t� � � 0

N�t�

N�t� �
T��t�

� T��t� �
B�t� � T�t� � N�t� T

N

r�t� � cos t i � sin t j � t k

r��t� � �sin t i � cos t j � k � r��t� � � s2

T�t� �
r��t�

� r��t� � �
1

s2
��sin t i � cos t j � k�

T��t� �
1

s2
��cos t i � sin t j� � T��t� � �

1

s2

N�t� �
T��t�

� T��t� � � �cos t i � sin t j � ��cos t, �sin t, 0 �

z

B�t� � T�t� � N�t� �
1

s2 	 i
�sin t

�cos t

j
cos t

�sin t

k
1

0

 �

1

s2
�sin t, �cos t, 1 �

EXAMPLE 6

We can think of the normal vector as indicating
the direction in which the curve is turning at
each point.

N(t)

T(t)
B(t)

FIGURE 6

Figure 7 illustrates Example 6 by showing the
vectors , , and at two locations on the
helix. In general, the vectors , , and , start-
ing at the various points on a curve, form a set
of orthogonal vectors, called the frame,
that moves along the curve as varies. This

frame plays an important role in the
branch of mathematics known as differential
geometry and in its applications to the motion
of spacecraft.

TNB
t

TNB

BNT
BNT

N

N

B

T

TB

FIGURE 7

x

y

z
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SECTION 13.3 ARC LENGTH AND CURVATURE 883

The plane determined by the normal and binormal vectors and at a point on a
curve is called the normal plane of at . It consists of all lines that are orthogonal 
to the tangent vector . The plane determined by the vectors and is called the osculating
plane of at . The name comes from the Latin osculum, meaning “kiss.” It is the plane
that comes closest to containing the part of the curve near . (For a plane curve, the oscu-
lating plane is simply the plane that contains the curve.)

The circle that lies in the osculating plane of at , has the same tangent as at , lies
on the concave side of (toward which points), and has radius (the reciprocal
of the curvature) is called the osculating circle (or the circle of curvature) of at . It is
the circle that best describes how behaves near ; it shares the same tangent, normal, and
curvature at .

Find the equations of the normal plane and osculating plane of the helix
in Example 6 at the point .

SOLUTION The normal plane at has normal vector , so an equa-
tion is

The osculating plane at contains the vectors and , so its normal vector is
. From Example 6 we have

A simpler normal vector is , so an equation of the osculating plane is

Find and graph the osculating circle of the parabola at the origin.

SOLUTION From Example 5, the curvature of the parabola at the origin is . So
the radius of the osculating circle at the origin is and its center is . Its equa-
tion is therefore

For the graph in Figure 9 we use parametric equations of this circle:

We summarize here the formulas for unit tangent, unit normal and binormal vectors, and
curvature.

N B P
C C P

T T N
C P

P

C P C P
C N 	 � 1��

C P
C P

P

P�0, 1, 
�2�

P r��
�2� � ��1, 0, 1 �

�1�x � 0� � 0�y � 1� � 1�z �



2 � � 0 or z � x �



2

P T N
T � N � B

B�t� �
1

s2
�sin t, �cos t, 1 � B�


2 � �  1

s2
, 0, 

1

s2
�

�1, 0, 1 �

1�x � 0� � 0�y � 1� � 1�z �



2 � � 0 or z � �x �



2

y � x 2

��0� � 2
1�� � 1

2 (0, 1
2 )

x 2 � (y �
1
2 )2

� 1
4

x � 1
2 cos t y � 1

2 �
1
2 sin t

T�t� �
r��t�

� r��t� � N�t� �
T��t�

� T��t� � B�t� � T�t� � N�t�

� � � dT
ds � � � T��t� �

� r��t� � � � r��t� � r��t� �
� r��t� �3

v EXAMPLE 7

EXAMPLE 8

Visual 13.3B shows how the TNB frame
moves along several curves.
TEC

Figure 8 shows the helix and the osculating
plane in Example 7.

FIGURE 8

y

P

x

z=_x+π
2

z

Visual 13.3C shows how the osculating
circle changes as a point moves along a curve.
TEC

y

x0

1
2

1

y=≈osculating
circle

FIGURE 9

97817_13_ch13_p882-891.qk_97817_13_ch13_p882-891  11/8/10  11:35 AM  Page 883

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



884 CHAPTER 13 VECTOR FUNCTIONS

1–6 Find the length of the curve.

1. ,  

2. ,  

3. ,  

4. ,  

5. ,  

6. ,  

7–9 Find the length of the curve correct to four decimal places.
(Use your calculator to approximate the integral.)

7. ,  

8. ,  

9. ,  

; 10. Graph the curve with parametric equations ,
, . Find the total length of this curve 

correct to four decimal places.

11. Let be the curve of intersection of the parabolic cylinder
and the surface . Find the exact length of

from the origin to the point .

12. Find, correct to four decimal places, the length of the curve 
of intersection of the cylinder and the plane

.

13–14 Reparametrize the curve with respect to arc length mea-
sured from the point where in the direction of increasing .

13.

14.

15. Suppose you start at the point and move 5 units
along the curve , , in the
positive direction. Where are you now?

16. Reparametrize the curve

with respect to arc length measured from the point (1, 0) in
the direction of increasing . Express the reparametrization in
its simplest form. What can you conclude about the curve?

r�t� � � t, 3 cos t, 3 sin t� �5 � t � 5

r�t� � �2t, t 2, 13 t 3 � 0 � t � 1

r�t� � s2 t i � e t j � e�t k 0 � t � 1

r�t� � cos t i � sin t j � ln cos t k 0 � t � 
�4

r�t� � i � t 2 j � t 3 k 0 � t � 1

r�t� � 12t i � 8t 3�2 j � 3t 2 k 0 � t � 1

r�t� � � t 2, t 3, t 4 � 0 � t � 2

r�t� � � t, e�t, te�t � 1 � t � 3

r�t� � �sin t, cos t, tan t � 0 � t � 
�4

x � sin t
y � sin 2t z � sin 3t

C
x 2 � 2y 3z � xy C

�6, 18, 36�

4x 2 � y 2 � 4
x � y � z � 2

t � 0 t

r�t� � 2t i � �1 � 3t� j � �5 � 4t� k

r�t� � e 2 t cos 2t i � 2 j � e 2 t sin 2t k

�0, 0, 3�
x � 3 sin t y � 4t z � 3 cos t

r�t� � � 2

t 2 � 1
� 1� i �

2t

t 2 � 1
 j

t

17–20
(a) Find the unit tangent and unit normal vectors and .
(b) Use Formula 9 to find the curvature.

17.

18. ,  

19.

20.

21–23 Use Theorem 10 to find the curvature.

21.

22.

23.

24. Find the curvature of at the 
point .

25. Find the curvature of at the point (1, 1, 1).

; 26. Graph the curve with parametric equations ,
, and find the curvature at the 

point .

27–29 Use Formula 11 to find the curvature.

27. 28. 29.

30–31 At what point does the curve have maximum curvature?
What happens to the curvature as ?

30. 31.

32. Find an equation of a parabola that has curvature 4 at the 
origin.

33. (a) Is the curvature of the curve shown in the figure greater
at or at ? Explain.

(b) Estimate the curvature at and at by sketching the 
osculating circles at those points.

T�t� N�t�

r�t� � � t, 3 cos t, 3 sin t�

r�t� � � t 2, sin t � t cos t, cos t � t sin t � t  0

r�t� � �s2 t, e t, e �t�
r�t� � � t, 12 t 2, t 2�

r�t� � t 3 j � t 2 k

r�t� � t i � t 2 j � e t k

r�t� � 3t i � 4 sin t j � 4 cos t k

r�t� � � t 2, ln t, t ln t �
�1, 0, 0�

r�t� � � t, t 2, t 3 �

x � cos t
y � sin t z � sin 5t

�1, 0, 0�

y � x 4 y � tan x y � xe x

x l �

y � ln x y � e x

C
P Q

P Q

1

1 x0

y P

Q

C

13.3 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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SECTION 13.3 ARC LENGTH AND CURVATURE 885

; 34–35 Use a graphing calculator or computer to graph both the
curve and its curvature function on the same screen. Is the
graph of what you would expect?

34. 35.

36–37 Plot the space curve and its curvature function . 
Comment on how the curvature reflects the shape of the curve.

36. ,  

37. ,  

38–39 Two graphs, and , are shown. One is a curve
and the other is the graph of its curvature function .
Identify each curve and explain your choices.

38. 39.

40. (a) Graph the curve . At how
many points on the curve does it appear that the curva-
ture has a local or absolute maximum?

(b) Use a CAS to find and graph the curvature function.
Does this graph confirm your conclusion from part (a)?

41. The graph of is shown in
Figure 12(b) in Section 13.1. Where do you think the curva-
ture is largest? Use a CAS to find and graph the curvature
function. For which values of is the curvature largest?

42. Use Theorem 10 to show that the curvature of a plane para-
metric curve , is

where the dots indicate derivatives with respect to .

43–45 Use the formula in Exercise 42 to find the curvature.

43. ,  

44. ,  

45. ,  

46. Consider the curvature at for each member of the
family of functions . For which members is
largest?

��x�
�

y � x 4 � 2x 2 y � x�2

CAS ��t�

r�t� � � t � sin t, 1 � cos t, 4 cos�t�2�� 0 � t � 8


r�t� � � tet, e�t, s2 t� �5 � t � 5

y � f �x�ba
y � ��x�

y

x

a

b

y

x

a

b

r�t� � �sin 3t, sin 2t, sin 3t �CAS

r�t� � � t �
3
2 sin t, 1 �

3
2 cos t, t�CAS

t

y � t�t�x � f �t�

� � � x�y�� � y�x�� �
�x� 2 � y� 2 �3�2

t

y � t 3x � t 2

y � b sin �tx � a cos �t

y � e t sin tx � e t cos t

x � 0
��0�f �x� � e cx

47–48 Find the vectors , , and at the given point.

47. ,  

48. ,  

49–50 Find equations of the normal plane and osculating plane
of the curve at the given point.

49. , , ;  

50. , , ;  

; 51. Find equations of the osculating circles of the ellipse
at the points and . Use a graph-

ing calculator or computer to graph the ellipse and both
osculating circles on the same screen.

; 52. Find equations of the osculating circles of the parabola
at the points and . Graph both oscu lating

circles and the parabola on the same screen.

53. At what point on the curve , , is the 
normal plane parallel to the plane ?

54. Is there a point on the curve in Exercise 53 where the 
oscu lating plane is parallel to the plane ? 
[Note: You will need a CAS for differentiating, for simplify-
ing, and for computing a cross product.]

55. Find equations of the normal and osculating planes of the
curve of intersection of the parabolic cylinders and

at the point .

56. Show that the osculating plane at every point on the curve
is the same plane. What can you

conclude about the curve?

57. Show that the curvature is related to the tangent and 
normal vectors by the equation

58. Show that the curvature of a plane curve is ,
where is the angle between and ; that is, is the angle
of inclination of the tangent line. (This shows that the 
definition of curvature is consistent with the definition for
plane curves given in Exercise 69 in Section 10.2.)

59. (a) Show that is perpendicular to .
(b) Show that is perpendicular to .
(c) Deduce from parts (a) and (b) that for

some number called the torsion of the curve. (The
torsion measures the degree of twisting of a curve.)

(d) Show that for a plane curve the torsion is .

r�t� � � t 2, 2
3 t 3, t� (1, 23 , 1)

r�t� � �cos t, sin t, ln cos t � �1, 0, 0�

x � 2 sin 3t y � t z � 2 cos 3t �0, 
, �2�

x � t y � t 2 z � t 3 �1, 1, 1�

9x 2 � 4y 2 � 36 �2, 0� �0, 3�

y � 1
2 x 2 �0, 0� (1, 12 )

x � t 3 y � 3t z � t 4

6x � 6y � 8z � 1

CAS

x � y � z � 1

x � y 2

z � x 2 �1, 1, 1�

r�t� � � t � 2, 1 � t, 12 t
2 �

�

dT
ds

� �N

BNT

� � � d��ds �
�iT�

BdB�ds
TdB�ds

dB�ds � ���s�N
��s�

� �s� � 0
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886 CHAPTER 13 VECTOR FUNCTIONS

60. The following formulas, called the Frenet-Serret formulas,
are of fundamental importance in differential geometry:

1.

2.

3.

(Formula 1 comes from Exercise 57 and Formula 3 comes
from Exercise 59.) Use the fact that to deduce For-
mula 2 from Formulas 1 and 3.

61. Use the Frenet-Serret formulas to prove each of the following.
(Primes denote derivatives with respect to . Start as in the
proof of Theorem 10.)

(a)

(b)

(c)

(d)

62. Show that the circular helix , 
where and are positive constants, has constant curvature
and constant torsion. [Use the result of Exercise 61(d).]

dB�ds � ��N

N � B � T

t

r� � s�T � ��s��2 N

r� � r� � ��s��3 B

r� � �s� � �2�s��3 � T � �3�s�s� � ���s��2 � N � �� �s��3 B

� �
�r� � r�� � r�

� r� � r� �2

r�t� � �a cos t, a sin t, bt �
ba

dT�ds � �N

dN�ds � ��T � �B

63. Use the formula in Exercise 61(d) to find the torsion of the
curve .

64. Find the curvature and torsion of the curve ,
, at the point .

65. The DNA molecule has the shape of a double helix (see 
Figure 3 on page 866). The radius of each helix is about
10 angstroms (1 ). Each helix rises about 
during each complete turn, and there are about 
complete turns. Estimate the length of each helix.

66. Let’s consider the problem of designing a railroad track to
make a smooth transition between sections of straight track.
Existing track along the negative -axis is to be joined
smoothly to a track along the line for .
(a) Find a polynomial of degree 5 such that the func-

tion defined by

is continuous and has continuous slope and continuous 
curvature.

; (b) Use a graphing calculator or computer to draw the graph 
of .

2.9 � 108

x
y � 1 x � 1

P � P�x�
F

F�x� � �0

P�x�
1

if x � 0

if 0 � x � 1

if x � 1

F

x � sinh t
�0, 1, 0�z � ty � cosh t

34 ÅÅ � 10�8 cm

r�t� � �t, 12 t 2, 1
3 t 3 �

In this section we show how the ideas of tangent and normal vectors and curvature can be
used in physics to study the motion of an object, including its velocity and acceleration,
along a space curve. In particular, we follow in the footsteps of Newton by using these
methods to derive Kepler’s First Law of planetary motion.

Suppose a particle moves through space so that its position vector at time is . Notice
from Figure 1 that, for small values of , the vector

approximates the direction of the particle moving along the curve . Its magnitude mea-
sures the size of the displacement vector per unit time. The vector gives the average
velocity over a time interval of length and its limit is the velocity vector at time :

Thus the velocity vector is also the tangent vector and points in the direction of the tangent
line.

The speed of the particle at time is the magnitude of the velocity vector, that is, . This
is appropriate because, from and from Equation 13.3.7, we have

t r�t�
h

1
r�t � h� � r�t�

h

r�t�

h v�t� t

2 v�t� � lim
h l 0

r�t � h� � r�t�
h

� r��t�

t � v�t� �

� v�t� � � � r��t� � �
ds

dt
� rate of change of distance with respect to time

1

2

13.4 Motion in Space: Velocity and Acceleration

FIGURE 1

r(t+h)-r(t)
h

O

C

P
Q

rª(t)

r(t+h)
r(t)
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z

y
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SECTION 13.4 MOTION IN SPACE:  VELOCITY AND ACCELERATION 887

As in the case of one-dimensional motion, the acceleration of the particle is defined as the
derivative of the velocity:

The position vector of an object moving in a plane is given by
Find its velocity, speed, and acceleration when and illustrate 

geometrically.

SOLUTION The velocity and acceleration at time are

and the speed is

When , we have

These velocity and acceleration vectors are shown in Figure 2.

Find the velocity, acceleration, and speed of a particle with position 
vector .

SOLUTION

The vector integrals that were introduced in Section 13.2 can be used to find position vec-
tors when velocity or acceleration vectors are known, as in the next example.

A moving particle starts at an initial position with initial
velocity . Its acceleration is . Find its velocity
and position at time .

SOLUTION Since , we have

To determine the value of the constant vector , we use the fact that .
The preceding equation gives , so and

a�t� � v��t� � r��t�

r�t� � t 3 i � t 2 j. t � 1

t

v�t� � r��t� � 3t 2 i � 2t j

a�t� � r��t� � 6t i � 2 j

� v�t� � � s�3t 2 �2 � �2t�2 � s9t 4 � 4t 2 

t � 1

v�1� � 3 i � 2 j a�1� � 6 i � 2 j � v�1� � � s13

r�t� � � t 2, e t, te t�

v�t� � r��t� � �2t, e t, �1 � t�e t �

a�t� � v��t� � �2, e t, �2 � t�e t �

� v�t� � � s4t 2 � e 2t � �1 � t�2e 2t

r�0� � �1, 0, 0 �
v�0� � i � j � k a�t� � 4t i � 6t j � k

t

a�t� � v��t�

v�t� � y a�t� dt � y �4t i � 6t j � k� dt

� 2t 2 i � 3t 2 j � t k � C

C v�0� � i � j � k
v�0� � C C � i � j � k

v�t� � 2t 2 i � 3t 2 j � t k � i � j � k

� �2t 2 � 1� i � �3t 2 � 1� j � �t � 1� k

EXAMPLE 1

EXAMPLE 2

v EXAMPLE 3

FIGURE 2

0

y

x

(1, 1)
a(1)

v(1)

Visual 13.4 shows animated velocity 
and acceleration vectors for objects moving along
various curves.

TEC

Figure 3 shows the path of the par ticle in
Example 2 with the velocity and acceleration
vectors when .t � 1

FIGURE 3

z

y

x

1

a(1)

v(1)
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888 CHAPTER 13 VECTOR FUNCTIONS

Since , we have

Putting , we find that , so the position at time is given by

In general, vector integrals allow us to recover velocity when acceleration is known and
position when velocity is known:

If the force that acts on a particle is known, then the acceleration can be found from New-
ton’s Second Law of Motion. The vector version of this law states that if, at any time , a
force acts on an object of mass producing an acceleration , then

An object with mass that moves in a circular path with constant angular
speed has position vector . Find the force acting on the
object and show that it is directed toward the origin.

SOLUTION To find the force, we first need to know the acceleration:

Therefore Newton’s Second Law gives the force as

Notice that . This shows that the force acts in the direction opposite to
the radius vector and therefore points toward the origin (see Figure 5). Such a force
is called a centripetal (center-seeking) force.

A projectile is fired with angle of elevation and initial velocity . (See
Figure 6.) Assuming that air resistance is negligible and the only external force is due to
gravity, find the position function of the projectile. What value of maximizes the
range (the horizontal distance traveled)?

SOLUTION We set up the axes so that the projectile starts at the origin. Since the force
due to gravity acts downward, we have

where m�s . Thus

v�t� � r��t�

r�t� � y v�t� dt

� y ��2t 2 � 1� i � �3t 2 � 1� j � �t � 1� k� dt

� ( 2
3 t 3 � t) i � �t 3 � t� j � ( 1

2 t 2 � t) k � D

t � 0 D � r�0� � i

r�t� � ( 2
3 t 3 � t � 1) i � �t 3 � t� j � ( 1

2 t 2 � t) k

v�t� � v�t0� � y
t

t0

a�u� du r�t� � r�t0� � y
t

t0

v�u� du

t
F�t� m a�t�

F�t� � ma�t�

m
� r�t� � a cos �t i � a sin �t j

F�t� � ma�t� � �m�2�a cos �t i � a sin �t j�

F�t� � �m�2 r�t�
r�t�

� v0

r�t� �

F � ma � �mt j

t � � a � � 9.8 2

a � �t j

v EXAMPLE 5

EXAMPLE 4

t

v�t� � r��t� � �a� sin �t i � a� cos �t j

a�t� � v��t� � �a�2 cos �t i � a�2 sin �t j

The expression for that we obtained in
Example 3 was used to plot the path of the
particle in Figure 4 for .0 � t � 3

r�t�

FIGURE 4

(1, 0, 0) 0

20
x

0
20

y

0

4z

6

2

5 10 15

The angular speed of the object moving with
position is , where is the
angle shown in Figure 5.

�� � d��dtP

FIGURE 5

P

¨
0

y

x

FIGURE 6

0

y

x

a

d

v¸
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SECTION 13.4 MOTION IN SPACE:  VELOCITY AND ACCELERATION 889

Since , we have

where . Therefore

Integrating again, we obtain

But , so the position vector of the projectile is given by

If we write (the initial speed of the projectile), then

and Equation 3 becomes

The parametric equations of the trajectory are therefore 

The horizontal distance is the value of when . Setting , we obtain
or . This second value of then gives

Clearly, has its maximum value when , that is, .

A projectile is fired with muzzle speed and angle of elevation
from a position 10 m above ground level. Where does the projectile hit the ground,

and with what speed?

SOLUTION If we place the origin at ground level, then the initial position of the projectile
is (0, 10) and so we need to adjust Equations 4 by adding 10 to the expression for .
With , , and , we have

Impact occurs when , that is, . Solving this quadratic
equation (and using only the positive value of ), we get

Then , so the projectile hits the ground about 2306 m away.

v��t� � a

v�t� � �tt j � C

C � v�0� � v0

r��t� � v�t� � �tt j � v0

r�t� � �
1
2 tt 2 j � t v0 � D

D � r�0� � 0

3 r�t� � �
1
2 tt 2 j � t v0

� v0 � � v0

v0 � v0 cos � i � v0 sin � j

r�t� � �v0 cos ��t i � [�v0 sin ��t �
1
2 tt 2 ] j

4 x � �v0 cos ��t y � �v0  sin ��t �
1
2 tt 2

d x y � 0 y � 0 t � 0
t � �2v0 sin ���t t

d � x � �v0 cos ��
2v0 sin �

t
�

v2
0�2 sin � cos ��

t
�

v2
0 sin 2�

t

d sin 2� � 1 � � 
�4

150 m�s
45�

y
v0 � 150 m�s � � 45� t � 9.8 m�s2

x � 150 cos�
�4�t � 75s2 t

y � 10 � 150 sin�
�4� t �
1
2 �9.8�t 2 � 10 � 75s2 t � 4.9t 2

y � 0 4.9t 2 � 75s2 t � 10 � 0
t

t �
75s2 � s11,250 � 196

9.8
� 21.74

x � 75s2 �21.74� � 2306

v EXAMPLE 6

If you eliminate from Equations 4, you will
see that is a quadratic function of . So the
path of the projectile is part of a parabola.

xy
t
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890 CHAPTER 13 VECTOR FUNCTIONS

The velocity of the projectile is

So its speed at impact is

Tangential and Normal Components of Acceleration
When we study the motion of a particle, it is often useful to resolve the acceleration into two
components, one in the direction of the tangent and the other in the direction of the normal.
If we write for the speed of the particle, then

and so

If we differentiate both sides of this equation with respect to , we get

If we use the expression for the curvature given by Equation 13.3.9, then we have

The unit normal vector was defined in the preceding section as , so gives

and Equation 5 becomes

Writing and for the tangential and normal components of acceleration, we have

where

This resolution is illustrated in Figure 7.
Let’s look at what Formula 7 says. The first thing to notice is that the binormal vector B

is absent. No matter how an object moves through space, its acceleration always lies in the
plane of T and N (the osculating plane). (Recall that T gives the direction of motion and N
points in the direction the curve is turning.) Next we notice that the tangential component
of acceleration is , the rate of change of speed, and the normal component of acceleration
is , the curvature times the square of the speed. This makes sense if we think of a pas-
senger in a car—a sharp turn in a road means a large value of the curvature , so the com-
ponent of the acceleration perpendicular to the motion is large and the passenger is thrown
against a car door. High speed around the turn has the same effect; in fact, if you double your
speed, is increased by a factor of 4.

v�t� � r��t� � 75s2 i � (75s2 � 9.8t) j

� v�21.74� � � s(75s2 )2
� (75s2 � 9.8 � 21.74)2 � 151 m�s

v � � v �

T�t� �
r��t�

� r��t� � �
v�t�

� v�t� � �
v
v

v � vT

t

a � v� � v�T � vT�5

� T�� � �vso� � � T��
� r�� � � T��

v
6

6N � T��� T��
T� � � T��N � �vN

a � v�T � �v2N7

aNaT

a � aT T � aN N

aN � �v2andaT � v�8

v�
�v2

�

aN

aT

aN

N

a

T

FIGURE 7
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SECTION 13.4 MOTION IN SPACE:  VELOCITY AND ACCELERATION 891

Although we have expressions for the tangential and normal components of accelera-
tion in Equations 8, it’s desirable to have expressions that depend only on , , and . To
this end we take the dot product of with as given by Equation 7:

(since and )

Therefore

Using the formula for curvature given by Theorem 13.3.10, we have

A particle moves with position function . Find the tangen-
tial and normal components of acceleration.

SOLUTION

Therefore Equation 9 gives the tangential component as

Since

Equation 10 gives the normal component as

Kepler’s Laws of Planetary Motion
We now describe one of the great accomplishments of calculus by showing how the mate-
rial of this chapter can be used to prove Kepler’s laws of planetary motion. After 20 years
of studying the astronomical observations of the Danish astronomer Tycho Brahe, the Ger-
man mathematician and astronomer Johannes Kepler (1571–1630) formulated the follow-
ing three laws.

r r� r�
v � vT a

v � a � vT � �v�T � �v2N�

� vv�T � T � �v3 T � N

� vv� T � T � 1 T � N � 0

9 aT � v� �
v � a

v
�

r��t� � r��t�

� r��t� �

10 aN � �v2 � � r��t� � r���t� �
� r��t� �3 � r��t� �2 � � r��t� � r���t� �

� r��t� �

r�t� � � t 2, t 2, t 3 �

r�t� � t 2 i � t 2 j � t 3 k

r��t� � 2t i � 2t j � 3t 2 k

r��t� � 2 i � 2 j � 6t k

� r��t� � � s8t 2 � 9t 4 

aT �
r��t� � r��t�

� r��t� � �
8t � 18t 3

s8t 2 � 9t 4 

r��t� � r��t� � � i
2t

2

j
2t

2

k
3t 2

6t � � 6t 2 i � 6t 2 j

aN � � r��t� � r��t� �
� r��t� � �

6s2 t 2

s8t 2 � 9t 4 

EXAMPLE 7
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892 CHAPTER 13 VECTOR FUNCTIONS

Kepler’s Laws

1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of
the length of the major axis of its orbit.

In his book Principia Mathematica of 1687, Sir Isaac Newton was able to show that
these three laws are consequences of two of his own laws, the Second Law of Motion and
the Law of Universal Gravitation. In what follows we prove Kepler’s First Law. The remain-
ing laws are left as exercises (with hints).

Since the gravitational force of the sun on a planet is so much larger than the forces
exerted by other celestial bodies, we can safely ignore all bodies in the universe except the
sun and one planet revolving about it. We use a coordinate system with the sun at the ori-
gin and we let be the position vector of the planet. (Equally well, could be the
position vector of the moon or a satellite moving around the earth or a comet moving around
a star.) The velocity vector is and the acceleration vector is . We use the fol-
lowing laws of Newton:

where is the gravitational force on the planet, and are the masses of the planet and
the sun, is the gravitational constant, , and is the unit vector in the
direction of .

We first show that the planet moves in one plane. By equating the expressions for in
Newton’s two laws, we find that

and so is parallel to . It follows that . We use Formula 5 in Theorem 13.2.3 to
write

Therefore

where is a constant vector. (We may assume that ; that is, and are not parallel.)
This means that the vector is perpendicular to for all values of t, so the planet
always lies in the plane through the origin perpendicular to . Thus the orbit of the planet
is a plane curve.

To prove Kepler’s First Law we rewrite the vector as follows:

r � r�t� r

v � r� a � r�

Second Law of Motion: F � ma

Law of Gravitation:  F � �
GMm

r 3 r � �
GMm

r 2 u

F m M
G r � � r � u � �1�r�r

r
F

a � �
GM

r 3 r

a r r � a � 0

d

dt
�r � v� � r� � v � r � v�

� v � v � r � a � 0 � 0 � 0

r � v � h

h h � 0 r v
r � r�t� h

h

h

h � r � v � r � r� � r u � �r u��

� r u � �r u� � r�u� � r 2�u � u�� � rr��u � u�

� r 2�u � u��
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SECTION 13.4 MOTION IN SPACE:  VELOCITY AND ACCELERATION 893

Then

(by Theorem 12.4.11, Property 6)

But and, since , it follows from Example 4 in Section 13.2 that
. Therefore

and so

Integrating both sides of this equation, we get

where is a constant vector.
At this point it is convenient to choose the coordinate axes so that the standard basis vec-

tor points in the direction of the vector . Then the planet moves in the -plane. Since
both and are perpendicular to , Equation 11 shows that lies in the -plane. 
This means that we can choose the - and -axes so that the vector lies in the direction 
of , as shown in Figure 8.

If is the angle between and , then are polar coordinates of the planet. From
Equation 11 we have

where . Then

where . But

where . So

Writing , we obtain the equation

Comparing with Theorem 10.6.6, we see that Equation 12 is the polar equation of a conic
section with focus at the origin and eccentricity . We know that the orbit of a planet is a
closed curve and so the conic must be an ellipse.

This completes the derivation of Kepler’s First Law. We will guide you through the der-
ivation of the Second and Third Laws in the Applied Project on page 896. The proofs of
these three laws show that the methods of this chapter provide a powerful tool for describ-
ing some of the laws of nature.

a � h �
�GM

r 2 u � �r 2 u � u�� � �GM u � �u � u��

� �GM ��u � u��u � �u � u�u��

u � u � � u �2 � 1 � u�t� � � 1
u � u� � 0

a � h � GM u�

�v � h�� � v� � h � a � h � GM u�

11 v � h � GM u � c

c

k h xy
v � h u h c xy

x y i
c

� c r �r, ��

r � �v � h� � r � �GM u � c� � GM r � u � r � c

� GMr u � u � � r � � c � cos � � GMr � rc cos �

c � � c �
r �

r � �v � h�
GM � c cos �

�
1

GM

r � �v � h�
1 � e cos �

e � c��GM�

r � �v � h� � �r � v� � h � h � h � � h �2 � h 2

h � � h �
r �

h 2��GM �
1 � e cos �

�
eh 2�c

1 � e cos �

d � h 2�c

12 r �
ed

1 � e cos �

e

FIGURE 8 
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894 CHAPTER 13 VECTOR FUNCTIONS

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1. The table gives coordinates of a particle moving through space
along a smooth curve.
(a) Find the average velocities over the time intervals [0, 1],

[0.5, 1], [1, 2], and [1, 1.5].
(b) Estimate the velocity and speed of the particle at .

2. The figure shows the path of a particle that moves with
position vector at time .
(a) Draw a vector that represents the average velocity of the

particle over the time interval .
(b) Draw a vector that represents the average velocity over 

the time interval .
(c) Write an expression for the velocity vector v(2).
(d) Draw an approximation to the vector v(2) and estimate 

the speed of the particle at .

3–8 Find the velocity, acceleration, and speed of a particle with the
given position function. Sketch the path of the particle and draw
the velocity and acceleration vectors for the specified value of .

3. ,  

4. ,  

5. ,  

6. ,  

7. ,  

8. ,  

t � 1

r�t� t

2 � t � 2.4

1.5 � t � 2

t � 2

y

x0 21

2

1

r(2.4)

r(2)

r(1.5)

t

r�t� � ��1
2 t 2, t 	 t � 2

r�t� � �2 � t, 4st 	 t � 1

r�t� � 3 cos t i � 2 sin t j t � 	�3

t � 0r�t� � e t i � e 2 t j

t � 1r�t� � t i � t 2 j � 2 k

t � 0r�t� � t i � 2 cos t j � sin t k

9–14 Find the velocity, acceleration, and speed of a particle with
the given position function.

9. 10.

11. 12.

13.

14. ,  

15–16 Find the velocity and position vectors of a particle that has
the given acceleration and the given initial velocity and position.

15. ,  ,  

16. ,  ,  

17–18
(a) Find the position vector of a particle that has the given acceler-

ation and the specified initial velocity and position.

; (b) Use a computer to graph the path of the particle.

17. ,  ,  

18. ,  ,  

19. The position function of a particle is given by
. When is the speed a minimum?

20. What force is required so that a particle of mass has the posi-
tion function ?

21. A force with magnitude 20 N acts directly upward from the 
-plane on an object with mass 4 kg. The object starts at the

origin with initial velocity . Find its position 
function and its speed at time .

22. Show that if a particle moves with constant speed, then the
velocity and acceleration vectors are orthogonal.

23. A projectile is fired with an initial speed of 200 m�s and 
angle of elevation . Find (a) the range of the projectile, 
(b) the maximum height reached, and (c) the speed at impact.

24. Rework Exercise 23 if the projectile is fired from a position
100 m above the ground.

25. A ball is thrown at an angle of to the ground. If the ball
lands 90 m away, what was the initial speed of the ball?

26. A gun is fired with angle of elevation . What is the 
muzzle speed if the maximum height of the shell is 500 m?

27. A gun has muzzle speed . Find two angles of elevation
that can be used to hit a target 800 m away.

r�t� � s2 t i � e t j � e�t k r�t� � t 2 i � 2t j � ln t k

r�t� � e t�cos t i � sin t j � t k�

r�t� � � t 2, sin t � t cos t, cos t � t sin t	 t 
 0

a�t� � i � 2 j v�0� � k r�0� � i

a�t� � 2 i � 6t j � 12t 2 k v�0� � i r�0� � j � k

a�t� � 2t i � sin t j � cos 2t k v�0� � i r�0� � j

a�t� � t i � e t j � e�t k v�0� � k r�0� � j � k

r�t� � � t 2, 5t, t 2 � 16t 	

m
r�t� � t 3 i � t 2 j � t 3 k

xy
v�0� � i � j

t

60�

45�

30�

150 m�s

r�t� � �2 cos t, 3t, 2 sin t	r�t� � � t 2 � t, t 2 � t, t 3 	

13.4 Exercises

t x y

0 2.7 9.8 3.7
0.5 3.5 7.2 3.3
1.0 4.5 6.0 3.0
1.5 5.9 6.4 2.8
2.0 7.3 7.8 2.7

z
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SECTION 13.4 MOTION IN SPACE:  VELOCITY AND ACCELERATION 895

28. A batter hits a baseball 3 ft above the ground toward the 
center field fence, which is 10 ft high and 400 ft from home
plate. The ball leaves the bat with speed at an 
angle above the horizontal. Is it a home run? (In other
words, does the ball clear the fence?)

29. A medieval city has the shape of a square and is protected 
by walls with length 500 m and height 15 m. You are the
commander of an attacking army and the closest you can get
to the wall is 100 m. Your plan is to set fire to the city by cat-
apulting heated rocks over the wall (with an initial speed of

). At what range of angles should you tell your men to
set the catapult? (Assume the path of the rocks is perpendicu-
lar to the wall.)

30. Show that a projectile reaches three-quarters of its maximum
height in half the time needed to reach its maximum height.

31. A ball is thrown eastward into the air from the origin (in 
the direction of the positive -axis). The initial velocity is

, with speed measured in feet per second. The
spin of the ball results in a southward acceleration of ,
so the acceleration vector is . Where does
the ball land and with what speed?

32. A ball with mass 0.8 kg is thrown southward into the air with
a speed of at an angle of to the ground. A west
wind applies a steady force of 4 N to the ball in an easterly
direction. Where does the ball land and with what speed?

; 33. Water traveling along a straight portion of a river normally
flows fastest in the middle, and the speed slows to almost
zero at the banks. Consider a long straight stretch of river
flowing north, with parallel banks 40 m apart. If the maxi-
mum water speed is 3 , we can use a quadratic function
as a basic model for the rate of water flow units from the
west bank: .
(a) A boat proceeds at a constant speed of from a point

on the west bank while maintaining a heading perpen-
dicular to the bank. How far down the river on the oppo-
site bank will the boat touch shore? Graph the path of the
boat.

(b) Suppose we would like to pilot the boat to land at the
point on the east bank directly opposite . If we main-
tain a constant speed of and a constant heading,
find the angle at which the boat should head. Then graph
the actual path the boat follows. Does the path seem 
realistic?

34. Another reasonable model for the water speed of the river in
Exercise 33 is a sine function: . If a
boater would like to cross the river from to with con-
stant heading and a constant speed of , determine the
angle at which the boat should head.

35. A particle has position function . If ,
where is a constant vector, describe the path of the particle.

36. (a) If a particle moves along a straight line, what can you say
about its acceleration vector?

80 m�s

x
50 i � 80 k

4 ft�s2

a � �4 j � 32 k

30�30 m�s

m�s
x

f �x� � 3
400 x�40 � x�

5 m�s
A

AB
5 m�s

f �x� � 3 sin�	x�40�
BA

5 m�s

r��t� � c � r�t�r�t�
c

115 ft�s
50�

(b) If a particle moves with constant speed along a curve,
what can you say about its acceleration vector?

37–42 Find the tangential and normal components of the acceler-
ation vector.

37.

38.

39.

40.

41.

42.

43. The magnitude of the acceleration vector is . Use
the figure to estimate the tangential and normal components
of .

44. If a particle with mass moves with position vector ,
then its angular momentum is defined as
and its torque as . Show that .
Deduce that if for all , then is constant. (This
is the law of conservation of angular momentum.)

45. The position function of a spaceship is

and the coordinates of a space station are . The cap-
tain wants the spaceship to coast into the space station. When
should the engines be turned off?

46. A rocket burning its onboard fuel while moving through
space has velocity and mass at time . If the exhaust
gases escape with velocity relative to the rocket, it can be
deduced from Newton’s Second Law of Motion that

(a) Show that .

(b) For the rocket to accelerate in a straight line from rest to
twice the speed of its own exhaust gases, what fraction of
its initial mass would the rocket have to burn as fuel?

r�t� � �1 � t� i � �t 2 � 2t� j

r�t� � cos t i � sin t j � t k

r�t� � t i � t 2 j � 3t k

r�t� � e t i � s2 t j � e�t k

r�t� � t i � cos2t j � sin2t k

a 10 cm�s2

a

y

x0

a

m r�t�
L�t� � mr�t� � v�t�

� �t� � mr�t� � a�t� L��t� � ��t�
� �t� � 0 t L�t�

r�t� � �3 � t� i � �2 � ln t� j � 
7 �
4

t 2 � 1� k

�6, 4, 9�

v�t� m�t� t
ve

m
dv
dt

�
dm

dt
ve

v�t� � v�0� � ln 
m�0�
m�t�

ve

r�t� � �3t � t 3 � i � 3t 2 j
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896 CHAPTER 13 VECTOR FUNCTIONS

A P P L I E D  P R O J E C T KEPLER’S LAWS

Johannes Kepler stated the following three laws of planetary motion on the basis of massive
amounts of data on the positions of the planets at various times.

Kepler’s Laws

1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of the
length of the major axis of its orbit.

Kepler formulated these laws because they fitted the astronomical data. He wasn’t able to see why
they were true or how they related to each other. But Sir Isaac Newton, in his Principia Mathemat-
ica of 1687, showed how to deduce Kepler’s three laws from two of Newton’s own laws, the Sec-
ond Law of Motion and the Law of Universal Gravitation. In Section 13.4 we proved Kepler’s First
Law using the calculus of vector functions. In this project we guide you through the proofs of
Kepler’s Second and Third Laws and explore some of their consequences.

1. Use the following steps to prove Kepler’s Second Law. The notation is the same as in 
the proof of the First Law in Section 13.4. In particular, use polar coordinates so that

.

(a) Show that .

(b) Deduce that .

(c) If is the area swept out by the radius vector in the time interval as
in the figure, show that

(d) Deduce that

This says that the rate at which is swept out is constant and proves Kepler’s Second
Law.

2. Let be the period of a planet about the sun; that is, is the time required for it to travel
once around its elliptical orbit. Suppose that the lengths of the major and minor axes of the
ellipse are and .

(a) Use part (d) of Problem 1 to show that .

(b) Show that .

(c) Use parts (a) and (b) to show that .

This proves Kepler’s Third Law. [Notice that the proportionality constant is
independent of the planet.]

r � �r cos �� i � �r sin �� j

h � r 2 d�

dt
k

r 2 d�

dt
� h

�t0, t�r � r�t�A � A�t�

dA

dt
� 1

2 r 2 d�

dt

dA

dt
� 1

2 h � constant

A

TT

2b2a

T � 2	ab�h

h 2

GM
� ed �

b 2

a

T 2 �
4	 2

GM
a 3

4	 2��GM�

0

r(t)
r(t¸)A(t)

x

y
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CHAPTER 13 REVIEW 897

13 Review

1. What is a vector function? How do you find its derivative and
its integral?

2. What is the connection between vector functions and space
curves?

3. How do you find the tangent vector to a smooth curve at a
point? How do you find the tangent line? The unit tangent 
vector?

4. If and are differentiable vector functions, is a scalar, and
is a real-valued function, write the rules for differentiating

the following vector functions.
(a) (b) (c)
(d) (e) (f )

5. How do you find the length of a space curve given by a vector
function 

u v c
f

u�t� � v�t� cu�t� f �t� u�t�
u�t� � v�t� u�t� � v�t� u� f �t��

r�t�?

6. (a) What is the definition of curvature?
(b) Write a formula for curvature in terms of and .
(c) Write a formula for curvature in terms of and .
(d) Write a formula for the curvature of a plane curve with

equation .

7. (a) Write formulas for the unit normal and binormal vectors of
a smooth space curve .

(b) What is the normal plane of a curve at a point? What is the
osculating plane? What is the osculating circle?

8. (a) How do you find the velocity, speed, and acceleration of a
particle that moves along a space curve?

(b) Write the acceleration in terms of its tangential and normal
components.

9. State Kepler’s Laws.

r��t� T��t�
r��t� r��t�

y � f �x�

r�t�

Concept Check

3. The period of the earth’s orbit is approximately 365.25 days. Use this fact and Kepler’s Third
Law to find the length of the major axis of the earth’s orbit. You will need the mass of the
sun, kg, and the gravitational constant, �kg .

4. It’s possible to place a satellite into orbit about the earth so that it remains fixed above a given
location on the equator. Compute the altitude that is needed for such a satellite. The earth’s
mass is ; its radius is . (This orbit is called the Clarke Geosyn-
chronous Orbit after Arthur C. Clarke, who first proposed the idea in 1945. The first such
satellite, Syncom II, was launched in July 1963.)

M � 1.99 � 1030 G � 6.67 � 10�11 N�m2 2

5.98 � 1024 kg 6.37 � 106 m

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. The curve with vector equation is 
a line.

2. The curve is a parabola.

3. The curve is a line that passes through the
origin.

4. The derivative of a vector function is obtained by differen-
ti ating each component function.

5. If and are differentiable vector functions, then

6. If is a differentiable vector function, then

r�t� � t 3 i � 2t 3 j � 3t 3 k

r�t� � �0, t 2, 4t	

r�t� � �2t, 3 � t, 0 	

u�t� v�t�

d

dt
�u�t� � v�t�� � u��t� � v��t�

r�t�

d

dt � r�t� � � � r��t� �

7. If is the unit tangent vector of a smooth curve, then the
curvature is .

8. The binormal vector is .

9. Suppose is twice continuously differentiable. At an inflection
point of the curve , the curvature is 0.

10. If for all , the curve is a straight line.

11. If for all , then is a constant.

12. If for all , then is orthogonal to for all .

13. The osculating circle of a curve C at a point has the same tan-
gent vector, normal vector, and curvature as C at that point.

14. Different parametrizations of the same curve result in identical
tangent vectors at a given point on the curve.

T�t�
 � � dT�dt �

B�t� � N�t� � T�t�

f
y � f �x�

�t� � 0 t

� r�t� � � 1 t � r��t� �
� r�t� � � 1 t r��t� r�t� t

True-False Quiz
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898 CHAPTER 13 VECTOR FUNCTIONS

; Graphing calculator or computer required

1. (a) Sketch the curve with vector function

(b) Find and .

2. Let .
(a) Find the domain of .
(b) Find .
(c) Find .

3. Find a vector function that represents the curve of
intersection of the cylinder and the plane

.

; 4. Find parametric equations for the tangent line to the curve
, , at the point .

Graph the curve and the tangent line on a common screen.

5. If , evaluate .

6. Let be the curve with equations , ,
. Find (a) the point where intersects the -plane,

(b) parametric equations of the tangent line at , and
(c) an equation of the normal plane to at .

7. Use Simpson’s Rule with to estimate the length of 
the arc of the curve with equations , , ,

.

8. Find the length of the curve ,
.

9. The helix intersects the curve
at the point . Find the

angle of intersection of these curves.

10. Reparametrize the curve
with respect to arc length measured from the point in
the direction of increasing .

11. For the curve given by , find
(a) the unit tangent vector,
(b) the unit normal vector, and
(c) the curvature.

12. Find the curvature of the ellipse , at
the points and .

13. Find the curvature of the curve at the point .

; 14. Find an equation of the osculating circle of the curve
at the origin. Graph both the curve and its 

osculating circle.

15. Find an equation of the osculating plane of the curve
, , at the point .

16. The figure shows the curve traced by a particle with posi-
tion vector at time .
(a) Draw a vector that represents the average velocity of the

particle over the time interval .

r�t� � t i � cos 	 t j � sin 	 t k t 
 0

r��t� r��t�

r�t� � �s2 � t , �et � 1��t, ln�t � 1�	
r

lim t l 0 r�t�
r��t�

x 2 � y 2 � 16
x � z � 5

x � 2 sin t y � 2 sin 2t z � 2 sin 3t (1, s3 , 2)

r�t� � t 2 i � t cos 	 t j � sin 	 t k x
1
0 r�t� dt

C x � 2 � t 3 y � 2t � 1
z � ln t C xz

�1, 1, 0�
C �1, 1, 0�

n � 6
x � t 2 y � t 3 z � t 4

0 � t � 3

r�t� � �2t 3�2, cos 2t, sin 2t 	
0 � t � 1

r1�t� � cos t i � sin t j � t k
r2�t� � �1 � t� i � t 2 j � t 3 k �1, 0, 0�

r�t� � e t i � e t sin t j � e t cos t k
�1, 0, 1�

t

r�t� � � 1
3 t 3, 1

2 t 2, t 	

x � 3 cos t y � 4 sin t
�3, 0� �0, 4�

y � x 4 �1, 1�

y � x 4 � x 2

x � sin 2t y � t z � cos 2t �0, 	, 1�

C
tr�t�

3 � t � 3.2

(b) Write an expression for the velocity v(3).
(c) Write an expression for the unit tangent vector T(3) and

draw it.

17. A particle moves with position function
. Find the velocity, speed, and 

acceleration of the particle.

18. A particle starts at the origin with initial velocity .
Its acceleration is . Find its posi-
tion function.

19. An athlete throws a shot at an angle of to the horizontal 
at an initial speed of 43 ft�s. It leaves his hand 7 ft above the
ground.
(a) Where is the shot 2 seconds later?
(b) How high does the shot go?
(c) Where does the shot land?

20. Find the tangential and normal components of the accelera-
tion vector of a particle with position function

21. A disk of radius is rotating in the counterclockwise direc-
tion at a constant angular speed . A particle starts at the cen-
ter of the disk and moves toward the edge along a fixed
radius so that its position at time , , is given by

, where

(a) Show that the velocity of the particle is

where is the velocity of a point on the edge of
the disk.

(b) Show that the acceleration of the particle is

where is the acceleration of a point on the rim
of the disk. The extra term is called the Coriolis
acceleration; it is the result of the interaction of the rota-
tion of the disk and the motion of the particle. One can
obtain a physical demonstration of this acceleration by
walking toward the edge of a moving merry-go-round.

y

x0

C

r(3.2)

r(3)

1

1

r�t� � t ln t i � t j � e�t k

i � j � 3k
a�t� � 6t i � 12t 2 j � 6t k

45�

r�t� � t i � 2t j � t 2 k

1
�

t t 
 0
r�t� � tR�t�

R�t� � cos �t i � sin �t j

v

v � cos �t i � sin �t j � tvd

vd � R��t�

a

a � 2vd � t ad

ad � R��t�
2vd

Exercises
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CHAPTER 13 REVIEW 899

(c) Determine the Coriolis acceleration of a particle that moves
on a rotating disk according to the equation

22. In designing transfer curves to connect sections of straight rail-
road tracks, it’s important to realize that the acceleration of the
train should be continuous so that the reactive force exerted by
the train on the track is also continuous. Because of the formu-
las for the components of acceleration in Section 13.4, this will
be the case if the curvature varies continuously.
(a) A logical candidate for a transfer curve to join existing

tracks given by for and for 
might be the function ,

, whose graph is the arc of the circle shown
in the figure. It looks reasonable at first glance. Show that
the function

is continuous and has continuous slope, but does not have
continuous curvature. Therefore is not an appropriate
transfer curve.

; (b) Find a fifth-degree polynomial to serve as a transfer curve
between the following straight line segments: for

and for . Could this be done with a
fourth-degree polynomial? Use a graphing calculator or
computer to sketch the graph of the “connected” function
and check to see that it looks like the one in the figure.

23. A particle moves with constant angular speed around a cir-
cle whose center is at the origin and whose radius is . The
particle is said to be in uniform circular motion. Assume that
the motion is counterclockwise and that the particle is at the
point when . The position vector at time is

.
(a) Find the velocity vector and show that .

Conclude that is tangent to the circle and points in the
direction of the motion.

(b) Show that the speed of the particle is the constant .
The period of the particle is the time required for one
complete revolution. Conclude that

r�t� � e�t cos �t i � e�t sin �t j

y � s2 � xx � 0y � 1
f �x� � s1 � x 2 x 
 1�s2

0 � x � 1�s2

F�x� � �1

s1 � x 2 

s2 � x

if x � 0

if 0 � x � 1�s2

if x 
 1�s2

f

y � 0
x 
 1y � xx � 0

y

x0

y=x

y=0
transfer curve

1

y

x0

y=F(x)
1

1

œ„2

P �
R

�R, 0� t � 0 t 
 0
r�t� � R cos �t i � R sin �t j

v v � r � 0
v

�R� v �
T

T �
2	R

� v � �
2	

�

(c) Find the acceleration vector . Show that it is proportional
to and that it points toward the origin. An acceleration
with this property is called a centripetal acceleration. Show
that the magnitude of the acceleration vector is .

(d) Suppose that the particle has mass . Show that the magni-
tude of the force that is required to produce this motion,
called a centripetal force, is

24. A circular curve of radius on a highway is banked at an angle
so that a car can safely traverse the curve without skidding

when there is no friction between the road and the tires. The
loss of friction could occur, for example, if the road is covered
with a film of water or ice. The rated speed of the curve is
the maximum speed that a car can attain without skidding. Sup-
pose a car of mass is traversing the curve at the rated speed

Two forces are acting on the car: the vertical force, , due
to the weight of the car, and a force exerted by, and normal
to, the road (see the figure).

The vertical component of balances the weight of the car,
so that . The horizontal component of
produces a centripetal force on the car so that, by Newton’s
Second Law and part (d) of Problem 23,

(a) Show that .
(b) Find the rated speed of a circular curve with radius 400 ft

that is banked at an angle of 
(c) Suppose the design engineers want to keep the banking at

, but wish to increase the rated speed by . What
should the radius of the curve be?

� a � � R�2

m
F

� F � �
m� v �2

R

r
v v t

y

a
r

R
�

vR

m
vR. mt

F

F

� F � cos � � mt F

� F � sin � �
mv 2

R

R

v 2
R � Rt tan �

12�.

12� 50%

mg

F

¨
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1. A projectile is fired from the origin with angle of elevation and initial speed . Assuming
that air resistance is negligible and that the only force acting on the projectile is gravity, , 
we showed in Example 5 in Section 13.4 that the position vector of the projectile is

. We also showed that the maximum horizontal
distance of the projectile is achieved when and in this case the range is .
(a) At what angle should the projectile be fired to achieve maximum height and what is the

maximum height?
(b) Fix the initial speed and consider the parabola , whose graph is

shown in the figure. Show that the projectile can hit any target inside or on the boundary
of the region bounded by the parabola and the -axis, and that it can’t hit any target
outside this region.

(c) Suppose that the gun is elevated to an angle of inclination in order to aim at a target
that is suspended at a height directly over a point units downrange. The target is
released at the instant the gun is fired. Show that the projectile always hits the target,
regardless of the value , provided the projectile does not hit the ground “before” .

2. (a) A projectile is fired from the origin down an inclined plane that makes an angle with
the horizontal. The angle of elevation of the gun and the initial speed of the projectile are

and , respectively. Find the position vector of the projectile and the parametric equa-
tions of the path of the projectile as functions of the time . (Ignore air resistance.)

(b) Show that the angle of elevation that will maximize the downhill range is the angle
halfway between the plane and the vertical.

(c) Suppose the projectile is fired up an inclined plane whose angle of inclination is . Show
that, in order to maximize the (uphill) range, the projectile should be fired in the direction
halfway between the plane and the vertical.

(d) In a paper presented in 1686, Edmond Halley summarized the laws of gravity and projec-
tile motion and applied them to gunnery. One problem he posed involved firing a pro-
jectile to hit a target a distance up an inclined plane. Show that the angle at which the
projectile should be fired to hit the target but use the least amount of energy is the same
as the angle in part (c). (Use the fact that the energy needed to fire the projectile is pro-
portional to the square of the initial speed, so minimizing the energy is equivalent to
minimizing the initial speed.)

3. A ball rolls off a table with a speed of 2 ft�s. The table is 3.5 ft high.
(a) Determine the point at which the ball hits the floor and find its speed at the instant of

impact.
(b) Find the angle between the path of the ball and the vertical line drawn through the

point of impact (see the figure).
(c) Suppose the ball rebounds from the floor at the same angle with which it hits the floor,

but loses of its speed due to energy absorbed by the ball on impact. Where does the
ball strike the floor on the second bounce?

4. Find the curvature of the curve with parametric equations 

; 5. If a projectile is fired with angle of elevation and initial speed , then parametric equations
for its trajectory are . (See Example 5 in Section 13.4.)
We know that the range (horizontal distance traveled) is maximized when . What
value of maximizes the total distance traveled by the projectile? (State your answer correct
to the nearest degree.)

6. A cable has radius and length and is wound around a spool with radius without over -
lapping. What is the shortest length along the spool that is covered by the cable?

7. Show that the curve with vector equation 

lies in a plane and find an equation of the plane.

� v0

t

r�t� � �v0 cos ��t i � [�v0 sin ��t �
1
2 tt 2 ] j

� � 45� R � v 2
0 �t

v0 x 2 � 2Ry � R2 � 0

x

�
h D

Dv0

�

v0�
t

�

�

R

�

20%

y � y
t

0
cos(1

2 	� 2) d�x � y
t

0
sin(1

2 	� 2) d�

v�
x � �v cos ��t, y � �v sin ��t �

1
2 tt 2

�
� � 45�

RLr

r�t� � �a1t 2 � b1t � c1, a2t 2 � b2t � c2, a3t 2 � b3t � c3 	
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Partial Derivatives14

So far we have dealt with the calculus of functions of a single variable. But, in the real world, physical
quantities often depend on two or more variables, so in this chapter we turn our attention to functions of
several variables and extend the basic ideas of differential calculus to such functions.

901

Photo by Stan Wagon, Macalester College

Graphs of functions of two variables are
surfaces that can take a variety of
shapes, including that of a saddle or
mountain pass. At this location in
southern Utah (Phipps Arch) you can 
see a point that is a minimum in one
direction but a maximum in another
direction. Such surfaces are discussed 
in Section 14.7.
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902 CHAPTER 14 PARTIAL DERIVATIVES

In this section we study functions of two or more variables from four points of view:

■ verbally (by a description in words)

■ numerically (by a table of values)

■ algebraically (by an explicit formula)

■ visually (by a graph or level curves)

Functions of Two Variables
The temperature at a point on the surface of the earth at any given time depends on the
longitude and latitude of the point. We can think of as being a function of the two vari-
ables and , or as a function of the pair . We indicate this functional dependence by
writing .

The volume of a circular cylinder depends on its radius and its height . In fact, we
know that . We say that is a function of and , and we write .

Definition A function of two variables is a rule that assigns to each ordered pair
of real numbers in a set a unique real number denoted by . The set

is the domain of and its range is the set of values that takes on, that is,
.

We often write to make explicit the value taken on by at the general point
. The variables and are independent variables and is the dependent variable.

[Compare this with the notation for functions of a single variable.]
A function of two variables is just a function whose domain is a subset of and whose

range is a subset of . One way of visualizing such a function is by means of an arrow dia-
gram (see Figure 1), where the domain is represented as a subset of the -plane and the
range is a set of numbers on a real line, shown as a -axis. For instance, if represents
the temperature at a point in a flat metal plate with the shape of , we can think of the
-axis as a thermometer displaying the recorded temperatures.

If a function is given by a formula and no domain is specified, then the domain of is
understood to be the set of all pairs for which the given expression is a well-defined
real number.

For each of the following functions, evaluate and find and sketch the
domain.

(a) (b) 

SOLUTION

(a)

The expression for makes sense if the denominator is not 0 and the quantity under the
square root sign is nonnegative. So the domain of is

The inequality , or , describes the points that lie on or above 

T
x y T

x y �x, y�
T � f �x, y�

V r h
V � �r 2h V r h V�r, h� � �r 2h

f
�x, y� D f �x, y�

D f f
� f �x, y� � �x, y� � D�

z � f �x, y� f
�x, y� x y z

y � f �x�
�2

�

D xy
z f �x, y�

�x, y� D
z

f f
�x, y�

f �3, 2�

f �x, y� �
sx � y � 1

x � 1
f �x, y� � x ln�y 2 � x�

f �3, 2� �
s3 � 2 � 1

3 � 1
�

s6

2

f
f

D � ��x, y� � x � y � 1 � 0,  x � 1�

EXAMPLE 1

y � �x � 1x � y � 1 � 0

14.1 Functions of Several Variables

FIGURE 1

y

x0

z

D f(a, b)

f (x, y)

(x, y)

(a, b)

0
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 903

the line , while means that the points on the line must be
excluded from the domain. (See Figure 2.)

(b)

Since is defined only when , that is, , the domain of is
. This is the set of points to the left of the parabola . (See

Figure 3.)

Not all functions can be represented by explicit formulas. The function in the next exam-
ple is described verbally and by numerical estimates of its values.

In regions with severe winter weather, the wind-chill index is often used to
describe the apparent severity of the cold. This index W is a subjective temperature that
depends on the actual temperature T and the wind speed . So W is a function of T and ,
and we can write . Table 1 records values of W compiled by the National
Weather Service of the US and the Meteorological Service of Canada.

TABLE 1 Wind-chill index as a function of air temperature and wind speed

For instance, the table shows that if the temperature is and the wind speed is
50 km�h, then subjectively it would feel as cold as a temperature of about with
no wind. So

In 1928 Charles Cobb and Paul Douglas published a study in which they
modeled the growth of the American economy during the period 1899–1922. They con-
sidered a simplified view of the economy in which production output is determined by the
amount of labor involved and the amount of capital invested. While there are many other
factors affecting economic performance, their model proved to be remarkably accurate.
The function they used to model production was of the form

where P is the total production (the monetary value of all goods produced in a year), 
L is the amount of labor (the total number of person-hours worked in a year), and K is 
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The New Wind-Chill Index
A new wind-chill index was introduced in
November of 2001 and is more accurate than
the old index for measuring how cold it feels
when it’s windy. The new index is based on a
model of how fast a human face loses heat. It
was developed through clinical trials in which
volunteers were exposed to a variety of temper-
atures and wind speeds in a refrigerated wind
tunnel.
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904 CHAPTER 14 PARTIAL DERIVATIVES

TABLE 2

. Year P L K

1899 100 100 100
1900 101 105 107
1901 112 110 114
1902 122 117 122
1903 124 122 131
1904 122 121 138
1905 143 125 149
1906 152 134 163
1907 151 140 176
1908 126 123 185
1909 155 143 198
1910 159 147 208
1911 153 148 216
1912 177 155 226
1913 184 156 236
1914 169 152 244
1915 189 156 266
1916 225 183 298
1917 227 198 335
1918 223 201 366
1919 218 196 387
1920 231 194 407
1921 179 146 417
1922 240 161 431

the amount of capital invested (the monetary worth of all machinery, equipment, and
buildings). In Section 14.3 we will show how the form of Equation 1 follows from cer-
tain economic assumptions.

Cobb and Douglas used economic data published by the government to obtain
Table 2. They took the year 1899 as a baseline and P, L, and K for 1899 were each
assigned the value 100. The values for other years were expressed as percentages of 
the 1899 figures.

Cobb and Douglas used the method of least squares to fit the data of Table 2 to the
function

(See Exercise 79 for the details.)
If we use the model given by the function in Equation 2 to compute the production in

the years 1910 and 1920, we get the values

which are quite close to the actual values, 159 and 231.
The production function has subsequently been used in many settings, ranging

from individual firms to global economics. It has become known as the Cobb-Douglas
production function. Its domain is because L and K represent
labor and capital and are therefore never negative.

Find the domain and range of .

SOLUTION The domain of is

which is the disk with center and radius 3. (See Figure 4.) The range of is

Since is a positive square root, . Also, because , we have

So the range is

Graphs
Another way of visualizing the behavior of a function of two variables is to consider its
graph.

Definition If is a function of two variables with domain D, then the graph of
is the set of all points in such that and is in D.

Just as the graph of a function of one variable is a curve with equation so
the graph of a function of two variables is a surface with equation . We can
visualize the graph of as lying directly above or below its domain in the -plane (see
Figure 5).
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P�194, 407� � 1.01�194�0.75�407�0.25 � 235.8
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 905

Sketch the graph of the function .

SOLUTION The graph of has the equation , or ,
which represents a plane. To graph the plane we first find the intercepts. Putting

in the equation, we get as the -intercept. Similarly, the -intercept is 3
and the -intercept is 6. This helps us sketch the portion of the graph that lies in the first
octant in Figure 6.

The function in Example 5 is a special case of the function

which is called a linear function. The graph of such a function has the equation

or    

so it is a plane. In much the same way that linear functions of one variable are important in
single-variable calculus, we will see that linear functions of two variables play a central
role in multivariable calculus.

Sketch the graph of .

SOLUTION The graph has equation . We square both sides of this
equation to obtain , or , which we recognize as an
equation of the sphere with center the origin and radius 3. But, since , the graph of

is just the top half of this sphere (see Figure 7).

NOTE An entire sphere can’t be represented by a single function of and . As we saw
in Example 6, the upper hemisphere of the sphere is represented by the
function . The lower hemisphere is represented by the function

.

Use a computer to draw the graph of the Cobb-Douglas production function
.

SOLUTION Figure 8 shows the graph of P for values of the labor L and capital K that lie
between 0 and 300. The computer has drawn the surface by plotting vertical traces. We
see from these traces that the value of the production P increases as either L or K
increases, as is to be expected.

Find the domain and range and sketch the graph of .

SOLUTION Notice that is defined for all possible ordered pairs of real numbers
, so the domain is , the entire xy-plane. The range of h is the set of all non-

negative real numbers. [Notice that and , so for all x and y.]
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906 CHAPTER 14 PARTIAL DERIVATIVES

The graph of h has the equation , which is the elliptic paraboloid that
we sketched in Example 4 in Section 12.6. Horizontal traces are ellipses and vertical
traces are parabolas (see Figure 9).

Computer programs are readily available for graphing functions of two variables. In most
such programs, traces in the vertical planes and are drawn for equally spaced
values of and parts of the graph are eliminated using hidden line removal.

Fig ure 10 shows computer-generated graphs of several functions. Notice that we get an
especially good picture of a function when rotation is used to give views from different

FIGURE 9
Graph of h(x, y)=4≈+¥
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vantage points. In parts (a) and (b) the graph of is very flat and close to the -plane except
near the origin; this is because is very small when or is large.

Level Curves
So far we have two methods for visualizing functions: arrow diagrams and graphs. A third
method, borrowed from mapmakers, is a contour map on which points of constant elevation
are joined to form contour lines, or level curves.

Definition The level curves of a function of two variables are the curves with
equations , where is a constant (in the range of ).

A level curve is the set of all points in the domain of at which takes on
a given value . In other words, it shows where the graph of has height .

You can see from Figure 11 the relation between level curves and horizontal traces. The
level curves are just the traces of the graph of in the horizontal plane 

projected down to the -plane. So if you draw the level curves of a function and
visualize them being lifted up to the surface at the indicated height, then you can mentally
piece together a picture of the graph. The surface is steep where the level curves are close
together. It is somewhat flatter where they are farther apart.

One common example of level curves occurs in topographic maps of mountainous
regions, such as the map in Figure 12. The level curves are curves of constant elevation
above sea level. If you walk along one of these contour lines, you neither ascend nor descend.
Another common example is the temperature function introduced in the opening paragraph
of this section. Here the level curves are called isothermals and join locations with the same 
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Visual 14.1A animates Figure 11 by 
showing level curves being lifted up to graphs 
of functions.

TEC
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908 CHAPTER 14 PARTIAL DERIVATIVES

temperature. Figure 13 shows a weather map of the world indicating the average January 
temperatures. The isothermals are the curves that separate the colored bands.

A contour map for a function is shown in Figure 14. Use it to estimate the
values of and .

SOLUTION The point (1, 3) lies partway between the level curves with -values 70
and 80. We estimate that

Similarly, we estimate that

Sketch the level curves of the function for the 
values , , , .

SOLUTION The level curves are

This is a family of lines with slope . The four particular level curves with 
, , , and are , , , and

. They are sketched in Figure 15. The level curves are equally spaced
parallel lines because the graph of is a plane (see Figure 6).

FIGURE 13
World mean sea-level temperatures

in January in degrees Celsius
From Atmosphere: Introduction to Meteorology, 4th Edition, 1989. 

© 1989 Pearson Education, Inc. 
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 909

Sketch the level curves of the function

SOLUTION The level curves are

This is a family of concentric circles with center and radius . The cases
, , , are shown in Figure 16. Try to visualize these level curves lifted up to 

form a surface and compare with the graph of (a hemisphere) in Figure 7. (See TEC
Visual 14.1A.)

Sketch some level curves of the function .

SOLUTION The level curves are

which, for , describes a family of ellipses with semiaxes and .
Figure 17(a) shows a contour map of h drawn by a computer. Figure 17(b) shows these
level curves lifted up to the graph of h (an elliptic paraboloid) where they become hori-
zontal traces. We see from Figure 17 how the graph of h is put together from the level
curves.
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Visual 14.1B demonstrates the 
connection between surfaces and their 
contour maps.

TEC

97817_14_ch14_p901-909.qk_97817_14_ch14_p901-909  11/8/10  1:26 PM  Page 909

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



910 CHAPTER 14 PARTIAL DERIVATIVES

Plot level curves for the Cobb-Douglas production function of Example 3.

SOLUTION In Figure 18 we use a computer to draw a contour plot for the Cobb-
Douglas production function

Level curves are labeled with the value of the production P. For instance, the level curve
labeled 140 shows all values of the labor L and capital investment K that result in a pro-
duction of . We see that, for a fixed value of P, as L increases K decreases, and
vice versa.

For some purposes, a contour map is more useful than a graph. That is certainly true in
Example 13. (Compare Figure 18 with Figure 8.) It is also true in estimating function val-
ues, as in Example 9.

Figure 19 shows some computer-generated level curves together with the corre sponding
computer-generated graphs. Notice that the level curves in part (c) crowd together near the
origin. That corresponds to the fact that the graph in part (d) is very steep near the origin.

Functions of Three or More Variables
A function of three variables, , is a rule that assigns to each ordered triple in a
domain a unique real number denoted by . For instance, the temperature

at a point on the surface of the earth depends on the longitude x and latitude y of the point
and on the time t, so we could write .

P�L, K � � 1.01L0.75K 0.25

P � 140

EXAMPLE 13

FIGURE 19
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 911

Find the domain of if

SOLUTION The expression for is defined as long as , so the domain of
is

This is a half-space consisting of all points that lie above the plane .

It’s very difficult to visualize a function of three variables by its graph, since that would
lie in a four-dimensional space. However, we do gain some insight into by examining its
level surfaces, which are the surfaces with equations , where is a constant.
If the point moves along a level surface, the value of remains fixed.

Find the level surfaces of the function

SOLUTION The level surfaces are , where . These form a family 
of concentric spheres with radius . (See Figure 20.) Thus, as varies over any
sphere with center , the value of remains fixed.

Functions of any number of variables can be considered. A function of n vari ables is a
rule that assigns a number to an -tuple of real num-
bers. We denote by the set of all such n-tuples. For example, if a company uses different
ingredients in making a food product, is the cost per unit of the ingredient, and units
of the ingredient are used, then the total cost of the ingredients is a function of the
variables :

The function is a real-valued function whose domain is a subset of . Some   times we
will use vector notation to write such functions more compactly: If , we
often write in place of . With this notation we can rewrite the function
defined in Equation 3 as

where and denotes the dot product of the vectors c and x in .
In view of the one-to-one correspondence between points in and their

position vectors in , we have three ways of looking at a function f
defined on a subset of :

1. As a function of real variables 

2. As a function of a single point variable 

3. As a function of a single vector variable 

We will see that all three points of view are useful.
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912 CHAPTER 14 PARTIAL DERIVATIVES

1. In Example 2 we considered the function , where
W is the wind-chill index, T is the actual temperature, and is
the wind speed. A numerical representation is given in Table 1.
(a) What is the value of ? What is its meaning?
(b) Describe in words the meaning of the question “For what

value of is ?” Then answer the question.
(c) Describe in words the meaning of the question “For what

value of T is ?” Then answer the question.
(d) What is the meaning of the function ?

Describe the behavior of this function.
(e) What is the meaning of the function ?

Describe the behavior of this function.

2. The temperature-humidity index (or humidex, for short) is the
perceived air temperature when the actual temperature is and
the relative humidity is , so we can write . The fol-
lowing table of values of is an excerpt from a table compiled
by the National Oceanic & Atmospheric Administration.

TABLE 3 Apparent temperature as a function
of temperature and humidity

(a) What is the value of ? What is its meaning?
(b) For what value of is ?
(c) For what value of is ?
(d) What are the meanings of the functions 

and ? Compare the behavior of these two
functions of .

3. A manufacturer has modeled its yearly production function
(the monetary value of its entire production in millions of 
dollars) as a Cobb-Douglas function

where is the number of labor hours (in thousands) and is
the invested capital (in millions of dollars). Find
and interpret it.

4. Verify for the Cobb-Douglas production function

W � f �T, v�
v

f ��15, 40�

v f ��20, v� � �30

f �T, 20� � �49
W � f ��5, v�

W � f �T, 50�

I
T

h I � f �T, h�
I

77

82

87

93

99

78

84

90

96

104

79

86

93

101

110

81

88

96

107

120

82

90

100

114

132

83

93

106

124

144

T
h 20 30 40 50 60 70

80

85

90

95

100

A
ct

ua
l t

em
pe

ra
tu

re
 (

°F
)

Relative humidity (%)

f �95, 70�
h f �90, h� � 100
T f �T, 50� � 88

I � f �80, h�
I � f �100, h�

h

P

P�L, K� � 1.47L 0.65K 0.35

L K
P�120, 20�

P�L, K � � 1.01L 0.75K 0.25

discussed in Example 3 that the production will be doubled 
if both the amount of labor and the amount of capital are 
doubled. Determine whether this is also true for the general
production function

5. A model for the surface area of a human body is given by the
function

where is the weight (in pounds), is the height (in inches),
and is measured in square feet.
(a) Find and interpret it.
(b) What is your own surface area?

6. The wind-chill index discussed in Example 2 has been 
modeled by the following function:

Check to see how closely this model agrees with the values in
Table 1 for a few values of and .

7. The wave heights h in the open sea depend on the speed 
of the wind and the length of time t that the wind has been
blowing at that speed. Values of the function are
recorded in feet in Table 4.
(a) What is the value of ? What is its meaning?
(b) What is the meaning of the function ? Describe

the behavior of this function.
(c) What is the meaning of the function ? Describe

the behavior of this function.

TABLE 4

8. A company makes three sizes of cardboard boxes: small,
medium, and large. It costs $2.50 to make a small box, $4.00 

P�L, K � � bL�K 1��

S � f �w, h� � 0.1091w 0.425h 0.725

w h
S

f �160, 70�

W

W�T, v� � 13.12 � 0.6215T � 11.37v 0.16 � 0.3965Tv 0.16

T v

v

h � f �v, t�

f �40, 15�
h � f �30, t�

h � f �v, 30�

2

4

5

9

14

19

24

2

4

7

13

21

29

37

2

5

8

16

25

36

47

2

5

8

17

28

40

54

2

5

9

18

31

45

62

2

5

9

19

33

48

67

2

5

9

19

33

50

69

√
t

10

15

20

30

40

50

60

Duration (hours)

W
in

d 
sp

ee
d 

(k
no

ts
)

155 10 20 30 40 50

14.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 913

for a medium box, and $4.50 for a large box. Fixed costs 
are $8000.
(a) Express the cost of making small boxes, medium 

boxes, and large boxes as a function of three variables:
.

(b) Find and interpret it.
(c) What is the domain of ?

9. Let .
(a) Evaluate .
(b) Find the domain of .
(c) Find the range of .

10. Let .
(a) Evaluate .
(b) Find and sketch the domain of .
(c) Find the range of .

11. Let .
(a) Evaluate .
(b) Find and describe the domain of .

12. Let .
(a) Evaluate .
(b) Find and describe the domain of .

13–22 Find and sketch the domain of the function.

13. 14.

15. 16.

17.  

18.

19.

20.

21.

22.

23–31 Sketch the graph of the function.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32. Match the function with its graph (labeled I–VI). Give reasons
for your choices.

(a) (b)

(c) (d)

(e) (f )

yx
z

C � f �x, y, z�
f �3000, 5000, 4000�

f

t�x, y� � cos�x � 2y�
t�2, �1�

t

t

F �x, y� � 1 � s4 � y 2

F �3, 1�
F

F

f �x, y, z� � sx � sy � sz � ln�4 � x 2 � y 2 � z 2�
f �1, 1, 1�

f

t�x, y, z� � x 3y 2zs10 � x � y � z
t�1, 2, 3�

t

f �x, y� � sxyf �x, y� � s2x � y

f �x, y� � sx 2 � y 2f �x, y� � ln�9 � x 2 � 9y2 �

f �x, y� � s1 � x 2 � s1 � y 2  

f �x, y� � sy � s25 � x 2 � y 2 

f �x, y� �
sy � x 2 

1 � x 2

f �x, y� � arcsin�x 2 � y 2 � 2�

f �x, y, z� � s1 � x 2 � y 2 � z2 

f �x, y, z� � ln�16 � 4x 2 � 4y2 � z2 �

f �x, y� � 2 � xf �x, y� � 1 � y

f �x, y� � e�yf �x, y� � 10 � 4x � 5y

f �x, y� � 1 � 2x 2 � 2y 2f �x, y� � y 2 � 1

f �x, y� � s4x 2 � y 2 f �x, y� � 9 � x 2 � 9y 2

f �x, y� � s4 � 4x 2 � y 2 

f �x, y� � � xy �f �x, y� � � x � � � y �
f �x, y� � �x 2 � y 2 �2f �x, y� �

1

1 � x 2 � y 2

f �x, y� � sin(�x � � � y �)f �x, y� � �x � y�2

33. A contour map for a function is shown. Use it to esti mate the
values of and . What can you say about the
shape of the graph?

34. Shown is a contour map of atmospheric pressure in North
America on August 12, 2008. On the level curves (called 
isobars) the pressure is indicated in millibars (mb).
(a) Estimate the pressure at (Chicago), (Nashville), 

(San Francisco), and (Vancouver).
(b) At which of these locations were the winds strongest?

I II z

yx

z

yx

III IV z

yx

z

y

x

V VIz

yx

z

yx

f
f �3, �2�f ��3, 3�

y
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1
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914 CHAPTER 14 PARTIAL DERIVATIVES

35. Level curves (isothermals) are shown for the water temperature
in Long Lake (Minnesota) in 1998 as a function of

depth and time of year. Estimate the temperature in the lake on
June 9 (day 160) at a depth of 10 m and on June 29 (day 180)
at a depth of 5 m.

36. Two contour maps are shown. One is for a function whose
graph is a cone. The other is for a function t whose graph is a
paraboloid. Which is which, and why?

37. Locate the points and on the map of Lonesome Mountain
(Figure 12). How would you describe the terrain near ? 
Near ?

38. Make a rough sketch of a contour map for the function whose
graph is shown.

�in �C�

2016

15

120

10D
ep

th
 (

m
)

12
8

8

121620

5

0

160 200

Day of 1998

240 280

f

I

x

y

II

x

y

BA
A

B

z

y

x

39–42 A contour map of a function is shown. Use it to make a
rough sketch of the graph of .

39. 40.

41. 42.

43–50 Draw a contour map of the function showing several level
curves.

43. 44.

45. 46.

47. 48.

49. 50.

51–52 Sketch both a contour map and a graph of the function and
compare them.

51. 52.

53. A thin metal plate, located in the -plane, has temperature
at the point . The level curves of are called

isothermals because at all points on such a curve the tempera-
ture is the same. Sketch some isothermals if the temperature
function is given by

54. If is the electric potential at a point in the 
-plane, then the level curves of are called equipotential

curves because at all points on such a curve the electric 
potential is the same. Sketch some equipotential curves if

, where is a positive constant.

f

_8

_6

_4

8

y

x
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y

x

_3
_2

_1
0

1
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3

y

x

00

0

5
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4

4

3

3

2

2

1

1

y

x

f �x, y� � x 3 � yf �x, y� � �y � 2x�2

f �x, y� � ln�x 2 � 4y 2�f �x, y� � sx � y

f �x, y� � y sec xf �x, y� � ye x

f �x, y� � y	�x 2 � y2�f �x, y� � sy 2 � x 2 

f �x, y� � s36 � 9x 2 � 4y 2 f �x, y� � x 2 � 9y 2

xy
T�x, y�T�x, y�

T�x, y� �
100

1 � x 2 � 2y 2

�x, y�V�x, y�
Vxy

cV�x, y� � c	sr 2 � x 2 � y 2 
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES 915

; 55–58 Use a computer to graph the function using various
domains and viewpoints. Get a printout of one that, in your opin-
ion, gives a good view. If your software also produces level
curves, then plot some contour lines of the same function and
compare with the graph.

55. (monkey saddle)

56. (dog saddle)

57.

58.

f �x, y� � xy 2 � x 3

f �x, y� � xy 3 � yx 3

f �x, y� � e��x 2�y 2�	3�sin�x 2� � cos�y 2��

f �x, y� � cos x cos y

59–64 Match the function (a) with its graph (labeled A–F below)
and (b) with its contour map (labeled I–VI). Give reasons for
your choices.

59. 60.

61. 62.

63.

64.

z � e x cos yz � sin�xy�

z � sin x � sin yz � sin�x � y�

z � �1 � x 2��1 � y 2�

z �
x � y

1 � x 2 � y 2

z

y

x

A B C z

y

x

z

yx

z

yx

D E Fz

y

x
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y
x

II
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y
III
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916 CHAPTER 14 PARTIAL DERIVATIVES

65–68 Describe the level surfaces of the function.

65.

66.

67.

68.

69–70 Describe how the graph of is obtained from the graph 
of .

69. (a)
(b)
(c)
(d)

70. (a)
(b)
(c)

; 71–72 Use a computer to graph the function using various
domains and viewpoints. Get a printout that gives a good view of
the “peaks and valleys.” Would you say the function has a maxi-
 mum value? Can you identify any points on the graph that you
might consider to be “local maximum points”? What about “local
minimum points”?

71.

72.

; 73–74 Use a computer to graph the function using various
domains and viewpoints. Comment on the limiting behavior of 
the function. What happens as both and become large? What
happens as approaches the origin?

73. 74.

; 75. Use a computer to investigate the family of functions
. How does the shape of the graph depend 

on ?

f �x, y, z� � x � 3y � 5z

f �x, y, z� � x 2 � 3y 2 � 5z2

f �x, y, z� � y 2 � z2

f �x, y, z� � x 2 � y 2 � z2

t

f

t�x, y� � f �x, y� � 2
t�x, y� � 2 f �x, y�
t�x, y� � �f �x, y�
t�x, y� � 2 � f �x, y�

t�x, y� � f �x � 2, y�
t�x, y� � f �x, y � 2�
t�x, y� � f �x � 3, y � 4�

f �x, y� � 3x � x 4 � 4y 2 � 10xy

f �x, y� � xye�x 2�y 2

yx
�x, y�

f �x, y� �
xy

x 2 � y 2f �x, y� �
x � y

x 2 � y 2

f �x, y� � e cx2�y2

c

; 76. Use a computer to investigate the family of surfaces

How does the shape of the graph depend on the numbers
and ?

; 77. Use a computer to investigate the family of surfaces
. In particular, you should determine the

transitional values of for which the surface changes from
one type of quadric surface to another.

; 78. Graph the functions

and

In general, if t is a function of one variable, how is the graph
of 

obtained from the graph of t?

; 79. (a) Show that, by taking logarithms, the general Cobb-
Douglas function can be expressed as

(b) If we let and , the equation in
part (a) becomes the linear equation . Use
Table 2 (in Example 3) to make a table of values of

and for the years 1899–1922. Then use a
graphing calculator or computer to find the least squares
regression line through the points .

(c) Deduce that the Cobb-Douglas production function is
.

f �x, y� � lnsx 2 � y 2 

f �x, y� � sin(sx 2 � y 2 )

f �x, y� �
1

sx 2 � y 2 

f �x, y� � t(sx 2 � y 2 )

P � bL�K 1��

ln 
P

K
� ln b � � ln 

L

K

x � ln�L	K � y � ln�P	K �
y � �x � ln b

ln�L	K� ln�P	K�

�ln�L	K�, ln�P	K��

P � 1.01L0.75K 0.25

z � �ax 2 � by 2�e�x 2�y 2

a
b

z � x 2 � y 2 � cxy
c

f �x, y� � esx2�y2 

f �x, y� � sx 2 � y 2 

Let’s compare the behavior of the functions

as x and y both approach 0 [and therefore the point approaches the origin].
Tables 1 and 2 show values of and , correct to three decimal places, for

points near the origin. (Notice that neither function is defined at the origin.) 

f �x, y� �
sin�x 2 � y 2 �

x 2 � y 2 and t�x, y� �
x 2 � y 2

x 2 � y 2

�x, y�
f �x, y� t�x, y�

�x, y�

14.2 Limits and Continuity
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SECTION 14.2 LIMITS AND CONTINUITY 917

TABLE 1 Values of TABLE 2 Values of 

It appears that as approaches (0, 0), the values of are approaching 1 whereas
the values of aren’t approaching any number. It turns out that these guesses based on
numerical evidence are correct, and we write

and    does not exist

In general, we use the notation

to indicate that the values of approach the number L as the point approaches
the point along any path that stays within the domain of . In other words, we can
make the values of as close to L as we like by taking the point sufficiently
close to the point , but not equal to . A more precise definition follows.

Definition Let be a function of two variables whose domain D includes
points arbitrarily close to . Then we say that the limit of as
approaches is and we write

if for every number there is a corresponding number such that

and then

Other notations for the limit in Definition 1 are

and    

Notice that is the distance between the numbers and , and
is the distance between the point and the point . Thus

Definition 1 says that the distance between and can be made arbitrarily small by
making the distance from to sufficiently small (but not 0). Figure 1 illustrates
Definition 1 by means of an arrow diagram. If any small interval is given 
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x
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�0.5

�0.2

0

0.2
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1.0

t�x, y�f �x, y�

�x, y� f �x, y�
t�x, y�

lim
� x, y� l �0, 0�

sin�x 2 � y 2 �
x 2 � y 2 � 1 lim

� x, y� l �0, 0�

x 2 � y 2

x 2 � y 2

lim
� x, y� l � a, b�

f �x, y� � L

f �x, y� �x, y�
�a, b� f

f �x, y� �x, y�
�a, b� �a, b�

f
�a, b� f �x, y� �x, y�

�a, b� L

lim
�x, y� l �a, b�

f �x, y� � L

	 � 0 
 � 0

if �x, y� � D 0 � s�x � a�2 � �y � b�2 � 
 � f �x, y� � L � � 	

1

lim
x l a
y l b

f �x, y� � L f �x, y� l L as  �x, y� l �a, b�

� f �x, y� � L � f �x, y� L
s�x � a� 2 � �y � b� 2 �x, y� �a, b�

f �x, y� L
�x, y� �a, b�

�L � 	, L � 	�
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918 CHAPTER 14 PARTIAL DERIVATIVES

around , then we can find a disk with center and radius such that maps
all the points in [except possibly ] into the interval .

Another illustration of Definition 1 is given in Figure 2 where the surface is the graph
of . If is given, we can find such that if is restricted to lie in the disk

and , then the corresponding part of lies between the horizontal planes
and .

For functions of a single variable, when we let approach , there are only two possible
directions of approach, from the left or from the right. We recall from Chap ter 1 that if

, then does not exist.
For functions of two variables the situation is not as simple because we can let

approach from an infinite number of directions in any manner whatsoever (see Fig-
ure 3) as long as stays within the domain of .

Definition 1 says that the distance between and L can be made arbitrarily small
by making the distance from to sufficiently small (but not 0). The definition
refers only to the distance between and . It does not refer to the direction of
approach. Therefore, if the limit exists, then must approach the same limit no mat-
ter how approaches . Thus, if we can find two different paths of approach along
which the function has different limits, then it follows that does
not exist.

If as along a path and as
along a path , where , then does 

not exist.

Show that does not exist.

SOLUTION Let . First let’s approach along the 
-axis. Then gives for all , so

We now approach along the -axis by putting . Then for 
all , so

(See Figure 4.) Since has two different limits along two different lines, the given limit 

y

0 x

z

L
L-∑

L+∑

0

f )

(

D

(x, y)

(a, b)

∂

FIGURE 1 FIGURE 2 

x
y

z

0

L+∑
L

L-∑

(a, b)
D∂

S

x a

limx l a� f �x� � limx l a� f �x� limx l a f �x�
�x, y�

�a, b�
�x, y� f

f �x, y�
�x, y� �a, b�

�x, y� �a, b�
f �x, y�

�x, y� �a, b�
f �x, y� lim�x, y� l �a, b� f �x, y�

f �x, y� l L1 �x, y� l �a, b� C1 f �x, y� l L2

�x, y� l �a, b� C2 L1 � L2 lim�x, y� l �a, b� f �x, y�

lim
� x, y� l �0, 0�

x 2 � y 2

x 2 � y 2

f �x, y� � �x 2 � y 2�	�x 2 � y 2 � �0, 0�
x y � 0 f �x, 0� � x 2	x 2 � 1 x � 0

f �x, y� l 1 as �x, y� l �0, 0� along the x-axis

S
f 	 � 0 
 � 0 �x, y�

D
 �x, y� � �a, b� S
z � L � 	 z � L � 	

v EXAMPLE 1

y x � 0 f �0, y� �
�y 2

y 2 � �1
y � 0

f �x, y� l �1 as �x, y� l �0, 0� along the y-axis

f

f
 � 0�a, b�D
L
�L � 	, L � 	��a, b�D


FIGURE 3

b

a0

y

x

y

f=_1

xf=1

FIGURE 4
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SECTION 14.2 LIMITS AND CONTINUITY 919

does not exist. (This confirms the conjecture we made on the basis of numerical evi-
dence at the beginning of this section.)

If , does exist?

SOLUTION If , then . Therefore

If , then , so

Although we have obtained identical limits along the axes, that does not show that the
given limit is 0. Let’s now approach along another line, say . For all ,

Therefore

(See Figure 5.) Since we have obtained different limits along different paths, the given
limit does not exist.

Figure 6 sheds some light on Example 2. The ridge that occurs above the line cor-
responds to the fact that for all points on that line except the origin.

If , does exist?

SOLUTION With the solution of Example 2 in mind, let’s try to save time by letting
along any nonvertical line through the origin. Then , where 

is the slope, and

So

Thus has the same limiting value along every nonvertical line through the origin. But
that does not show that the given limit is 0, for if we now let along the
parabola , we have

f �x, y� � xy	�x 2 � y 2 � lim
�x, y� l �0, 0�

f �x, y�

y � 0 f �x, 0� � 0	x 2 � 0

f �x, y� l 0 as �x, y� l �0, 0� along the x-axis

x � 0 f �0, y� � 0	y 2 � 0

f �x, y� l 0 as �x, y� l �0, 0� along the y-axis

�0, 0� y � x x � 0

f �x, x� �
x 2

x 2 � x 2 �
1

2

f �x, y� l 1
2 as �x, y� l �0, 0� along y � x

EXAMPLE 2

y � x
f �x, y� � 1

2 �x, y�

FIGURE 6

f(x, y)=
xy

≈+¥

z y

x

f �x, y� �
xy 2

x 2 � y 4 lim
� x, y� l �0, 0�

f �x, y�

�x, y� l �0, 0� y � mx m

f �x, y� � f �x, mx� �
x�mx�2

x 2 � �mx�4 �
m 2x 3

x 2 � m 4x 4 �
m 2x

1 � m 4x 2

f �x, y� l 0 as �x, y� l �0, 0� along y � mx

f
�x, y� l �0, 0�

x � y 2

f �x, y� � f �y 2, y� �
y 2 � y 2

�y 2 �2 � y 4 �
y 4

2y 4 �
1

2

v EXAMPLE 3

FIGURE 5

y

f=0

xf=0

y=x

1
2f=

In Visual 14.2 a rotating line on the 
surface in Figure 6 shows different limits at 
the origin from different directions.

TEC

Figure 7 shows the graph of the function in
Example 3. Notice the ridge above the
parabola .x � y 2

_202
x

z

_2
0

2 y_0.5

0

0.5

FIGURE 7
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920 CHAPTER 14 PARTIAL DERIVATIVES

so

Since different paths lead to different limiting values, the given limit does not exist.

Now let’s look at limits that do exist. Just as for functions of one variable, the calcula-
tion of limits for functions of two variables can be greatly simplified by the use of proper-
ties of limits. The Limit Laws listed in Section 1.6 can be extended to functions of two
variables: The limit of a sum is the sum of the limits, the limit of a product is the product
of the limits, and so on. In particular, the following equations are true.

The Squeeze Theorem also holds.

Find if it exists.

SOLUTION As in Example 3, we could show that the limit along any line through the
origin is 0. This doesn’t prove that the given limit is 0, but the limits along the parabolas

and also turn out to be 0, so we begin to suspect that the limit does exist
and is equal to 0.

Let . We want to find such that

if   

that is, if

But since , so and therefore

Thus if we choose and let , then

Hence, by Definition 1,

Continuity
Recall that evaluating limits of continuous functions of a single variable is easy. It can be
accomplished by direct substitution because the defining property of a continuous function
is . Continuous functions of two variables are also defined by the direct
substitution property.

f �x, y� l 1
2 as �x, y� l �0, 0� along x � y 2

2 lim
�x, y� l �a, b�

x � a lim
�x, y� l �a, b�

y � b lim
�x, y� l �a, b�

c � c

lim
�x, y� l �0, 0�

3x 2y

x 2 � y 2

y � x 2 x � y 2

EXAMPLE 4

� � 0 � � 0

0 � sx 2 � y 2 � � then � 3x 2 y

x 2 � y 2 � 0 � � �

0 � sx 2 � y 2 � � then
3x 2� y �
x 2 � y 2 � �

x 2 � x 2 � y 2 y 2 	 0 x 2��x 2 � y 2 � � 1

3x 2� y �
x 2 � y 2 � 3 � y � � 3sy 2 � 3sx 2 � y 2 

� � ��3 0 � sx 2 � y 2 � �

� 3x 2y

x 2 � y 2 � 0 � � 3sx 2 � y 2 � 3� � 3��

3� � �

lim
�x, y� l �0, 0�

3x 2y

x 2 � y 2 � 0

3

limx l a f �x� � f �a�

Another way to do Example 4 is to use the
Squeeze Theorem instead of Definition 1. From

it follows that

and so the first inequality in shows that the
given limit is 0.

lim
�x, y� l �0, 0�

3� y � � 0

2

3
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SECTION 14.2 LIMITS AND CONTINUITY 921

Definition A function of two variables is called continuous at if

We say is continuous on if is continuous at every point in .

The intuitive meaning of continuity is that if the point changes by a small amount,
then the value of changes by a small amount. This means that a surface that is the
graph of a continuous function has no hole or break.

Using the properties of limits, you can see that sums, differences, products, and quo-
tients of continuous functions are continuous on their domains. Let’s use this fact to give
examples of continuous functions.

A polynomial function of two variables (or polynomial, for short) is a sum of terms of
the form , where is a constant and and are nonnegative integers. A rational
function is a ratio of polynomials. For instance,

is a polynomial, whereas

is a rational function.
The limits in show that the functions , , and are

continuous. Since any polynomial can be built up out of the simple functions , , and by
multiplication and addition, it follows that all polynomials are continuous on . Likewise,
any rational function is continuous on its domain because it is a quotient of continu-
ous functions.

Evaluate .

SOLUTION Since is a polynomial, it is continuous
everywhere, so we can find the limit by direct substitution:

Where is the function continuous?

SOLUTION The function is discontinuous at because it is not defined there. 
Since is a rational function, it is continuous on its domain, which is the set

.

Let

Here is defined at but is still discontinuous there because
does not exist (see Example 1).

f �a, b�

lim
�x, y� l �a, b�

f �x, y� � f �a, b�

f D f �a, b� D

�x, y�
f �x, y�

cxmy n c m n

f �x, y� � x 4 � 5x 3y 2 � 6xy 4 � 7y � 6

t�x, y� �
2xy � 1

x 2 � y 2

f �x, y� � x t�x, y� � y h�x, y� � c
f t h

� 2

lim
�x, y� l �1, 2�

�x 2y 3 � x 3y 2 � 3x � 2y�

f �x, y� � x 2 y 3 � x 3y 2 � 3x � 2y

lim
�x, y� l �1, 2�

�x 2y 3 � x 3y 2 � 3x � 2y� � 12 � 23 � 13 � 22 � 3 � 1 � 2 � 2 � 11

f �x, y� �
x 2 � y 2

x 2 � y 2

f �0, 0�
f

D � 	�x, y� � �x, y� � �0, 0�


t�x, y� � �
0

x 2 � y 2

x 2 � y 2
if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

t �0, 0� t lim�x, y� l �0, 0� t�x, y�

4

2

v EXAMPLE 5

EXAMPLE 6

EXAMPLE 7
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922 CHAPTER 14 PARTIAL DERIVATIVES

Let

We know is continuous for since it is equal to a rational function there.
Also, from Example 4, we have

Therefore is continuous at , and so it is continuous on .

Just as for functions of one variable, composition is another way of combining two con-
tinuous functions to get a third. In fact, it can be shown that if is a continuous function of
two variables and is a continuous function of a single variable that is defined on the range
of , then the composite function defined by is also a contin-
uous function.

Where is the function continuous?

SOLUTION The function is a rational function and therefore continuous
except on the line . The function is continuous everywhere. So the
composite function

is continuous except where . The graph in Figure 9 shows the break in the graph of
above the -axis.

Functions of Three or More Variables
Everything that we have done in this section can be extended to functions of three or more
variables. The notation

means that the values of approach the number as the point approaches
the point along any path in the domain of . Because the distance between two
points and in is given by , we can
write the precise definition as follows: For every number there is a corresponding
number such that

if and

then  

The function f is continuous at if

For instance, the function

EXAMPLE 8

f �x, y� � �
0

3x 2y

x 2 � y 2
if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

�x, y� � �0, 0�f

lim
�x, y� l �0, 0�

f �x, y� � lim
�x, y� l �0, 0�

3x 2y

x 2 � y 2 � 0 � f �0, 0�

� 2�0, 0�f

f
t

h�x, y� � t� f �x, y��h � t � ff

h�x, y� � arctan�y�x�EXAMPLE 9

f �x, y� � y�x
t�t� � arctan tx � 0

t� f �x, y�� � arctan�y�x� � h�x, y�

x � 0
yh

lim
�x, y, z� l �a, b, c�

f �x, y, z� � L

�x, y, z�Lf �x, y, z�
f�a, b, c�

s�x � a� 2 � �y � b� 2 � �z � c� 2 � 3�a, b, c��x, y, z�
� � 0

� � 0

0 � s�x � a� 2 � �y � b� 2 � �z � c� 2 � ��x, y, z� is in the domain of f

� f �x, y, z� � L � � �

�a, b, c�

lim
�x, y, z� l �a, b, c�

f �x, y, z� � f �a, b, c�

f �x, y, z� �
1

x 2 � y 2 � z2 � 1

Figure 8 shows the graph of the continuous
function in Example 8.

FIGURE 8

z

y

x

_2

_1

0

1

2

x
_2

_1
0

1
2

y

_2

0

2

z

FIGURE 9
The function h(x, y)=arctan(y/x)
is discontinuous where x=0.
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is a rational function of three variables and so is continuous at every point in except
where . In other words, it is discontinuous on the sphere with center the
origin and radius 1.

If we use the vector notation introduced at the end of Section 14.1, then we can write the
definitions of a limit for functions of two or three variables in a single compact form as 
follows.

If is defined on a subset D of , then means that for
every number there is a corresponding number such that

if  and  then  

Notice that if , then and , and is just the definition of a limit for
functions of a single variable. For the case , we have , , 
and , so becomes Definition 1. If , then

, , and becomes the definition of a limit of a function of three
variables. In each case the definition of continuity can be written as

� 3

x 2 � y 2 � z2 � 1

f �n lim x l a f �x� � L
� � 0 � � 0

x � D 0 � � x � a � � � � f �x� � L � � �

n � 1 x � x a � a
n � 2 x � �x, y  a � �a, b 

�x � a � � s�x � a� 2 � �y � b� 2 n � 3
x � �x, y, z  a � �a, b, c 

lim
x l a

f �x� � f �a�

5

5

5
5

SECTION 14.2 LIMITS AND CONTINUITY 923

1. Suppose that . What can you say 
about the value of ? What if is continuous?

2. Explain why each function is continuous or discontinuous.
(a) The outdoor temperature as a function of longitude, 

latitude, and time
(b) Elevation (height above sea level) as a function of

longitude, latitude, and time
(c) The cost of a taxi ride as a function of distance traveled 

and time

3–4 Use a table of numerical values of for near the
origin to make a conjecture about the value of the limit of
as . Then explain why your guess is correct.

3. 4.

5–22 Find the limit, if it exists, or show that the limit does 
not exist.

5. 6.

7. 8.

9. 10.

lim�x, y� l �3, 1� f �x, y� � 6
ff �3, 1�

�x, y�f �x, y�

�x, y� l �0, 0�
f �x, y�

f �x, y� �
2xy

x 2 � 2y 2f �x, y� �
x 2y 3 � x 3y 2 � 5

2 � xy

lim
�x, y� l �1, 2�

�5x 3 � x 2y 2� lim
�x, y� l �1, �1�

e�xy cos�x � y�

lim
�x, y� l �1, 0�

ln� 1 � y 2

x 2 � xy�lim
�x, y� l �2, 1�

4 � xy

x 2 � 3y 2

lim
�x, y� l �0, 0�

x 4 � 4y 2

x 2 � 2y 2 lim
�x, y� l �0, 0�

5y 4 cos2 x

x 4 � y 4

11. 12.

13. 14.

15. 16.

17. 18.

19.

20.

21.

22.

; 23–24 Use a computer graph of the function to explain why the
limit does not exist.

23. 24.

lim
�x, y� l �0, 0�

xy

sx 2 � y 2 
lim

�x, y� l �0, 0�

x 4 � y 4

x 2 � y 2

lim
�x, y� l �0, 0�

x 2ye y

x 4 � 4y 2 lim
�x, y� l �0, 0�

x 2 sin2 y

x 2 � 2y 2

lim
�x, y� l �0, 0�

x 2 � y 2

sx 2 � y 2 � 1 � 1
lim

�x, y� l �0, 0�

xy 4

x 2 � y 8

lim
�x, y, z� l �
, 0, 1�3�

ey2

tan�xz�

lim
�x, y, z� l �0, 0, 0�

xy � yz

x 2 � y 2 � z2

lim
�x, y, z� l �0, 0, 0�

xy � yz 2 � xz2

x 2 � y 2 � z 4

lim
�x, y, z� l �0, 0, 0�

yz

x 2 � 4y 2 � 9z2

lim
�x, y� l �0, 0�

2x 2 � 3xy � 4y 2

3x 2 � 5y 2 lim
�x, y� l �0, 0�

xy 3

x 2 � y6

lim
�x, y� l �1, 0�

xy � y

�x � 1�2 � y 2lim
�x, y� l �0, 0�

y 2 sin2 x

x 4 � y 4

14.2 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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924 CHAPTER 14 PARTIAL DERIVATIVES

25–26 Find and the set on which is 
continuous.

25. ,  

26. ,  

; 27–28 Graph the function and observe where it is discontinuous.
Then use the formula to explain what you have observed.

27. 28.

29–38 Determine the set of points at which the function is 
continuous.

29. 30.

31. 32.

33.

34.

35.

36.

37.

38.

f �x, y� � e 1��x�y� f �x, y� �
1

1 � x 2 � y 2

F�x, y� �
xy

1 � e x�y F�x, y� � coss1 � x � y

F�x, y� �
1 � x 2 � y 2

1 � x 2 � y 2 H�x, y� �
e x � e y

e xy � 1

G�x, y� � ln�x 2 � y 2 � 4 �

G�x, y� � tan�1(�x � y��2)

f �x, y, z� � arcsin�x 2 � y 2 � z 2�

f �x, y, z� � sy � x 2 ln z

f �x, y� � �
1

x 2 y 3

2x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y� � �
0

xy

x 2 � xy � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

hh�x, y� � t� f �x, y��

f �x, y� � 2x � 3y � 6t�t� � t 2 � st

f �x, y� �
1 � xy

1 � x 2 y 2t�t� � t � ln t

39–41 Use polar coordinates to find the limit. [If are 
polar coordinates of the point with , note that 
as .]

39.

40.

41.

; 42. At the beginning of this section we considered the function

and guessed that as on the basis
of numerical evidence. Use polar coordinates to confirm the
value of the limit. Then graph the function.

; 43. Graph and discuss the continuity of the function

44. Let

(a) Show that as along any path
through of the form with .

(b) Despite part (a), show that is discontinuous at .
(c) Show that is discontinuous on two entire curves.

45. Show that the function given by is continuous
on .  [Hint: Consider .]

46. If , show that the function f given by is
continuous on .

f �x, y� � �0  if y � 0  or  y 	 x 4

1  if 0 � y � x 4

f �x, y� l 0 �x, y� l �0, 0�
�0, 0� y � mx a a � 4

f �0, 0�
f

f f �x� � � x �
� n � x � a �2 � �x � a� � �x � a�

c � Vn f �x� � c � x
� n

lim
�x, y� l �0, 0�

e�x2�y2

� 1

x 2 � y 2

f �x, y� �
sin�x2 � y2 �

x2 � y2

�x, y� l �0, 0�f �x, y� l 1

f �x, y� � �
1

sin xy

xy
if

if

xy � 0

xy � 0

lim
�x, y� l �0, 0�

�x2 � y2 � ln�x2 � y2 �

�r, ��
r l 0�r 	 0�x, y�

�x, y� l �0, 0�

lim
�x, y� l �0, 0�

x3 � y3

x2 � y2

On a hot day, extreme humidity makes us think the temperature is higher than it really 
is, whereas in very dry air we perceive the temperature to be lower than the thermom-
eter indicates. The National Weather Service has devised the heat index (also called the
temperature-humidity index, or humidex, in some countries) to describe the combined
effects of temperature and humidity. The heat index I is the perceived air temperature when
the actual temperature is T and the relative humidity is H. So I is a function of T and H and
we can write The following table of values of I is an excerpt from a table com-
piled by the National Weather Service.

I � f �T, H �.

14.3 Partial Derivatives
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SECTION 14.3 PARTIAL DERIVATIVES 925

If we concentrate on the highlighted column of the table, which corresponds to a relative
humidity of H � 70%, we are considering the heat index as a function of the single vari-
able T for a fixed value of H. Let’s write . Then de scribes how the heat
index I increases as the actual temperature T increases when the relative humidity is 70%.
The derivative of t when is the rate of change of I with respect to T when

:

We can approximate using the values in Table 1 by taking and :

Averaging these values, we can say that the derivative is approximately 3.75. This
means that, when the actual temperature is and the relative humidity is 70%, the
apparent temperature (heat index) rises by about for every degree that the actual
temperature rises!

Now let’s look at the highlighted row in Table 1, which corresponds to a fixed temper-
 a ture of . The numbers in this row are values of the function ,
which describes how the heat index increases as the relative humidity H increases when the
actual temperature is . The derivative of this function when H � 70% is the rate
of change of I with respect to H when H � 70%:

By taking h � 5 and �5, we approximate using the tabular values:

T
H

Relative humidity (%)

Actual
temperature

(°F)

90

92

94

96

98

100

50 55 60 65 70 75 80 85 90

96

100

104

109

114

119

98

103

107

113

118

124

100

105

111

116

123

129

103

108

114

121

127

135

106

112

118

125

133

141

109

115

122

130

138

147

112

119

127

135

144

154

115

123

132

141

150

161

119

128

137

146

157

168

t�T� � f �T, 70� t�T�

T � 96�F
T � 96�F

t�96� � lim
h l 0

t�96 � h� � t�96�
h

� lim
h l 0

f �96 � h, 70� � f �96, 70�
h

t�96� h � 2 �2

t�96� �
t�98� � t�96�

2
�

f �98, 70� � f �96, 70�
2

�
133 � 125

2
� 4

t�96� �
t�94� � t�96�

�2
�

f �94, 70� � f �96, 70�
�2

�
118 � 125

�2
� 3.5

t�96�
96�F

3.75�F

T � 96�F G�H � � f �96, H �

T � 96�F

G�70� � lim
h l 0

G�70 � h� � G�70�
h

� lim
h l 0

f �96, 70 � h� � f �96, 70�
h

G�70�

G�70� �
G�75� � G�70�

5
�

f �96, 75� � f �96, 70�
5

�
130 � 125

5
� 1

G�70� �
G�65� � G�70�

�5
�

f �96, 65� � f �96, 70�
�5

�
121 � 125

�5
� 0.8

TABLE 1
Heat index as a function of 

temperature and humidity
I
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926 CHAPTER 14 PARTIAL DERIVATIVES

By averaging these values we get the estimate . This says that, when the tem-
perature is and the relative humidity is 70%, the heat index rises about for every
percent that the relative humidity rises.

In general, if is a function of two variables and , suppose we let only vary while
keeping fixed, say , where is a constant. Then we are really considering a func-
tion of a single variable , namely, . If has a derivative at , then we call it
the partial derivative of with respect to x at and denote it by . Thus

By the definition of a derivative, we have

and so Equation 1 becomes

Similarly, the partial derivative of with respect to y at , denoted by , is
obtained by keeping fixed and finding the ordinary derivative at of the function

:

With this notation for partial derivatives, we can write the rates of change of the heat
index I with respect to the actual temperature T and relative humidity H when and
H � 70% as follows:

If we now let the point vary in Equations 2 and 3, and become functions of
two variables.

If is a function of two variables, its partial derivatives are the functions
and defined by

G�70� � 0.9
96�F 0.9�F

f x y x
y y � b b

x t�x� � f �x, b� t a
f �a, b� fx�a, b�

1 fx�a, b� � t�a� where t�x� � f �x, b�

t�a� � lim
h l 0

t�a � h� � t�a�
h

2 fx�a, b� � lim
h l 0

f �a � h, b� � f �a, b�
h

f �a, b� fy�a, b�
x �x � a� b

G�y� � f �a, y�

3 fy�a, b� � lim
h l 0

f �a, b � h� � f �a, b�
h

T � 96�F

fT �96, 70� � 3.75 fH�96, 70� � 0.9

�a, b� fx fy

4 f fx

fy

fx�x, y� � lim
h l 0

f �x � h, y� � f �x, y�
h

fy�x, y� � lim
h l 0

f �x, y � h� � f �x, y�
h
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SECTION 14.3 PARTIAL DERIVATIVES 927

There are many alternative notations for partial derivatives. For instance, instead of 
we can write or (to indicate differentiation with respect to the first variable) or

. But here can’t be interpreted as a ratio of differentials.

Notations for Partial Derivatives If , we write

To compute partial derivatives, all we have to do is remember from Equation 1 that 
the partial derivative with respect to is just the ordinary derivative of the function of a
single variable that we get by keeping fixed. Thus we have the following rule.

Rule for Finding Partial Derivatives of z �

1. To find , regard as a constant and differentiate with respect to .

2. To find , regard as a constant and differentiate with respect to .

If , find and .

SOLUTION Holding constant and differentiating with respect to , we get

and so

Holding constant and differentiating with respect to , we get

Interpretations of Partial Derivatives
To give a geometric interpretation of partial derivatives, we recall that the equation

represents a surface (the graph of ). If , then the point
lies on . By fixing , we are restricting our attention to the curve in which the ver-
tical plane intersects S. (In other words, is the trace of in the plane .) Like-
wise, the vertical plane intersects in a curve . Both of the curves and pass
through the point . (See Figure 1.)

Notice that the curve is the graph of the function , so the slope of its tan-
gent at is . The curve is the graph of the function , so
the slope of its tangent at is .

Thus the partial derivatives and can be interpreted geometrically as the
slopes of the tangent lines at to the traces and of in the planes 
and .

�f��x
D1 ff1fx

�f��x

z � f �x, y�

fx�x, y� � fx �
�f

�x
�

�

�x
f �x, y� �

�z

�x
� f1 � D1 f � Dx f

fy�x, y� � fy �
�f

�y
�

�

�y
f �x, y� �

�z

�y
� f2 � D2 f � Dy f

tx
y

f �x, y�

xf �x, y�yfx

yf �x, y�xfy

fy�2, 1�fx�2, 1�f �x, y� � x 3 � x 2y 3 � 2y 2EXAMPLE 1

xy

fx�x, y� � 3x 2 � 2xy 3

fx�2, 1� � 3 � 22 � 2 � 2 � 13 � 16

yx

fy�x, y� � 3x 2 y 2 � 4y

fy�2, 1� � 3 � 22 � 12 � 4 � 1 � 8

P�a, b, c�f �a, b� � cfSz � f �x, y�
C1y � bS

y � bSC1y � b
C2C1C2Sx � a

P
t�x� � f �x, b�C1

G�y� � f �a, y�C2t�a� � fx�a, b�PT1

G�b� � fy�a, b�PT2

fy�a, b�fx�a, b�
y � bSC2C1P�a, b, c�

x � a

FIGURE 1
The partial derivatives of f at (a, b) are
the slopes of the tangents to C¡  and C™.

0

(a, b, 0)

C™

C¡

T¡

P(a, b, c)

S T™

z

yx
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928 CHAPTER 14 PARTIAL DERIVATIVES

As we have seen in the case of the heat index function, partial derivatives can also be
interpreted as rates of change. If , then represents the rate of change of
with respect to when is fixed. Similarly, represents the rate of change of with
respect to when is fixed.

If , find and and interpret these num-
bers as slopes.

SOLUTION We have

The graph of is the paraboloid and the vertical plane inter-
sects it in the parabola , . (As in the preceding discussion, we label 
it in Figure 2.) The slope of the tangent line to this parabola at the point is

. Similarly, the curve in which the plane intersects the parabo-
loid is the parabola , , and the slope of the tangent line at is

. (See Figure 3.)

Figure 4 is a computer-drawn counterpart to Figure 2. Part (a) shows the plane
intersecting the surface to form the curve and part (b) shows and . [We have used
the vector equations for and for .]
Similarly, Figure 5 corresponds to Figure 3.

z�z��xz � f �x, y�
z�z��yyx

xy

fy�1, 1�fx�1, 1�f �x, y� � 4 � x 2 � 2y 2EXAMPLE 2

fy�x, y� � �4yfx�x, y� � �2x

fy�1, 1� � �4fx�1, 1� � �2

y � 1z � 4 � x 2 � 2y 2f
y � 1z � 2 � x 2

�1, 1, 1�C1

x � 1C2fx�1, 1� � �2
�1, 1, 1�x � 1z � 3 � 2y 2

fy�1, 1� � �4

y � 1
T1C1C1

T1r�t� � �1 � t, 1, 1 � 2t C1r�t� � � t, 1, 2 � t 2

FIGURE 4

FIGURE 5

1y
0

4

3

2z

1

0

2
1

x

0

(a)

1y
0

4

3

2z

1

0

2
1

x

0

(b)

1y
0

4

3

2z

1

0

2
1

x

0

1y
0

4

3

2z

1

0

2
1

x

0

FIGURE 2

(1, 1, 1) 

z=4-≈-2¥ 

(1, 1) 
2 

y=1 

C¡ 

z 

y 

x 

(1, 1, 1) 

z=4-≈-2¥ 

(1, 1) 
2 

x=1 

C™ 

FIGURE 3

z 

y 

x 
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SECTION 14.3 PARTIAL DERIVATIVES 929

If , calculate and .

SOLUTION Using the Chain Rule for functions of one variable, we have

Find and if is defined implicitly as a function of and by
the equation

SOLUTION To find , we differentiate implicitly with respect to , being careful to
treat as a constant:

Solving this equation for , we obtain

Similarly, implicit differentiation with respect to gives

Functions of More Than Two Variables
Partial derivatives can also be defined for functions of three or more variables. For example,
if is a function of three variables , , and , then its partial derivative with respect to is
defined as

and it is found by regarding and as constants and differentiating with respect
to . If , then can be interpreted as the rate of change of with
respect to x when y and are held fixed. But we can’t interpret it geometrically because the
graph of f lies in four-dimensional space.

In general, if is a function of variables, , its partial deriva tive
with respect to the ith variable is

f �x, y� � sin� x

1 � y� �f

�x

�f

�y

�f

�x
� cos� x

1 � y� �
�

�x � x

1 � y� � cos� x

1 � y� �
1

1 � y

�f

�y
� cos� x

1 � y� �
�

�y � x

1 � y� � �cos� x

1 � y� �
x

�1 � y�2

�z��x �z��y z x y

x 3 � y 3 � z3 � 6xyz � 1

�z��x x
y

3x 2 � 3z2 �z

�x
� 6yz � 6xy

�z

�x
� 0

�z��x

�z

�x
� �

x 2 � 2yz

z 2 � 2xy

y

�z

�y
� �

y 2 � 2xz

z 2 � 2xy

f x y z x

fx�x, y, z� � lim
h l 0

f �x � h, y, z� � f �x, y, z�
h

y z f �x, y, z�
x w � f �x, y, z� fx � �w��x w

z

u n u � f �x1, x2, . . . , xn �
xi

�u

�xi
� lim

h l 0

f �x1, . . . , xi�1, xi � h, xi�1, . . . , xn � � f �x1, . . . , xi , . . . , xn�
h

v EXAMPLE 3

v EXAMPLE 4

FIGURE 6

Some computer algebra systems can plot 
surfaces defined by implicit equations in three
variables. Figure 6 shows such a plot of the 
surface defined by the equation in Example 4.
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930 CHAPTER 14 PARTIAL DERIVATIVES

and we also write

Find , , and if .

SOLUTION Holding and constant and differentiating with respect to , we have

Similarly,

Higher Derivatives
If is a function of two variables, then its partial derivatives and are also functions of
two variables, so we can consider their partial derivatives , , , and , which
are called the second partial derivatives of . If , we use the following notation:

Thus the notation (or ) means that we first differentiate with respect to and
then with respect to , whereas in computing the order is reversed.

Find the second partial derivatives of

SOLUTION In Example 1 we found that

Therefore

�u

�xi
�

�f

�xi
� fxi � fi � Di f

fx fy fz f �x, y, z� � ex y ln z

y z x

fx � yex y ln z

fy � xex y ln z and fz �
exy

z

f fx fy

� fx�x � fx�y � fy �x � fy�y

f z � f �x, y�

� fx�x � fxx � f11 �
�

�x � �f

�x� �
�2f

�x 2 �
�2z

�x 2

� fx�y � fxy � f12 �
�

�y � �f

�x� �
�2f

�y �x
�

�2z

�y �x

� fy�x � fyx � f21 �
�

�x � �f

�y� �
�2f

�x �y
�

�2z

�x �y

� fy�y � fyy � f22 �
�

�y � �f

�y� �
�2f

�y 2 �
�2z

�y 2

fx y �2f��y �x x
y fyx

f �x, y� � x 3 � x 2y 3 � 2y 2

fx�x, y� � 3x 2 � 2xy 3 fy�x, y� � 3x 2 y 2 � 4y

fxx �
�

�x
�3x 2 � 2xy 3 � � 6x � 2y 3 fxy �

�

�y
�3x 2 � 2xy 3 � � 6xy 2

fyx �
�

�x
�3x 2 y 2 � 4y� � 6xy 2 fyy �

�

�y
�3x 2 y 2 � 4y� � 6x 2 y � 4

EXAMPLE 5

EXAMPLE 6

97817_14_ch14_p930-939.qk_97817_14_ch14_p930-939  11/8/10  1:28 PM  Page 930

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



SECTION 14.3 PARTIAL DERIVATIVES 931

Notice that in Example 6. This is not just a coincidence. It turns out that the
mixed partial derivatives and are equal for most functions that one meets in practice.
The following theorem, which was discovered by the French mathematician Alexis Clairaut
(1713–1765), gives conditions under which we can assert that The proof is given in
Appendix F.

Clairaut’s Theorem Suppose is defined on a disk that contains the point .
If the functions and are both continuous on , then

Partial derivatives of order 3 or higher can also be defined. For instance,

fx y � fyx

fx y fyx

fx y � fyx.

f D �a, b�
fx y fyx D

fx y�a, b� � fyx�a, b�

fx yy � � fx y �y �
�

�y � �2f

�y �x� �
�3f

�y 2 �x

_1_2

2 1
2

_2

20

_20

_1 0 1
0

y
x

z 0

f

fxx

FIGURE 7

40

_20

0

20

_2 _1 0 1 2 2 1 0 _1_2

y
x

z

1 0 _1_2

22
_2

40

20

_40

_20

0

_1 0 1
y

x

z

fx

fxy�fyx

_2_1

22
_2

40

0

20

_1 0 1
1 0

y
x

z

2 2 1 0 _1_2

_2

40

20

_40

_20

0

_1 0 1
y

x

z

fy

fyy

z

_2

2
_2

20

_40

_20

0

_1 0 1 2 1 0 _1

y
x

Figure 7 shows the graph of the function 
in Example 6 and the graphs of its first- and 
second-order partial derivatives for ,

. Notice that these graphs are con-
sistent with our interpretations of and as
slopes of tangent lines to traces of the graph of .
For in stance, the graph of decreases if we start
at and move in the positive -direction.
This is reflected in the negative values of . You
should compare the graphs of and with the
graph of to see the relationships.fy

fyyfyx

fx

x�0, �2�
f

f
fyfx

�2 � y � 2
�2 � x � 2

f

Clairaut

Alexis Clairaut was a child prodigy in mathe-
matics: he read l’Hospital’s textbook on 
calculus when he was ten and presented a 
paper on geometry to the French Academy of 
Sciences when he was 13. At the age of 18,
Clairaut published Recherches sur les courbes à
double courbure, which was the first systematic
treatise on three-dimensional analytic geometry
and included the calculus of space curves.
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932 CHAPTER 14 PARTIAL DERIVATIVES

FIGURE 8

u(x, t)

x

and using Clairaut’s Theorem it can be shown that if these functions are
continuous.

Calculate if .

SOLUTION

Partial Differential Equations
Partial derivatives occur in partial differential equations that express certain physical laws.
For instance, the partial differential equation

is called Laplace’s equation after Pierre Laplace (1749–1827). Solutions of this equa  tion
are called harmonic functions; they play a role in problems of heat conduction, fluid flow,
and electric potential.

Show that the function is a solution of Laplace’s equation. 

SOLUTION We first compute the needed second-order partial derivatives:

So

Therefore satisfies Laplace’s equation.

The wave equation

describes the motion of a waveform, which could be an ocean wave, a sound wave, a light
wave, or a wave traveling along a vibrating string. For instance, if represents the dis-
placement of a vibrating violin string at time and at a distance from one end of the string
(as in Figure 8), then satisfies the wave equation. Here the constant depends on the
density of the string and on the tension in the string.

Verify that the function satisfies the wave equation.

SOLUTION

So satisfies the wave equation.

fx yy � fyx y � fyyx

fxx yz f �x, y, z� � sin�3x � yz�

fx � 3 cos�3x � yz�

fxx � �9 sin�3x � yz�

fxx y � �9z cos�3x � yz�

fxx yz � �9 cos�3x � yz� � 9yz sin�3x � yz�

�2u

�x 2 �
�2u

�y 2 � 0

u�x, y� � ex sin y

u

�2u

�t 2 � a2 �2u

�x 2

u�x, t�
t x

u�x, t� a

u�x, t� � sin�x � at�

ux � cos�x � at� ut � �a cos�x � at�

uxx � �sin�x � at� utt � �a 2 sin�x � at� � a 2uxx

v EXAMPLE 7

EXAMPLE 8

EXAMPLE 9

u

ux � ex sin y uy � ex cos y

uxx � ex sin y uyy � �ex sin y

uxx � uyy � ex sin y � ex sin y � 0
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SECTION 14.3 PARTIAL DERIVATIVES 933

FPO 
New Art to

come

Partial differential equations involving functions of three variables are also very impor-
tant in science and engineering. The three-dimensional Laplace equation is

and one place it occurs is in geophysics. If represents magnetic field strength at
position , then it satisfies Equation 5. The strength of the magnetic field indicates
the distribution of iron-rich minerals and reflects different rock types and the location of
faults. Figure 9 shows a contour map of the earth’s magnetic field as recorded from an air-
craft carrying a magnetometer and flying 200 m above the surface of the ground. The con-
tour map is enhanced by color-coding of the regions between the level curves.

Figure 10 shows a contour map for the second-order partial derivative of in the ver-
tical direction, that is, . It turns out that the values of the partial derivatives and
are relatively easily measured from a map of the magnetic field. Then values of can be
calculated from Laplace’s equation .

�2u

�x 2 �
�2u

�y 2 �
�2u

�z 2 � 05

u�x, y, z�
�x, y, z�

FIGURE 9
Magnetic field strength of the earth
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934 CHAPTER 14 PARTIAL DERIVATIVES

The Cobb-Douglas Production Function
In Example 3 in Section 14.1 we described the work of Cobb and Douglas in modeling the
total production of an economic system as a function of the amount of labor and the 
capital investment . Here we use partial derivatives to show how the particular form of
their model follows from certain assumptions they made about the economy.

If the production function is denoted by , then the partial derivative
is the rate at which production changes with respect to the amount of labor. Economists
call it the marginal production with respect to labor or the marginal productivity of labor.
Likewise, the partial derivative is the rate of change of production with respect to
capital and is called the marginal productivity of capital. In these terms, the assumptions
made by Cobb and Douglas can be stated as follows.

(i) If either labor or capital vanishes, then so will production.

(ii) The marginal productivity of labor is proportional to the amount of production
per unit of labor.

(iii) The marginal productivity of capital is proportional to the amount of production
per unit of capital.

Because the production per unit of labor is , assumption (ii) says that

for some constant . If we keep K constant , then this partial differential equation
becomes an ordinary differential equation:

If we solve this separable differential equation by the methods of Section 9.3 (see also Exer-
cise 85), we get

Notice that we have written the constant as a function of because it could depend on
the value of .

Similarly, assumption (iii) says that

and we can solve this differential equation to get

Comparing Equations 7 and 8, we have

P � P�L, K � �P��L

�P��K

P�L

�P

�L
� �

P

L

� �K � K0 �

6
dP

dL
� �

P

L

7 P�L, K0 � � C1�K0 �L�

C1 K0

K0

�P

�K
� �

P

K

P�L0, K � � C2�L0 �K�8

P�L, K � � bL�K �9

K
LP
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SECTION 14.3 PARTIAL DERIVATIVES 935

1. The temperature (in at a location in the Northern Hemi-
sphere depends on the longitude , latitude , and time , so we
can write . Let’s measure time in hours from the
beginning of January.
(a) What are the meanings of the partial derivatives

, and ?
(b) Honolulu has longitude and latitude . Sup-

pose that at 9:00 AM on January 1 the wind is blowing hot
air to the northeast, so the air to the west and south is warm
and the air to the north and east is cooler. Would you expect

, and to be posi-
tive or negative? Explain.

2. At the beginning of this section we discussed the function
, where is the heat index, is the temperature,

and is the relative humidity. Use Table 1 to estimate
and . What are the practical interpretations

of these values?

3. The wind-chill index is the perceived temperature when the
actual temperature is and the wind speed is , so we can
write . The following table of values is an excerpt
from Table 1 in Section 14.1.

(a) Estimate the values of and . What
are the practical interpretations of these values?

T
x y t

T � f �x, y, t�

�T��x,
�T��y �T��t

158	 W 21	 N

fx�158, 21, 9�, fy�158, 21, 9� ft�158, 21, 9�

I � f �T, H � I T
H

fT �92, 60� fH �92, 60�

W
T v

W � f �T, v�

�18

�24

�30

�37

�20

�26

�33

�39

�21

�27

�34

�41

�22

�29

�35

�42

�23

�30

�36

�43

T
v 20 30 40 50 60

�10

�15

�20

�25A
ct

ua
l t

em
pe

ra
tu

re
 (

°C
)

70

�23

�30

�37

�44

Wind speed (km /h)

fT ��15, 30� fv��15, 30�

	C� (b) In general, what can you say about the signs of 
and ?

(c) What appears to be the value of the following limit?

4. The wave heights in the open sea depend on the speed 
of the wind and the length of time that the wind has been
blowing at that speed. Values of the function are
recorded in feet in the following table.

(a) What are the meanings of the partial derivatives 
and ?

(b) Estimate the values of and . What are
the practical interpretations of these values?

(c) What appears to be the value of the following limit?

�W��T
�W��v

lim
v l 


�W

�v

h v
t

h � f �v, t�

2

4

5

9

14

19

24

2

4

7

13

21

29

37

2

5

8

16

25

36

47

2

5

8

17

28

40

54

2

5

9

18

31

45

62

2

5

9

19

33

48

67

2

5

9

19

33

50

69

v
t

10

15

20

30

40

50

60

Duration (hours)

W
in

d 
sp

ee
d 

(k
no

ts
)

5 10 15 20 30 40 50

�h��v
�h��t

fv�40, 15� ft�40, 15�

lim
t l 


�h

�t

14.3 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

where b is a constant that is independent of both L and K. Assumption (i) shows that
and .

Notice from Equation 9 that if labor and capital are both increased by a factor m, then

If , then , which means that production is also increased
by a factor of m. That is why Cobb and Douglas assumed that and therefore

This is the Cobb-Douglas production function that we discussed in Section 14.1.

� � 0
� � 0

P�mL, mK� � b�mL���mK �� � m���bL�K� � m���P�L, K �

� � � � 1 P�mL, mK� � mP�L, K �
� � � � 1

P�L, K � � bL�K 1��
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936 CHAPTER 14 PARTIAL DERIVATIVES

5  –8 Determine the signs of the partial derivatives for the 
function whose graph is shown.

5. (a) (b)

6. (a) (b)

7. (a) (b)

8. (a) (b)

9. The following surfaces, labeled , , and , are graphs of a
function and its partial derivatives and . Identify each
surface and give reasons for your choices.

f

1x

y

z

2

fx�1, 2� fy�1, 2�

fx��1, 2� fy��1, 2�

fxx��1, 2� fyy��1, 2�

fxy�1, 2� fxy��1, 2�

a b c
f fx fy

b_4

_3 _1 0 1 3
0

_2

y
x

z 0

2

4

2_2

a

8

_8

_4

_3 _1 0 1 3
0

_2

y
x

z 0

2

4

2_2

c

8

_8
_3 _1 0 1 3

0
_2

y
x

z 0

2

4

2_2

_4

10. A contour map is given for a function . Use it to estimate
and .

11. If , find and and inter-
pret these numbers as slopes. Illustrate with either hand-drawn
sketches or computer plots.

12. If , find and and inter-
pret these numbers as slopes. Illustrate with either hand-drawn
sketches or computer plots.

; 13–14 Find and and graph , , and with domains and 
viewpoints that enable you to see the relationships between them.

13. 14.

15–40 Find the first partial derivatives of the function.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39.

40.

41–44 Find the indicated partial derivative.

41. ;  

f
fx�2, 1� fy�2, 1�

3 x

y

3

_2
0

6 8

10

14

16

12

18

2
4

_4

1

f �x, y� � 16 � 4x 2 � y 2 fx�1, 2� fy�1, 2�

f �x, y� � s4 � x 2 � 4y 2 fx�1, 0� fy�1, 0�

fx fy f fx fy

f �x, y� � x 2y3 f �x, y� �
y

1 � x 2y2

f �x, y� � y 5 � 3xy f �x, y� � x 4y 3 � 8x 2y

f �x, t� � e�t cos �x f �x, t� � sx ln t

z � �2x � 3y�10 z � tan xy

f �x, y� �
x

y
f �x, y� �

x

�x � y�2

f �x, y� �
ax � by

cx � dy
w �

ev

u � v 2

t�u, v� � �u 2v � v 3�5 u�r, � � sin�r cos �

R�p, q� � tan�1�pq 2� f �x, y� � x y

F�x, y� � y
x

y
cos�e t� dt F��, �� � y

�

�
st 3 � 1 dt

f �x, y, z� � xz � 5x 2y 3z4 f �x, y, z� � x sin�y � z�

w � ln�x � 2y � 3z� w � ze xyz

u � xy sin�1�yz� u � x y�z

h�x, y, z, t� � x 2y cos�z�t� ��x, y, z, t� �
�x � �y 2

�z � �t 2

u � sx 2
1 � x 2

2 � � � � � x 2
n

u � sin�x1 � 2x2 � � � � � nxn �

f �x, y� � ln(x � sx 2 � y 2 ) fx �3, 4�
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SECTION 14.3 PARTIAL DERIVATIVES 937

70. ;  

71. If , find . [Hint: Which
order of differentiation is easiest?]

72. If , find . [Hint: Use a dif-
ferent order of differentiation for each term.]

73. Use the table of values of to estimate the values of
, , and .

74. Level curves are shown for a function . Determine whether
the following partial derivatives are positive or negative at the
point .
(a) (b) (c)
(d) (e)

75. Verify that the function is a solution of the
heat conduction equation .

76. Determine whether each of the following functions is a
solution of Laplace’s equation .
(a) (b)
(c) (d)
(e)
(f )

77. Verify that the function is a solution of
the three-dimensional Laplace equation .

78. Show that each of the following functions is a solution of the
wave equation .
(a) (b)
(c)
(d)

79. If and are twice differentiable functions of a single vari-
able, show that the function

is a solution of the wave equation given in Exercise 78.

u � x a y bz c �6u

�x �y 2 �z 3

f �x, y, z� � xy 2z3 � arcsin(xsz ) fxzy

txyz

f �x, y�
fx�3, 2� fx�3, 2.2� fx y�3, 2�

12.5

18.1

20.0

10.2

17.5

22.4

9.3

15.9

26.1

x
y

2.5

3.0

3.5

1.8 2.0 2.2

f

P
fx fy fxx

fxy fyy

10 8 6 4 2

y

x

P

u � e��2k2 t sin kx
ut � �2uxx

uxx � uyy � 0
u � x 2 � y 2 u � x 2 � y 2

u � x 3 � 3xy 2 u � ln sx 2 � y 2 

t�x, y, z� � s1 � xz � s1 � xy

u � sin x cosh y � cos x sinh y
u � e�x cos y � e�y cos x

u � 1�sx 2 � y 2 � z 2 

uxx � u yy � uzz � 0

ut t � a 2uxx

u � sin�kx� sin�akt� u � t��a 2t 2 � x 2 �
u � �x � at�6 � �x � at�6

u � sin�x � at� � ln�x � at�

f t

u�x, t� � f �x � at� � t�x � at�

42. ;  

43. ;  

44. ;  

45–46 Use the definition of partial derivatives as limits to find
and .

45. 46.

47–50 Use implicit differentiation to find and .

47. 48.

49. 50.

51–52 Find and .

51. (a) (b)

52. (a) (b)
(c)

53–58 Find all the second partial derivatives.

53. 54.

55. 56.

57. 58.

59–62 Verify that the conclusion of Clairaut’s Theorem holds, that
is, .

59. 60.

61. 62.

63–70 Find the indicated partial derivative(s).

63. ;  ,  

64. ;  

65. ;  

66. ;  

67. ;  

68. ;  

69. ;  ,  

f �x, y� � arctan�y�x� fx �2, 3�

f �x, y, z� �
y

x � y � z
fy �2, 1, �1�

fz �0, 0, ��4�f �x, y, z� � ssin2x � sin2y � sin2z

fy�x, y�fx�x, y�

f �x, y� �
x

x � y 2f �x, y� � xy 2 � x 3y

4

�z��y�z��x

x 2 � 2y 2 � 3z2 � 1

e z � xyz

x 2 � y 2 � z 2 � 2z � 4

yz � x ln y � z2

�z��y�z��x

z � f �x � y�z � f �x� � t�y�

z � f �xy�z � f �x�t�y�
z � f �x�y�

f �x, y� � sin2�mx � ny�f �x, y� � x 3y 5 � 2x 4y

v �
xy

x � y
w � su 2 � v 2 

v � e xey
z � arctan 

x � y

1 � xy

ux y � uyx

u � e xy sin yu � x 4y 3 � y 4

u � cos�x 2y� u � ln�x � 2y�

fxyxfxxxf �x, y� � x 4y 2 � x 3y

fyxyf �x, y� � sin�2x � 5y�

f �x, y, z� � exyz2

fxyz

t�r, s, t� � e r sin�st� trst

� 3u

�r 2 �
u � e r sin 

� 3z

�u �v �w
z � usv � w

� 3w

�x 2 �y

� 3w

�z �y �x
w �

x

y � 2z

97817_14_ch14_p930-939.qk_97817_14_ch14_p930-939  11/8/10  1:29 PM  Page 937

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



938 CHAPTER 14 PARTIAL DERIVATIVES

80. If , where , 
show that

81. Verify that the function is a solution of the 
differential equations

and

82. The temperature at a point on a flat metal plate is given
by , where is measured in C
and in meters. Find the rate of change of temper ature with
respect to distance at the point in (a) the -direction and
(b) the -direction.

83. The total resistance produced by three conductors with resis-
tances , , connected in a parallel electrical circuit is
given by the formula

Find .

84. Show that the Cobb-Douglas production function 
satisfies the equation

85. Show that the Cobb-Douglas production function satisfies
by solving the differential equation

(See Equation 6.)

86. Cobb and Douglas used the equation
to model the American economy from 1899 to 1922, where 
is the amount of labor and is the amount of capital. (See
Example 3 in Section 14.1.)
(a) Calculate and .
(b) Find the marginal productivity of labor and the marginal

productivity of capital in the year 1920, when and
(compared with the assigned values and
in 1899). Interpret the results.

(c) In the year 1920 which would have benefited production
more, an increase in capital investment or an increase in
spending on labor?

87. The van der Waals equation for moles of a gas is

where is the pressure, is the volume, and is the tempera-

u � e a1x1�a2 x2�����an xn a 2
1 � a 2

2 � � � � � a 2
n � 1

�2u

�x 2
1

�
�2u

�x 2
2

� � � � �
�2u

�x 2
n

� u

z � ln�e x � e y�

�z

�x
�

�z

�y
� 1

�x, y�
	TT�x, y� � 60��1 � x 2 � y 2 �

x, y
x�2, 1�

y

R
R3R2R1

1

R
�

1

R1
�

1

R2
�

1

R3

�R��R1

P � bL�K �

L
�P

�L
� K

�P

�K
� �� � ��P

P�L, K0 � � C1�K0 �L�

dP

dL
� �

P

L

P�L, K� � 1.01L 0.75K 0.25

L
K

PL PK

L � 194
K � 407 L � 100
K � 100

�2z

�x 2

�2z

�y 2 � � �2z

�x �y�2

� 0

n

�P �
n 2a

V 2 ��V � nb� � nRT

TVP

ture of the gas. The constant is the universal gas constant 
and and are positive constants that are characteristic of a
particular gas. Calculate and .

88. The gas law for a fixed mass of an ideal gas at absolute tem-
perature , pressure , and volume is , where is
the gas constant. Show that

89. For the ideal gas of Exercise 88, show that

90. The wind-chill index is modeled by the function

where is the temperature and is the wind speed
. When and , by how much

would you expect the apparent temperature to drop if the 
actual temperature decreases by ? What if the wind speed
increases by ?

91. The kinetic energy of a body with mass and velocity is
. Show that

92. If , , are the sides of a triangle and , , are the opposite
angles, find , , by implicit differentiation of
the Law of Cosines.

93. You are told that there is a function whose partial deriva-
tives are and . Should you
believe it?

; 94. The paraboloid intersects the plane
in a parabola. Find parametric equations for the tangent

line to this parabola at the point . Use a computer to
graph the paraboloid, the parabola, and the tangent line on the
same screen.

95. The ellipsoid intersects the plane
in an ellipse. Find parametric equations for the tangent line to
this ellipse at the point .

96. In a study of frost penetration it was found that the temperature
at time (measured in days) at a depth (measured in feet)

can be modeled by the function

where and is a positive constant.
(a) Find . What is its physical significance?
(b) Find . What is its physical significance?

R
a b

�T��P �P��V

m
T P V PV � mRT R

�P

�V

�V

�T

�T

�P
� �1

T
�P

�T

�V

�T
� mR

W � 13.12 � 0.6215T � 11.37v 0.16 � 0.3965Tv 0.16

T �	C� v
�km�h� T � �15	C v � 30 km�h

W
1	C

1 km�h

m v
K � 1

2 mv2

�K

�m

�2K

�v2 � K

a b c A B C
�A��a �A��b �A��c

f
fx�x, y� � x � 4y fy�x, y� � 3x � y

z � 6 � x � x 2 � 2y 2

x � 1
�1, 2, �4�

4x 2 � 2y 2 � z2 � 16 y � 2

�1, 2, 2�

T t x

T�x, t� � T0 � T1e��x sin��t � �x�

�� � 2��365
�T��x
�T��t
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 939

(c) Show that satisfies the heat equation for a
certain constant .

; (d) If , , and , use a computer to 
graph .

(e) What is the physical significance of the term in the
expression ?

97. Use Clairaut’s Theorem to show that if the third-order partial
derivatives of are continuous, then

98. (a) How many th-order partial derivatives does a function
of two variables have?

(b) If these partial derivatives are all continuous, how many
of them can be distinct?

(c) Answer the question in part (a) for a function of three 
variables.

Tt � kTxxT
k

T1 � 10T0 � 0� � 0.2
T�x, t�

��x
sin��t � �x�

f

fx yy � fyx y � fyyx

n

99. If , find . 
[Hint: Instead of finding first, note that it’s easier 
to use Equation 1 or Equation 2.]

100. If , find .

101. Let

; (a) Use a computer to graph .
(b) Find and when .
(c) Find and using Equations 2 and 3.
(d) Show that and .
(e) Does the result of part (d) contradict Clairaut’s Theorem?

Use graphs of and to illustrate your answer.

fx�0, 0�f �x, y� � s
3 x 3 � y 3 

f �x, y� � �
0

x 3y � xy 3

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

f
�x, y� � �0, 0�fy�x, y�fx�x, y�

fy�0, 0�fx�0, 0�
fyx�0, 0� � 1fxy�0, 0� � �1

CAS

fyxfxy

fx�1, 0�f �x, y� � x�x 2 � y 2 ��3�2e sin�x2y�

fx�x, y�

14.4 Tangent Planes and Linear Approximations

One of the most important ideas in single-variable calculus is that as we zoom in toward 
a point on the graph of a differentiable function, the graph becomes indistinguishable 
from its tangent line and we can approximate the function by a linear function. (See Sec-
t ion 2.9.) Here we develop similar ideas in three dimensions. As we zoom in toward a point
on a surface that is the graph of a differentiable func tion of two variables, the surface looks
more and more like a plane (its tangent plane) and we can approximate the function by a
linear function of two variables. We also extend the idea of a differential to functions of
two or more variables.

Tangent Planes
Suppose a surface has equation , where has continuous first partial deriva-
tives, and let be a point on . As in the preceding section, let and be the
curves obtained by intersecting the vertical planes and with the surface .
Then the point lies on both and . Let and be the tangent lines to the curves
and at the point . Then the tangent plane to the surface at the point is defined to be
the plane that contains both tangent lines and . (See Figure 1.)

We will see in Section 14.6 that if is any other curve that lies on the surface and
passes through , then its tangent line at also lies in the tangent plane. Therefore you can
think of the tangent plane to at as consisting of all possible tangent lines at to curves
that lie on and pass through . The tangent plane at is the plane that most closely approx-
imates the surface near the point .

We know from Equation 12.5.7 that any plane passing through the point has
an equation of the form

By dividing this equation by and letting and , we can write it in
the form

S z � f �x, y� f
P�x0, y0, z0� S C1 C2

y � y0 x � x0 S
P C1 C2 T1 T2 C1

C2 P S P
T1 T2

C S
P P

S P P
S P P

S P
P�x0, y0, z0 �

A�x � x0� � B�y � y0 � � C�z � z0 � � 0

C a � �A�C b � �B�C

1 z � z0 � a�x � x0� � b�y � y0�

FIGURE 1
The tangent plane contains the
tangent lines T¡TT and T™TT .

y

x

z

TTTTT¡¡¡

TTTTT™™™

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC¡¡¡¡¡¡¡

CCCCCCCCCCCCCCCCCCCCCC™™™™™™™™™™™™™
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000000000000
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940 CHAPTER 14 PARTIAL DERIVATIVES

If Equation 1 represents the tangent plane at , then its intersection with the plane
must be the tangent line . Setting in Equation 1 gives

where 

and we recognize this as the equation (in point-slope form) of a line with slope . But from
Section 14.3 we know that the slope of the tangent is . Therefore .

Similarly, putting in Equation 1, we get , which must repre-
sent the tangent line , so .

Suppose has continuous partial derivatives. An equation of the tangent
plane to the surface at the point is

Find the tangent plane to the elliptic paraboloid at the 
point .

SOLUTION Let . Then

Then gives the equation of the tangent plane at as

or

Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we found
in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3) by restricting the
domain of the function . Notice that the more we zoom in, the flatter the
graph appears and the more it resembles its tangent plane.

P y � y0

T1 y � y0

z � z0 � a�x � x0 � y � y0

a
T1 fx�x0, y0 � a � fx�x0, y0 �

x � x0 z � z0 � b�y � y0�
T2 b � fy�x0, y0 �

2 f
z � f �x, y� P�x0, y0, z0 �

z � z0 � fx�x0, y0 ��x � x0 � � fy�x0, y0 ��y � y0 �

z � 2x 2 � y 2

�1, 1, 3�

f �x, y� � 2x 2 � y 2

fx�x, y� � 4x fy�x, y� � 2y

fx�1, 1� � 4  fy�1, 1� � 2

�1, 1, 3�

z � 3 � 4�x � 1� � 2�y � 1�

z � 4x � 2y � 3

f �x, y� � 2x 2 � y 2

FIGURE 2 The elliptic paraboloid z=2≈+¥ appears to coincide with its tangent plane as we zoom in toward (1, 1, 3).

(c)

2

1

0

2
1

0

40

20

0

_20

y

z

x

(b)

2

0

_2

2
0

_2

40

20

0

_20

y

z

x

(a)

40

20

0

_20

y

z

4
2

0
_2

_4

x
4

2
0

_2
_4

v EXAMPLE 1

2

Note the similarity between the equation of a
tangent plane and the equation of a tangent line:

y � y0 � f ��x0 ��x � x0 �

Visual 14.4 shows an animation 
of Figures 2 and 3.
TEC
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 941

In Figure 3 we corroborate this impression by zooming in toward the point (1, 1) on a
contour map of the function . Notice that the more we zoom in, the more
the level curves look like equally spaced parallel lines, which is characteristic of a plane.

Linear Approximations
In Example 1 we found that an equation of the tangent plane to the graph of the function

at the point (1, 1, 3) is . Therefore, in view of the
visual evidence in Figures 2 and 3, the linear function of two variables

is a good approximation to when is near (1, 1). The function L is called the lin-
earization of f at (1, 1) and the approximation

is called the linear approximation or tangent plane approximation of f at (1, 1).
For instance, at the point (1.1, 0.95) the linear approximation gives

which is quite close to the true value of . But if
we take a point farther away from (1, 1), such as (2, 3), we no longer get a good approxi-
mation. In fact, whereas .

In general, we know from that an equation of the tangent plane to the graph of a func-
tion f of two variables at the point is

The linear function whose graph is this tangent plane, namely

is called the linearization of f at and the approximation

is called the linear approximation or the tangent plane approximation of at
We have defined tangent planes for surfaces , where has continuous first

partial derivatives. What happens if and are not continuous? Figure 4 pictures such a
function; its equation is

FIGURE 3
Zooming in toward (1, 1)
on a contour map of
f(x, y)=2≈+¥ 0.95 1.05

1.05

0.8 1.2

1.2

0.5 1.5

1.5

f �x, y� � 2x 2 � y 2

f �x, y� � 2x 2 � y 2 z � 4x � 2y � 3

L�x, y� � 4x � 2y � 3

f �x, y� �x, y�

f �x, y� � 4x � 2y � 3

f �1.1, 0.95� � 4�1.1� � 2�0.95� � 3 � 3.3

f �1.1, 0.95� � 2�1.1�2 � �0.95�2 � 3.3225

L�2, 3� � 11 f �2, 3� � 17

�a, b, f �a, b��

z � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

3 L�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�a, b�

4 f �x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

f �a, b�.
z � f �x, y� f

fx fy

2

f �x, y� � �
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

z y

x

f(x, y)=
xy

≈+¥
 if (x, y)≠(0, 0),

f(0, 0)=0

FIGURE 4
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942 CHAPTER 14 PARTIAL DERIVATIVES

You can verify (see Exercise 46) that its partial derivatives exist at the origin and, in fact,
and , but and are not continuous. The linear approximation

would be , but at all points on the line . So a function of two
variables can behave badly even though both of its partial derivatives exist. To rule out such
behavior, we formulate the idea of a differentiable function of two variables.

Recall that for a function of one variable, , if x changes from a to we
defined the increment of as

In Chapter 2 we showed that if is differentiable at a, then

Now consider a function of two variables, , and suppose x changes from a to
and y changes from b to . Then the corresponding increment of is

Thus the increment represents the change in the value of when changes from
to . By analogy with we define the differentiability of a func-

tion of two variables as follows.

Definition If , then is differentiable at if can be
expressed in the form

where and as .

Definition 7 says that a differentiable function is one for which the linear approximation
is a good approximation when is near . In other words, the tangent plane

approximates the graph of f well near the point of tangency.
It’s sometimes hard to use Definition 7 directly to check the differentiability of a func-

tion, but the next theorem provides a convenient sufficient condition for differentiability.

Theorem If the partial derivatives and exist near and are continu-
ous at , then is differentiable at .

Show that is differentiable at (1, 0) and find its lineariza-
tion there. Then use it to approximate .

SOLUTION The partial derivatives are

Both and are continuous functions, so is differentiable by Theorem 8. The lin-
earization is

fx�0, 0� � 0 fy�0, 0� � 0 fx fy

f �x, y� � 0 f �x, y� � 1
2 y � x

y � f �x� a � �x,
y

�y � f �a � �x� � f �a�

f

5 �y � f ��a� �x � � �x where  � l 0  as  �x l 0

z � f �x, y�
a � �x b � �y z

6 �z � f �a � �x, b � �y� � f �a, b�

�z f �x, y�
�a, b� �a � �x, b � �y�

7 z � f �x, y� f �a, b� �z

�z � fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

�1 �2 l 0 ��x, �y� l �0, 0�

�x, y� �a, b�

8 fx fy �a, b�
�a, b� f �a, b�

f �x, y� � xexy

f �1.1, �0.1�

fx�x, y� � exy � xyexy fy�x, y� � x 2exy

fx�1, 0� � 1 fy�1, 0� � 1

fx fy f

5

4

v EXAMPLE 2

L�x, y� � f �1, 0� � fx�1, 0��x � 1� � fy�1, 0��y � 0�

� 1 � 1�x � 1� � 1 � y � x � y

This is Equation 2.5.5.

Theorem 8 is proved in Appendix F.

FIGURE 5

1
0

_1

6

4

2

0

yx

z

1

0

Figure 5 shows the graphs of the function 
and its linearization in Example 2.L

f
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 943

The corresponding linear approximation is

so

Compare this with the actual value of .

At the beginning of Section 14.3 we discussed the heat index (perceived
temperature) as a function of the actual temperature and the relative humidity and
gave the following table of values from the National Weather Service.

Find a linear approximation for the heat index when is near and is
near 70%. Use it to estimate the heat index when the temperature is and the relative
humidity is 72%.

SOLUTION We read from the table that . In Section 14.3 we used the tabu-
lar values to estimate that and . (See pages 925–26.)
So the linear approximation is

In particular,

Therefore, when and H � 72%, the heat index is

Differentials
For a differentiable function of one variable, , we define the differential dx to be an
independent variable; that is, dx can be given the value of any real number. The differential
of is then defined as

(See Section 2.9.) Figure 6 shows the relationship between the increment and the dif-
ferential : represents the change in height of the curve and represents the
change in height of the tangent line when changes by an amount 

For a differentiable function of two variables, , we define the differentials
and to be independent variables; that is, they can be given any values. Then the 

xe xy � x � y

f �1.1, �0.1� � 1.1 � 0.1 � 1

f �1.1, �0.1� � 1.1e�0.11 � 0.98542

EXAMPLE 3
HTI

96

100

104

109

114

119

98

103

107

113

118

124

100

105

111

116

123

129

103

108

114

121

127

135

106

112

118

125

133

141

109

115

122

130

138

147

112

119

127

135

144

154

115

123

132

141

150

161

119

128

137

146

157

168

T
H

Relative humidity (%)

Actual
temperature

(°F)

90

92

94

96

98

100

50 55 60 65 70 75 80 85 90

H96�FTI � f �T, H �
97�F

f �96, 70� � 125
fH�96, 70� � 0.9fT �96, 70� � 3.75

f �T, H � � f �96, 70� � fT�96, 70��T � 96� � fH�96, 70��H � 70�

� 125 � 3.75�T � 96� � 0.9�H � 70�

f �97, 72� � 125 � 3.75�1� � 0.9�2� � 130.55

T � 97�F

I � 131�F

y � f �x�

y

dy � f ��x� dx9

�y
dyy � f �x��ydy

dx � �x.x
z � f �x, y�

dydx

xa a+Îx

y

0

dx=Îx

y=ƒ

dy

Îy

y=f(a)+fª(a)(x-a)
tangent line

FIGURE 6

97817_14_ch14_p940-949.qk_97817_14_ch14_p940-949  11/8/10  1:29 PM  Page 943

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



944 CHAPTER 14 PARTIAL DERIVATIVES

differential , also called the total differential, is defined by

(Compare with Equation 9.) Sometimes the notation is used in place of .
If we take and in Equation 10, then the differential

of is

So, in the notation of differentials, the linear approximation can be written as

Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric inter-
pretation of the differential and the increment : represents the change in height of
the tangent plane, whereas represents the change in height of the surface
when changes from to .

(a) If , find the differential .
(b) If changes from 2 to and changes from 3 to , compare the values 
of and .

SOLUTION
(a) Definition 10 gives

(b) Putting , , , and , we get

10 dz � fx�x, y� dx � fy�x, y� dy �
�z

�x
dx �

�z

�y
dy

d f dz
dx � �x � x � a dy � �y � y � b

z

dz � fx�a, b��x � a� � fy�a, b��y � b�

f �x, y� � f �a, b� � dz

dz �z dz
�z z � f �x, y�

�x, y� �a, b� �a � �x, b � �y�

y

x

z

Îx=
dx

0

{a,{{ b, f(a, b)}

(a, b, 0)

(a+Îx, b+Îy, 0)

{a+Îx, b+Îy, f (a+Îx, b+Îy)}

f(a, b)

f(a, b)

Îy=dy
tangent plane

z-f(a, b)=fxff (a, b)(x-a)+fyf (a, b)(y-b)

surface z=f(x, y)

dz

Îz

FIGURE 7

z � f �x, y� � x 2 � 3xy � y 2 dz
x 2.05 y 2.96

�z dz

dz �
�z

�x
dx �

�z

�y
dy � �2x � 3y� dx � �3x � 2y� dy

x � 2 dx � �x � 0.05 y � 3 dy � �y � �0.04

dz � �2�2� � 3�3��0.05 � �3�2� � 2�3����0.04� � 0.65

4

v EXAMPLE 4

dz

FIGURE 8

60

0

5 3 1
2

x y

z 20

4

40

24
_20

0
0

In Example 4, is close to because 
the tangent plane is a good approximation 
to the surface near

. (See Figure 8.)�2, 3, 13�
z � x 2 � 3xy � y 2

�zdz
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 945

The increment of is

Notice that but is easier to compute.

The base radius and height of a right circular cone are measured as 10 cm
and 25 cm, respectively, with a possible error in measurement of as much as cm in
each. Use differentials to estimate the maximum error in the calculated volume of the
cone.

SOLUTION The volume of a cone with base radius and height is . So
the differential of is

Since each error is at most cm, we have , . To estimate the
largest error in the volume we take the largest error in the measurement of and of .
Therefore we take and along with , . This gives

Thus the maximum error in the calculated volume is about cm cm.

Functions of Three or More Variables
Linear approximations, differentiability, and differentials can be defined in a similar man-
ner for functions of more than two variables. A differentiable function is defined by an
expression similar to the one in Definition 7. For such functions the linear approximation
is

and the linearization is the right side of this expression.
If , then the increment of is

The differential is defined in terms of the differentials , , and of the independ-
ent variables by

The dimensions of a rectangular box are measured to be 75 cm, 60 cm, 
and 40 cm, and each measurement is correct to within cm. Use differentials to esti-
mate the largest possible error when the volume of the box is calculated from these 
measurements.

SOLUTION If the dimensions of the box are , , and , its volume is and so

z

�z � f �2.05, 2.96� � f �2, 3�

� ��2.05�2 � 3�2.05��2.96� � �2.96�2 � � �22 � 3�2��3� � 32 �

� 0.6449

�z � dz dz

EXAMPLE 5
0.1

V r h V � 	r 2h�3
V

dV �
�V

�r
dr �

�V

�h
dh �

2	rh

3
 dr �

	r 2

3
 dh

0.1 	 �r 	 
 0.1 	 �h 	 
 0.1
r h

dr � 0.1 dh � 0.1 r � 10 h � 25

dV �
500	

3
 �0.1� �

100	

3
 �0.1� � 20	

20	 3 � 63 3

f �x, y, z� � f �a, b, c� � fx�a, b, c��x � a� � fy�a, b, c��y � b� � fz�a, b, c��z � c�

L�x, y, z�
w � f �x, y, z� w

�w � f �x � �x, y � �y, z � �z� � f �x, y, z�

dw dx dy dz

dw �
�w

�x
dx �

�w

�y
dy �

�w

�z
dz

0.2

x y z V � xyz

dV �
�V

�x
dx �

�V

�y
dy �

�V

�z
dz � yz dx � xz dy � xy dz

EXAMPLE 6

97817_14_ch14_p940-949.qk_97817_14_ch14_p940-949  11/8/10  1:29 PM  Page 945

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



946 CHAPTER 14 PARTIAL DERIVATIVES

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1–6 Find an equation of the tangent plane to the given surface at
the specified point.

1. ,  

2. ,  

3. ,  

4. ,  

5. ,  

6. ,  

; 7–8 Graph the surface and the tangent plane at the given point.
(Choose the domain and viewpoint so that you get a good view
of both the surface and the tangent plane.) Then zoom in until
the surface and the tangent plane become indistinguishable.

7. ,  

8. ,  

9–10 Draw the graph of and its tangent plane at the given
point. (Use your computer algebra system both to compute the 
partial derivatives and to graph the surface and its tangent plane.)
Then zoom in until the surface and the tangent plane become 
indistinguishable.

9.

10.

11–16 Explain why the function is differentiable at the given
point. Then find the linearization of the function at 
that point.

11. ,  

12. ,  

13. ,  

14. ,  

z � 3y 2 � 2x 2 � x �2, �1, �3�

z � 3�x � 1�2 � 2�y � 3�2 � 7 �2, �2, 12�

z � sxy �1, 1, 1�

z � xe xy �2, 0, 2�

z � x sin�x � y� ��1, 1, 0�

z � ln�x � 2y� �3, 1, 0�

z � x 2 � xy � 3y 2 �1, 1, 5�

z � arctan�xy 2� �1, 1, 	�4�

CAS f

f �x, y� �
xy sin�x � y�
1 � x 2 � y 2 ,  �1, 1, 0�

f �x, y� � e�xy�10 (sx � sy � sxy ),  �1, 1, 3e�0.1�

L�x, y�

�2, 3�f �x, y� � 1 � x ln�xy � 5�

�1, 1�f �x, y� � x 3y 4

�2, 1�f �x, y� �
x

x � y

�3, 0�f �x, y� � sx � e 4y

15. ,  

16. ,  

17–18 Verify the linear approximation at .

17. 18.

19. Given that is a differentiable function with ,
, and , use a linear approximation

to estimate .

; 20. Find the linear approximation of the function
at and use it to approximate

. Illustrate by graphing and the tangent plane.

21. Find the linear approximation of the function
at and use it to 

approximate the number .

22. The wave heights in the open sea depend on the speed 
of the wind and the length of time that the wind has been
blowing at that speed. Values of the function are
recorded in feet in the following table. Use the table to find
a linear approximation to the wave height function when 
is near 40 knots and is near 20 hours. Then estimate the
wave heights when the wind has been blowing for 24 hours
at 43 knots.

f �x, y� � e�xy cos y �	, 0�

f �x, y� � y � sin�x�y� �0, 3�

�0, 0�

2x � 3

4y � 1
� 3 � 2x � 12y sy � cos2x � 1 �

1
2 y

f f �2, 5� � 6
fx �2, 5� � 1 fy �2, 5� � �1

f �2.2, 4.9�

f �x, y� � 1 � xy cos 	y �1, 1�
f �1.02, 0.97� f

f �x, y, z� � sx 2 � y 2 � z 2 �3, 2, 6�
s�3.02� 2 � �1.97� 2 � �5.99� 2 

h v
t

h � f �v, t�

v
t

5

9

14

19

24

7

13

21

29

37

8

16

25

36

47

8

17

28

40

54

9

18

31

45

62

9

19

33

48

67

9

19

33

50

69

v
t 5 10 15 20 30 40 50

20

30

40

50

60

Duration (hours)

W
in

d 
sp

ee
d 

(k
no

ts
)

14.4 Exercises

We are given that , , and . To estimate the largest error
in the volume, we therefore use , , and together with ,

, and :

Thus an error of only cm in measuring each dimension could lead to an error of
approximately 1980 cm in the calculated volume! This may seem like a large error, but
it’s only about 1% of the volume of the box.

	 �x 	 
 0.2 	 �y 	 
 0.2 	 �z 	 
 0.2
dx � 0.2 dy � 0.2 dz � 0.2 x � 75

y � 60 z � 40

�V � dV � �60��40��0.2� � �75��40��0.2� � �75��60��0.2� � 1980

0.2
3
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 947

23. Use the table in Example 3 to find a linear approximation to
the heat index function when the temperature is near 
and the relative humidity is near 80%. Then estimate the heat
index when the temperature is and the relative humidity 
is 78%.

24. The wind-chill index is the perceived temperature when the
actual temperature is and the wind speed is , so we can
write . The following table of values is an excerpt
from Table 1 in Section 14.1. Use the table to find a linear
approximation to the wind-chill index function when is near

and is near . Then estimate the wind-chill
index when the temperature is and the wind speed 
is 55 km�h.

25–30 Find the differential of the function.

25. 26.

27. 28.

29. 30.

31. If and changes from to
compare the values of and .

32. If and changes from to
, compare the values of and .

33. The length and width of a rectangle are measured as 30 cm and
24 cm, respectively, with an error in measurement of at most

cm in each. Use differentials to estimate the maximum
error in the calculated area of the rectangle.

34. Use differentials to estimate the amount of metal in a closed
cylindrical can that is 10 cm high and 4 cm in diameter if the
metal in the top and bottom is cm thick and the metal in the
sides is cm thick.

35. Use differentials to estimate the amount of tin in a closed tin
can with diameter 8 cm and height 12 cm if the tin is cm
thick.

36. The wind-chill index is modeled by the function

where is the temperature and is the wind speed
. The wind speed is measured as , with a 

94�F

95�F

W
T v

W � f �T, v�

T
�15�C v 50 km�h

�17�C

�18

�24

�30

�37

�20

�26

�33

�39

�21

�27

�34

�41

�22

�29

�35

�42

�23

�30

�36

�43

T
v 20 30 40 50 60

�10

�15

�20

�25A
ct

ua
l t

em
pe

ra
tu

re
 (

°C
) 70

�23

�30

�37

�44

Wind speed (km/h)

z � e�2x cos 2	t u � sx 2 � 3y 2 

T �
v

1 � uvw
m � p5q3

R � �� 2 cos  L � xze�y2�z2

�1.05, 2.1�,�1, 2��x, y�z � 5x 2 � y 2

dz�z

�3, �1��x, y�z � x 2 � xy � 3y 2

dz�z�2.96, �0.95�

0.1

0.1
0.05

0.04

W � 13.12 � 0.6215T � 11.37v 0.16 � 0.3965Tv 0.16

v�in �C�T
26 km�h�in km�h�

possible error of , and the temperature is measured 
as , with a possible error of . Use differentials to
estimate the maximum error in the calculated value of due 
to the measurement errors in and .

37. The tension in the string of the yo-yo in the figure is

where is the mass of the yo-yo and is acceleration due to
gravity. Use differentials to estimate the change in the tension 
if is increased from 3 cm to 3.1 cm and is increased from
0.7 cm to 0.8 cm. Does the tension increase or decrease?

38. The pressure, volume, and temperature of a mole of an ideal
gas are related by the equation , where is mea-
sured in kilopascals, in liters, and in kelvins. Use differ-
entials to find the approximate change in the pressure if the
volume increases from 12 L to 12.3 L and the temperature
decreases from 310 K to 305 K.

39. If is the total resistance of three resistors, connected in par-
 al lel, with resistances , , , then

If the resistances are measured in ohms as ,
, and , with a possible error of in

each case, estimate the maximum error in the calculated value
of .

40. Four positive numbers, each less than 50, are rounded to the
first decimal place and then multiplied together. Use differen-
tials to estimate the maximum possible error in the computed
product that might result from the rounding.

41. A model for the surface area of a human body is given by
, where is the weight (in pounds), is

the height (in inches), and is measured in square feet. If the
errors in measurement of and are at most 2%, use differ-
entials to estimate the maximum percentage error in the calcu-
lated surface area.

42. Suppose you need to know an equation of the tangent plane to
a surface at the point . You don’t have an equation
for but you know that the curves

both lie on . Find an equation of the tangent plane at .

W
T v

�1�C�11�C

T

T �
mtR

2r 2 � R 2

m

R

T

r

PV � 8.31T P
V T

R
R1 R2 R3

1

R
�

1

R1
�

1

R2
�

1

R3

R1 � 25 �
R2 � 40 � R3 � 50 � 0.5%

R

S � 0.1091w 0.425h 0.725 w h
S

w h

S P�2, 1, 3�
S

r1�t� � 
2 � 3t, 1 � t 2, 3 � 4t � t 2�

r2�u� � 
1 � u2, 2u3 � 1, 2u � 1 �

R

PS

�2 km�h

r

t
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948 CHAPTER 14 PARTIAL DERIVATIVES

43–44 Show that the function is differentiable by finding values 
of and that satisfy Definition 7.

43. 44.

45. Prove that if is a function of two variables that is differen-
tiable at , then is continuous at .  

Hint: Show that

�1 �2

f �x, y� � x 2 � y 2 f �x, y� � xy � 5y 2

f
�a, b� f �a, b�

lim
��x, �y� l �0, 0�

f �a � �x, b � �y� � f �a, b�

46. (a) The function

was graphed in Figure 4. Show that and
both exist but is not differentiable at . [Hint: Use 
the result of Exercise 45.]

(b) Explain why and are not continuous at .

f �x, y� � �
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

fx�0, 0� fy�0, 0�
f �0, 0�

fx fy �0, 0�

Recall that the Chain Rule for functions of a single variable gives the rule for differentiating
a composite function: If and , where and are differentiable functions,
then is indirectly a differentiable function of and

For functions of more than one variable, the Chain Rule has several versions, each of
them giving a rule for differentiating a composite function. The first version (Theorem 2)
deals with the case where and each of the variables and is, in turn, a func-
tion of a variable . This means that is indirectly a function of , , and the
Chain Rule gives a formula for differentiating as a function of . We assume that is dif-
ferentiable (Definition 14.4.7). Recall that this is the case when and are continuous
(Theorem 14.4.8).

The Chain Rule (Case 1) Suppose that is a differentiable function of
and , where and are both differentiable functions of . Then

is a differentiable function of and

PROOF A change of in produces changes of in and in . These, in turn, pro-
duce a change of in , and from Definition 14.4.7 we have

where and as . [If the functions and are not
defined at , we can define them to be 0 there.] Dividing both sides of this equation
by , we have

If we now let , then because is differentiable and 

y � f �x� x � t�t� f t

y t

1
dy

dt
�

dy

dx

dx

dt

z � f �x, y� x y
t z t z � f �t�t�, h�t��

z t f
fx fy

2 z � f �x, y�
x y x � t�t� y � h�t� t z

t

dz

dt
�

�f

�x

dx

dt
�

�f

�y

dy

dt

�t t �x x �y y
�z z

�z �
�f

�x
�x �

�f

�y
�y � �1 �x � �2 �y

�2�1��x, �y� l �0, 0��2 l 0�1 l 0
�0, 0�

�t

�z

�t
�

�f

�x

�x

�t
�

�f

�y

�y

�t
� �1

�x

�t
� �2

�y

�t

t�x � t�t � �t� � t�t� l 0�t l 0

14.5 The Chain Rule
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SECTION 14.5 THE CHAIN RULE 949

therefore continuous. Similarly, . This, in turn, means that and , so

Since we often write in place of , we can rewrite the Chain Rule in the form

If , where and , find when .

SOLUTION The Chain Rule gives

It’s not necessary to substitute the expressions for and in terms of . We simply
observe that when , we have x � sin 0 � 0 and y � cos 0 � 1. Therefore

The derivative in Example 1 can be interpreted as the rate of change of with respect 
to as the point moves along the curve with parametric equations ,

. (See Figure 1.) In particular, when , the point is and
is the rate of increase as we move along the curve through . If, for instance,

represents the temperature at the point , then the compos-
ite function represents the temperature at points on and the derivative

represents the rate at which the temper ature changes along .

The pressure (in kilopascals), volume (in liters), and temperature
(in kelvins) of a mole of an ideal gas are related by the equation . Find the
rate at which the pressure is changing when the temperature is and increas ing at a
rate of and the volume is 100 L and increasing at a rate of .

SOLUTION If represents the time elapsed in seconds, then at the given instant we have
, , , . Since

�y l 0 �1 l 0 �2 l 0

dz

dt
� lim

�t l 0

�z

�t

�
�f

�x

dx

dt
�

�f

�y

dy

dt
� 0 �

dx

dt
� 0 �

dy

dt

�
�f

�x

dx

dt
�

�f

�y

dy

dt

�z��x �f��x

dz

dt
�

�z

�x

dx

dt
�

�z

�y

dy

dt

z � x 2y � 3xy4 x � sin 2t y � cos t dz�dt t � 0

dz

dt
�

�z

�x

dx

dt
�

�z

�y

dy

dt

� �2xy � 3y 4��2 cos 2t� � �x 2 � 12xy 3���sin t�

x y t
t � 0

dz

dt �
t�0

� �0 � 3��2 cos 0� � �0 � 0���sin 0� � 6

z
t �x, y� C x � sin 2t

y � cos t t � 0 �x, y� �0, 1� dz�dt � 6
C �0, 1�

z � T�x, y� � x 2y � 3xy 4 �x, y�
z � T �sin 2t, cos t� C

dz�dt C

P V T
PV � 8.31T

300 K
0.1 K�s 0.2 L�s

t
T � 300 dT�dt � 0.1 V � 100 dV�dt � 0.2

P � 8.31
T

V

�
�f

�x
lim

�t l 0

�x

�t
�

�f

�y
lim

�t l 0

�y

�t
�  lim

�t l 0
 �1� lim

�t l 0

�x

�t
�  lim

�t l 0
�2� lim

�t l 0

�y

�t

v EXAMPLE 2

EXAMPLE 1

Notice the similarity to the definition of the 
differential:

dz �
�z

�x
dx �

�z

�y
dy

FIGURE 1
The curve x=sin 2t, y=cos t

x

(0, 1)

y

C
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950 CHAPTER 14 PARTIAL DERIVATIVES

the Chain Rule gives

The pressure is decreasing at a rate of about kPa�s.

We now consider the situation where but each of and is a function of two
variables and : , . Then is indirectly a function of and and we
wish to find and . Recall that in computing we hold fixed and compute
the ordinary derivative of with respect to . Therefore we can apply Theorem 2 to obtain

A similar argument holds for and so we have proved the following version of the
Chain Rule.

The Chain Rule (Case 2) Suppose that is a differentiable function of
and , where and are differentiable functions of s and t.

Then

If , where and , find and .

SOLUTION Applying Case 2 of the Chain Rule, we get

Case 2 of the Chain Rule contains three types of variables: and are independent vari-
ables, and are called intermediate variables, and is the dependent variable. Notice that
Theorem 3 has one term for each intermediate variable and each of these terms resembles
the one-dimensional Chain Rule in Equation 1.

To remember the Chain Rule, it’s helpful to draw the tree diagram in Figure 2. We draw
branches from the dependent variable to the intermediate variables and to indicate that

is a function of and . Then we draw branches from and to the independent variables
and . On each branch we write the corresponding partial derivative. To find , we 

dP

dt
�

�P

�T

dT

dt
�

�P

�V

dV

dt
�

8.31

V

dT

dt
�

8.31T

V 2

dV

dt

�
8.31

100
 �0.1� �

8.31�300�
1002 �0.2� � �0.04155

0.042

z � f �x, y� x y
s t x � t�s, t� y � h�s, t� z s t

�z��s �z��t �z��t s
z t

�z

�t
�

�z

�x
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�

�z

�y

�y

�t

�z��s

3 z � f �x, y�
x y x � t�s, t� y � h�s, t�
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�y
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�
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�y

�t

z � ex sin y x � st 2 y � s 2t �z��s �z��t

�z

�s
�
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�s
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�y

�y

�s
� �e x sin y��t 2 � � �ex cos y��2st�

� t 2e st 2
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EXAMPLE 3
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SECTION 14.5 THE CHAIN RULE 951

find the product of the partial derivatives along each path from to and then add these 
products:

Similarly, we find by using the paths from to .
Now we consider the general situation in which a dependent variable is a function of

intermediate variables , , each of which is, in turn, a function of independent
variables , . Notice that there are terms, one for each intermediate variable. The
proof is similar to that of Case 1.

The Chain Rule (General Version) Suppose that is a differentiable function of
the variables , , and each is a differentiable function of the vari-
ables , , . Then is a function of , , and

for each , , .

Write out the Chain Rule for the case where and
, , , and .

SOLUTION We apply Theorem 4 with and . Figure 3 shows the tree diagram.
Although we haven’t written the derivatives on the branches, it’s understood that if a
branch leads from to , then the partial derivative for that branch is . With the aid
of the tree diagram, we can now write the required expressions:

If , where , , and , find the
value of when , , .

SOLUTION With the help of the tree diagram in Figure 4, we have

When , , and , we have , , and , so
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952 CHAPTER 14 PARTIAL DERIVATIVES

If and is differentiable, show that satisfies
the equation

SOLUTION Let and . Then and the Chain Rule
gives

Therefore

If has continuous second-order partial derivatives and
and , find (a) and (b) .

SOLUTION
(a) The Chain Rule gives

(b) Applying the Product Rule to the expression in part (a), we get

But, using the Chain Rule again (see Figure 5), we have

Putting these expressions into Equation 5 and using the equality of the mixed second-
order derivatives, we obtain

Implicit Differentiation
The Chain Rule can be used to give a more complete description of the process of implicit
differentiation that was introduced in Sections 2.6 and 14.3. We suppose that an equa-
tion of the form defines implicitly as a differentiable function of , that is, 

tft�s, t� � f �s 2 � t 2, t 2 � s 2�EXAMPLE 6
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�f

�y

�y

�s
�

�f

�x
�2s� �

�f

�y
��2s�

�t

�t
�

�f

�x

�x

�t
�

�f

�y

�y

�t
�

�f

�x
��2t� �

�f

�y
�2t�

t
�t

�s
� s

�t

�t
� �2st

�f

�x
� 2st

�f

�y� � ��2st
�f

�x
� 2st

�f

�y� � 0

x � r 2 � s 2z � f �x, y�EXAMPLE 7
�2z��r 2�z��ry � 2rs

�z

�r
�

�z

�x

�x

�r
�

�z

�y

�y

�r
�

�z

�x
�2r� �

�z

�y
�2s�

�2z

�r 2 �
�

�r�2r
�z

�x
� 2s

�z

�y�
5

� 2 
�z

�x
� 2r

�

�r � �z

�x� � 2s
�

�r � �z

�y�

�
�2z

�x 2 �2r� �
�2z

�y �x
�2s�

�

�r � �z

�x� �
�

�x � �z

�x� �x

�r
�

�

�y � �z

�x� �y

�r

�
�2z

�x �y
�2r� �

�2z

�y 2 �2s�
�

�r � �z

�y� �
�

�x � �z

�y� �x

�r
�

�

�y � �z

�y� �y

�r

�2z

�r 2 � 2 
�z

�x
� 2r�2r

�2z

�x 2 � 2s
�2z

�y �x� � 2s�2r
�2z

�x �y
� 2s

�2z

�y 2�
� 2 

�z

�x
� 4r 2 �2z

�x 2 � 8rs
�2z

�x �y
� 4s 2 �2z

�y 2

xyF�x, y� � 0

FIGURE 5

�z
�x

yx

r s r s
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SECTION 14.5 THE CHAIN RULE 953

, where for all in the domain of . If is differentiable, we can
apply Case 1 of the Chain Rule to differentiate both sides of the equation with
respect to . Since both and are functions of , we obtain

But , so if we solve for and obtain

To derive this equation we assumed that defines implicitly as a function of
. The Implicit Function Theorem, proved in advanced calculus, gives conditions under

which this assumption is valid: It states that if is defined on a disk containing where
, , and and are continuous on the disk, then the equation
defines as a function of near the point and the derivative of this func-

tion is given by Equation 6.

Find if .

SOLUTION The given equation can be written as

so Equation 6 gives

Now we suppose that is given implicitly as a function by an equation of the
form . This means that for all in the domain 
of . If and are differentiable, then we can use the Chain Rule to differentiate the equa-
tion as follows:

But

so this equation becomes

If , we solve for and obtain the first formula in Equations 7 on page 954.
The formula for is obtained in a similar manner.

FfxF�x, f �x�� � 0y � f �x�
F�x, y� � 0

xyxx

�F

�x

dx

dx
�

�F

�y

dy

dx
� 0

dy�dx�F��y � 0dx�dx � 1

dy

dx
� �

�F

�x

�F

�y

� �
Fx

Fy
6

yF�x, y� � 0
x

�a, b�,F
FyFxFy�a, b� � 0F�a, b� � 0

�a, b�xyF�x, y� � 0

x 3 � y 3 � 6xyy�EXAMPLE 8

F�x, y� � x 3 � y 3 � 6xy � 0

dy

dx
� �

Fx

Fy
� �

3x 2 � 6y

3y 2 � 6x
� �

x 2 � 2y

y 2 � 2x

z � f �x, y�z
�x, y�F�x, y, f �x, y�� � 0F�x, y, z� � 0

fFf
F�x, y, z� � 0

�F

�x

�x

�x
�

�F

�y

�y

�x
�

�F

�z

�z

�x
� 0

�

�x
�y� � 0and

�

�x
�x� � 1

�F

�x
�

�F

�z

�z

�x
� 0

�z��x�F��z � 0
�z��y

The solution to Example 8 should be 
compared to the one in Example 2 in 
Section 2.6.
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954 CHAPTER 14 PARTIAL DERIVATIVES

1. Homework Hints available at stewartcalculus.com

1–6 Use the Chain Rule to find or .

1. ,  ,  

2. ,  ,  

3. ,  ,  

4. ,  ,  

5. ,  ,  ,  

6. ,  ,  ,  

7–12 Use the Chain Rule to find and .

7. ,  ,  

8. ,  ,  

9. ,  ,  

10. ,  ,  

11. ,  ,  

12. ,  ,  

dz�dt dw�dt

z � x 2 � y 2 � xy x � sin t y � e t

z � cos�x � 4y� x � 5t 4 y � 1�t

z � s1 � x 2 � y 2 x � ln t y � cos t

z � tan�1�y�x� x � e t y � 1 � e�t

w � xe y�z x � t 2 y � 1 � t z � 1 � 2t

w � lnsx 2 � y 2 � z2 x � sin t y � cos t z � tan t

�z��s �z��t

z � x 2y 3 x � s cos t y � s sin t

z � arcsin�x � y� x � s 2 � t 2 y � 1 � 2st

z � sin � cos � � � st 2 � � s 2t

z � e x�2y x � s�t y � t�s

z � e r cos � r � st � � ss 2 � t 2 

v � 3s � 2tu � 2s � 3tz � tan�u�v�

13. If , where is differentiable, and

find when .

14. Let , where are differen-
tiable, and

Find and .

15. Suppose is a differentiable function of and , and
. Use the table of values 

to calculate 

16. Suppose is a differentiable function of and , and
Use the table of values in

Exercise 15 to calculate and 

x � t�t� y � h�t�
t�3� � 2 h�3� � 7

t��3� � 5 h��3� � �4

fx�2, 7� � 6 fy�2, 7� � �8

dz�dt t � 3

W�s, t� � F�u�s, t�, v�s, t�� F, u, and v

u�1, 0� � 2 v�1, 0� � 3

us�1, 0� � �2 vs�1, 0� � 5

ut�1, 0� � 6 vt�1, 0� � 4

Fu�2, 3� � �1 Fv�2, 3� � 10

Ws�1, 0� Wt�1, 0�

fz � f �x, y�

yxf
t�u, v� � f �e u � sin v, e u � cos v�

tu�0, 0� and tv�0, 0�.

yxf
t�r, s� � f �2r � s, s 2 � 4r�.

ts�1, 2�.tr�1, 2�

14.5 Exercises

Again, a version of the Implicit Function Theorem stipulates conditions under which 
our assumption is valid: If is defined within a sphere containing , where

, , and , , and are continuous inside the sphere, then the
equation defines as a function of and near the point and this
function is differentiable, with partial derivatives given by .

Find and if .

SOLUTION Let . Then, from Equations 7, we have

�z

�x
� �

�F

�x

�F

�z

�z

�y
� �

�F

�y

�F

�z

F �a, b, c�
F�a, b, c� � 0 Fz�a, b, c� � 0 Fx Fy Fz

F�x, y, z� � 0 z x y �a, b, c�

�z

�x

�z

�y
x 3 � y 3 � z3 � 6xyz � 1

F�x, y, z� � x 3 � y 3 � z3 � 6xyz � 1

�z

�x
� �

Fx

Fz
� �

3x 2 � 6yz

3z2 � 6xy
� �

x 2 � 2yz

z2 � 2xy

�z

�y
� �

Fy

Fz
� �

3y 2 � 6xz

3z2 � 6xy
� �

y 2 � 2xz

z2 � 2xy

EXAMPLE 9

7

7

The solution to Example 9 should be 
compared to the one in Example 4 in 
Section 14.3.

3 6 4 8

6 3 2 5�1, 2�

�0, 0�

fyfxtf
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SECTION 14.5 THE CHAIN RULE 955

17–20 Use a tree diagram to write out the Chain Rule for the given
case. Assume all functions are differentiable.

17. ,  where , 

18. ,  where , ,
, 

19. ,  where , , 

20. ,  where , ,

21–26 Use the Chain Rule to find the indicated partial derivatives.

21. ,  ,  ;

, , when , , 

22. ,  ,  ;

, , when , , 

23. ,  ,  ,  ;

, when , 

24. ,  ,  ,  ;

, when 

25. ,  ,  ,  ;

, , when 

26. ,  ,  ,  ;

, , when , , 

27–30 Use Equation 6 to find .

27. 28.

29. 30.

31–34 Use Equations 7 to find and .

31. 32.

33. 34.

35. The temperature at a point is , measured in degrees
Celsius. A bug crawls so that its position after seconds is
given by , where and are measured
in centimeters. The temperature func tion satisfies
and . How fast is the temperature rising on the
bug’s path after 3 seconds?

36. Wheat production in a given year depends on the average
temperature and the annual rainfall . Scientists estimate 
that the average temperature is rising at a rate of 0.15°C�year

u � f �x, y� x � x�r, s, t� y � y�r, s, t�

R � f �x, y, z, t� x � x�u, v, w� y � y�u, v, w�
z � z�u, v, w� t � t�u, v, w�

w � f �r, s, t� r � r�x, y� s � s�x, y� t � t�x, y�

t � f �u, v, w� u � u�p, q, r, s� v � v�p, q, r, s�
w � w�p, q, r, s�

y � stu2x � s � 2t � uz � x 4 � x 2y

u � 1t � 2s � 4
�z

�u

�z

�t

�z

�s

v � psq ru � pqsrT �
v

2u � v

r � 4q � 1p � 2
�T

�r

�T

�q

�T

�p

w � xy � yz � zx z � r�y � r sin �x � r cos �

r � 2
�w

��

�w

�r
� � 	�2

w � e xyv � ye xu � xe yP � su 2 � v2 � w 2 

x � 0, y � 2
�P

�y

�P

�x

r � w � uvq � v � uwp � u � vwN �
p � q

p � r

u � 2, v � 3, w � 4
�N

�w

�N

�v

�N

�u

t � 
 2�y � � 2
x � � 2�u � xe ty

� � 2� � �1
�u

��

�u

��

�u

�


 � 1

x 2 � y 2 � z2 � 2z � 4x 2 � 2y 2 � 3z2 � 1

yz � x ln y � z2e z � xyz

T�x, y��x, y�
t

yxx � s1 � t , y � 2 �
1
3 t

Tx�2, 3� � 4

dy�dx

�z��x �z��y

y cos x � x 2 � y 2 cos�xy� � 1 � sin y

tan�1�x 2y� � x � xy 2 e y sin x � x � xy

Ty�2, 3� � 3

W
RT

and rainfall is decreasing at a rate of 0.1 cm�year. They also
estimate that, at current production levels, 
and .
(a) What is the significance of the signs of these partial 

derivatives?
(b) Estimate the current rate of change of wheat production,

.

37. The speed of sound traveling through ocean water with salinity
35 parts per thousand has been modeled by the equation

where is the speed of sound (in meters per second), is the
temperature (in degrees Celsius), and is the depth below the
ocean surface (in meters). A scuba diver began a leisurely dive
into the ocean water; the diver’s depth and the surrounding
water temperature over time are recorded in the following
graphs. Estimate the rate of change (with respect to time) of 
the speed of sound through the ocean water experienced by the
diver 20 minutes into the dive. What are the units?

38. The radius of a right circular cone is increasing at a rate of 
in�s while its height is decreasing at a rate of in�s. At

what rate is the volume of the cone changing when the radius
is 120 in. and the height is 140 in.?

39. The length �, width , and height of a box change with 
time. At a certain instant the dimensions are and 

m, and � and are increasing at a rate of 2 m�s
while is decreasing at a rate of 3 m�s. At that instant find the
rates at which the following quantities are changing.
(a) The volume
(b) The surface area
(c) The length of a diagonal

40. The voltage in a simple electrical circuit is slowly decreasing
as the battery wears out. The resistance is slowly increasing
as the resistor heats up. Use Ohm’s Law, , to find how
the current is changing at the moment when ,

A, V�s, and .

41. The pressure of 1 mole of an ideal gas is increasing at a rate 
of kPa�s and the temperature is increasing at a rate of 

K�s. Use the equation in Example 2 to find the rate of
change of the volume when the pressure is 20 kPa and the 
temperature is 320 K.

42. A manufacturer has modeled its yearly production function
(the value of its entire production in millions of dollars) as a
Cobb-Douglas function

where is the number of labor hours (in thousands) and is 

�W��R � 8

dW�dt

C � 1449.2 � 4.6T � 0.055T 2 � 0.00029T 3 � 0.016D

C T
D

t
(min)

T

10

12

10 20 30 40

14

16

8

t
(min)

D

5

10

10 20 30 40

15

20

1.8 2.5

w h
� � 1 m

w � h � 2 w
h

V
R

V � IR
I R � 400 

dR�dt � 0.03 �sdV�dt � �0.01I � 0.08

0.05
0.15

P

P�L, K� � 1.47L0.65K 0.35

�W��T � �2

KL
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956 CHAPTER 14 PARTIAL DERIVATIVES

the invested capital (in millions of dollars). Suppose that when
and , the labor force is decreasing at a rate of

2000 labor hours per year and capital is increasing at a rate of
$500,000 per year. Find the rate of change of production.

43. One side of a triangle is increasing at a rate of and a
second side is decreasing at a rate of . If the area of the
triangle remains constant, at what rate does the angle between
the sides change when the first side is 20 cm long, the second
side is 30 cm, and the angle is ?

44. If a sound with frequency is produced by a source traveling
along a line with speed and an observer is traveling with
speed along the same line from the opposite direction toward
the source, then the frequency of the sound heard by the
observer is

where is the speed of sound, about . (This is the
Doppler effect.) Suppose that, at a particular moment, you 
are in a train traveling at and accelerating at .
A train is approaching you from the opposite direction on the
other track at , accelerating at , and sounds its
whistle, which has a frequency of 460 Hz. At that instant, what
is the perceived frequency that you hear and how fast is it
changing?

45–48 Assume that all the given functions are differentiable.

45. If , where and , (a) find
and and (b) show that

46. If , where and , show that

47. If , show that .

48. If , where and , show that

49–54 Assume that all the given functions have continuous 
second-order partial derivatives.

49. Show that any function of the form

is a solution of the wave equation

[Hint: Let , .]

K � 8L � 30

3 cm�s
2 cm�s

	�6

fs

vs

vo

fo � � c � vo

c � vs
� fs

332 m�sc

1.2 m�s234 m�s

1.4 m�s240 m�s

�z��ry � r sin �x � r cos �z � f �x, y�
�z���

� �z

�x�2

� � �z

�y�2

� ��z

�r�2

�
1

r 2 � �z

��
�2

y � e s sin tx � e s cos tu � f �x, y�

��u

�x�2

� ��u

�y�2

� e�2s���u

�s�2

� � �u

�t �2�
�z

�x
�

�z

�y
� 0z � f �x � y�

y � s � tx � s � tz � f �x, y�

� �z

�x�2

� � �z

�y�2

�
�z

�s

�z

�t

z � f �x � at� � t�x � at�

�2z

�t 2 � a 2 �2z

�x 2

v � x � atu � x � at

50. If , where and , show that

51. If , where and , find .
(Compare with Example 7.)

52. If , where and , find 
(a) , (b) , and (c) .

53. If , where and , show that 

54. Suppose , where and .
(a) Show that

(b) Find a similar formula for .

55. A function f is called homogeneous of degree n if it satisfies
the equation for all t, where n is a positive
integer and f has continuous second-order partial derivatives.
(a) Verify that is homogeneous 

of degree 3.
(b) Show that if is homogeneous of degree , then

[Hint: Use the Chain Rule to differentiate with
respect to t.]

56. If is homogeneous of degree , show that

57. If is homogeneous of degree , show that

58. Suppose that the equation implicitly defines each
of the three variables , , and as functions of the other two:

, , . If is differentiable and
, , and are all nonzero, show that

59. Equation 6 is a formula for the derivative of a function
defined implicitly by an equation , provided that
is differentiable and . Prove that if has continuous sec-
ond derivatives, then a formula for the second derivative of is

z � f �x, y� x � r 2 � s 2 y � 2rs �2z��r �s

z � f �x, y� x � r cos � y � r sin �
�z��r �z��� �2z��r ��

z � f �x, y� x � r cos � y � r sin �

�2z

�x 2 �
�2z

�y 2 �
�2z

�r 2 �
1

r 2

�2z

�� 2 �
1

r

�z

�r

z � f �x, y� x � t�s, t� y � h�s, t�

�2z

�t 2 �
�2z

�x 2 ��x

�t �2

� 2 
�2z

�x �y

�x

�t

�y

�t
�

�2z

�y 2 ��y

�t �2

�
�z

�x

�2x

�t 2 �
�z

�y

�2 y

�t 2

�2z��s �t

f �t x, t y� � t nf �x, y�

f �x, y� � x 2y � 2xy 2 � 5y 3

f n

x
�f

�x
� y

�f

�y
� n f �x, y�

f �tx, t y�

nf

x2 �2f

�x 2 � 2xy
�2f

�x �y
� y 2 �2f

�y 2 � n�n � 1� f �x, y�

nf

fx�t x, t y� � t n�1fx�x, y�

F�x, y, z� � 0
zyx

Fx � h�y, z�y � t�x, z�z � f �x, y�
FzFyFx

�z

�x

�x

�y

�y

�z
� �1

dy�dx
FF �x, y� � 0

FFy � 0
y

d 2y

dx 2 � �
FxxFy

2 � 2FxyFxFy � FyyFx
2

Fy
3

y � e s sin tx � e s cos tu � f �x, y�

�2u

�x 2 �
�2u

�y 2 � e�2s� �2u

�s 2 �
�2u

�t 2 �
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 957

The weather map in Figure 1 shows a contour map of the temperature function for
the states of California and Nevada at 3:00 PM on a day in October. The level curves, or
isothermals, join locations with the same temperature. The partial derivative at a location
such as Reno is the rate of change of temperature with respect to distance if we travel east
from Reno; is the rate of change of temperature if we travel north. But what if we want
to know the rate of change of temperature when we travel southeast (toward Las Vegas), or
in some other direction? In this section we introduce a type of derivative, called a direc-
tional derivative, that enables us to find the rate of change of a function of two or more
variables in any direction.

Directional Derivatives
Recall that if , then the partial derivatives and are defined as

and represent the rates of change of in the - and -directions, that is, in the directions of
the unit vectors and .

Suppose that we now wish to find the rate of change of at in the direction of an
arbitrary unit vector . (See Figure 2.) To do this we consider the surface with
the equation (the graph of ) and we let . Then the point

lies on . The vertical plane that passes through in the direction of inter-
sects in a curve . (See Figure 3.) The slope of the tangent line to at the point is the
rate of change of in the direction of .

T�x, y�

Tx

Ty

z � f �x, y� fx fy

1

fx�x0, y0 � � lim
h l 0

f �x0 � h, y0 � � f �x0, y0 �
h

fy�x0, y0� � lim
h l 0

f �x0, y0 � h� � f �x0, y0 �
h

z x y
i j

z �x0, y0 �
u � 	a, b 
 S

z � f �x, y� f z0 � f �x0, y0 �
P�x0, y0, z0� S P u

S C T C P
z u

FIGURE 3
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14.6 Directional Derivatives and the Gradient Vector

FIGURE 2
A unit vector u=ka, bl=kcos ¨, sin ¨l

y
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u

Visual 14.6A animates Figure 3 by 
rotating and therefore .
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958 CHAPTER 14 PARTIAL DERIVATIVES

If is another point on and , are the projections of , onto the -plane,
then the vectorB is parallel to and so

B

for some scalar . Therefore , , so , ,
and

If we take the limit as , we obtain the rate of change of (with respect to distance) in
the direction of , which is called the directional derivative of in the direction of .

Definition The directional derivative of at in the direction of a unit
vector is

if this limit exists.

By comparing Definition 2 with Equations , we see that if , then
and if , then . In other words, the partial derivatives of

with respect to and are just special cases of the directional derivative.

Use the weather map in Figure 1 to estimate the value of the directional
derivative of the temperature function at Reno in the southeasterly direction.

SOLUTION The unit vector directed toward the southeast is , but we
won’t need to use this expression. We start by drawing a line through Reno toward the
southeast (see Figure 4).

We approximate the directional derivative by the average rate of change of the
temperature between the points where this line intersects the isothermals and 

Q�x, y, z� C P� Q� P Q xy
u

h x � x0 � ha y � y0 � hb x � x0 � ha y � y0 � hb

�z

h
�

z � z0

h
�

f �x0 � ha, y0 � hb� � f �x0, y0�
h

h l 0 z
u f u

2 f �x0, y0 �
u � 	a, b 


Du f �x0, y0 � � lim
h l 0

f �x0 � ha, y0 � hb� � f �x0, y0�
h

P�Q� � hu � 	ha, hb 


P�Q�

u � i � 	1, 0 

Di f � fx Dj f � fyu � j � 	0, 1 


yx
f

u � �i � j��s2

FIGURE 4
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 959

. The temperature at the point southeast of Reno is and the temperature
at the point northwest of Reno is . The distance between these points looks to
be about 75 miles. So the rate of change of the temperature in the southeasterly direction
is

When we compute the directional derivative of a function defined by a formula, we gen-
erally use the following theorem.

Theorem If is a differentiable function of and , then has a directional
derivative in the direction of any unit vector and

PROOF If we define a function of the single variable by

then, by the definition of a derivative, we have

On the other hand, we can write , where , , so the
Chain Rule (Theorem 14.5.2) gives

If we now put , then , , and

Comparing Equations 4 and 5, we see that

If the unit vector makes an angle with the positive -axis (as in Figure 2), then we
can write and the formula in Theorem 3 becomes

Find the directional derivative if

and is the unit vector given by angle . What is ?

T � 60 �F
T � 50 �F

Du T �
60 � 50

75
�

10

75
� 0.13�F�mi

3 f x y f
u � 	a, b 


Du f �x, y� � fx�x, y� a � fy�x, y� b

t h

t�h� � f �x0 � ha, y0 � hb�

4 t��0� � lim
h l 0

t�h� � t�0�
h

� lim
h l 0

f �x0 � ha, y0 � hb� � f �x0, y0 �
h

� Du f �x0, y0 �

t�h� � f �x, y� x � x0 � ha y � y0 � hb

t��h� �
�f

�x

dx

dh
�

�f

�y

dy

dh
� fx�x, y� a � fy�x, y� b

h � 0 x � x0 y � y0

5 t��0� � fx�x0, y0 � a � fy�x0, y0 � b

Du f �x0, y0� � fx�x0, y0� a � fy�x0, y0 � b

u � x
u � 	cos �, sin �


6 Du f �x, y� � fx�x, y� cos � � fy�x, y� sin �

Du f �x, y�

f �x, y� � x 3 � 3xy � 4y 2

u � � 	�6 Du f �1, 2�

T � 60

EXAMPLE 2
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960 CHAPTER 14 PARTIAL DERIVATIVES

SOLUTION Formula 6 gives

Therefore

The Gradient Vector
Notice from Theorem 3 that the directional derivative of a differentiable function can be
written as the dot product of two vectors:

The first vector in this dot product occurs not only in computing directional deriv atives but
in many other contexts as well. So we give it a special name (the gradient of ) and a spe-
cial notation (grad or , which is read “del ”).

Definition If is a function of two variables and , then the gradient of is
the vector function defined by

If , then

and

With this notation for the gradient vector, we can rewrite Equation 7 for the directional
derivative of a differentiable function as

This expresses the directional derivative in the direction of a unit vector as the scalar 
projection of the gradient vector onto .

Du f �x, y� � fx�x, y� cos 
�

6
� fy�x, y� sin 

�

6

� �3x 2 � 3y�
s3

2
� ��3x � 8y� 1

2

� 1
2 [3 s3 x 2 � 3x � (8 � 3s3 )y]

Du f �1, 2� � 1
2 [3s3 �1�2 � 3�1� � (8 � 3s3 )�2�] �

13 � 3s3

2

7 Du f �x, y� � fx�x, y� a � fy�x, y� b

� � fx�x, y�, fy�x, y�� � �a, b �

� � fx�x, y�, fy�x, y�� � u

f
f � f f

8 f x y f
� f

� f �x, y� � � fx�x, y�, fy�x, y�� �
�f

�x
i �

�f

�y
j

f �x, y� � sin x � ex y

� f �x, y� � � fx , fy� � �cos x � yex y, xex y �

� f �0, 1� � �2, 0 �

9 Du f �x, y� � � f �x, y� � u

u
u

EXAMPLE 3

The directional derivative in 
Example 2 represents the rate of change of in
the direction of . This is the slope of the tan-
gent line to the curve of intersection of the 
surface and the vertical
plane through in the direction of 
shown in Figure 5.

u�1, 2, 0�
z � x 3 � 3xy � 4y2

u
z

Du f �1, 2�

FIGURE 5

(1, 2, 0)
π
6

z

x
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u
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 961

Find the directional derivative of the function at the
point in the direction of the vector .

SOLUTION We first compute the gradient vector at :

Note that is not a unit vector, but since , the unit vector in the direction 
of is

Therefore, by Equation 9, we have

Functions of Three Variables
For functions of three variables we can define directional derivatives in a similar manner.
Again can be interpreted as the rate of change of the function in the direction
of a unit vector .

Definition The directional derivative of at in the direction of a
unit vector is

if this limit exists.

If we use vector notation, then we can write both definitions (2 and 10) of the direc-
tional derivative in the compact form

where if and if . This is reasonable because 
the vector equation of the line through in the direction of the vector is given by

(Equation 12.5.1) and so represents the value of at a point on
this line.

f �x, y� � x 2 y 3 � 4y
�2, �1� v � 2 i � 5 j

�2, �1�

� f �x, y� � 2xy 3 i � �3x 2y 2 � 4�j

� f �2, �1� � �4 i � 8 j

v � v � � s29
v

u �
v

� v � �
2

s29
i �

5

s29
j

Du f �2, �1� � � f �2, �1� � u � ��4 i � 8 j� � � 2

s29
i �

5

s29
j�

�
�4 � 2 � 8 � 5

s29
�

32

s29

Du f �x, y, z�
u

10 f �x0, y0, z0 �
u � �a, b, c �

Du f �x0, y0, z0� � lim
h l 0

f �x0 � ha, y0 � hb, z0 � hc� � f �x0, y0, z0 �
h

11 Du f �x0� � lim
h l 0

f �x0 � hu� � f �x0 �
h

x0 � �x0, y0� n � 2 x0 � �x0, y0, z0� n � 3
x0 u

x � x0 � tu f �x0 � hu� f

EXAMPLE 4vThe gradient vector in Example 4 is
shown in Figure 6 with initial point .
Also shown is the vector that gives the direc-
tion of the directional derivative. Both of these
vectors are superimposed on a contour plot of
the graph of .f

v
�2, �1�

�f �2, �1�

v

(2, _1)

±f(2, _1)

FIGURE 6

x

y
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962 CHAPTER 14 PARTIAL DERIVATIVES

If is differentiable and , then the same method that was used to
prove Theorem 3 can be used to show that

For a function of three variables, the gradient vector, denoted by or grad , is

or, for short,

Then, just as with functions of two variables, Formula 12 for the directional derivative can
be rewritten as

If , (a) find the gradient of and (b) find the direc-
tional derivative of at in the direction of .

SOLUTION
(a) The gradient of is 

(b) At we have . The unit vector in the direction of
is

Therefore Equation 14 gives

Maximizing the Directional Derivative
Suppose we have a function of two or three variables and we consider all possible direc-
tional derivatives of at a given point. These give the rates of change of in all possible
directions. We can then ask the questions: In which of these directions does change 
fastest and what is the maximum rate of change? The answers are provided by the follow-
ing theorem.

f �x, y, z� u � �a, b, c �

12 Du f �x, y, z� � fx�x, y, z� a � fy�x, y, z� b � fz�x, y, z� c

f � f f

� f �x, y, z� � � fx�x, y, z�, fy�x, y, z�, fz�x, y, z��

13 � f � � fx, fy, fz � �
�f

�x
i �

�f

�y
j �

�f

�z
k

14 Du f �x, y, z� � � f �x, y, z� � u

f �x, y, z� � x sin yz f
f �1, 3, 0� v � i � 2 j � k

f

� f �x, y, z� � � fx�x, y, z�, fy�x, y, z�, fz�x, y, z��

� �sin yz, xz cos yz, xy cos yz �

�1, 3, 0� � f �1, 3, 0� � �0, 0, 3 �
v � i � 2 j � k

u �
1

s6
i �

2

s6
j �

1

s6
k

Du f �1, 3, 0� � � f �1, 3, 0� � u

� 3k � � 1

s6
i �

2

s6
j �

1

s6
k�

� 3��
1

s6 � � �	3

2

f
f f

f

v EXAMPLE 5
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 963

Theorem Suppose is a differentiable function of two or three variables. The
maximum value of the directional derivative is and it occurs when

has the same direction as the gradient vector .

PROOF From Equation 9 or 14 we have

where is the angle between and . The maximum value of is 1 and this occurs
when . Therefore the maximum value of is and it occurs when ,
that is, when has the same direction as .

(a) If , find the rate of change of at the point in the direction from
to .

(b) In what direction does have the maximum rate of change? What is this maximum
rate of change?

SOLUTION
(a) We first compute the gradient vector:

The unit vector in the direction of is , so the rate of change
of in the direction from to is

(b) According to Theorem 15, increases fastest in the direction of the gradient vector
. The maximum rate of change is

Suppose that the temperature at a point in space is given by
, where is measured in degrees Celsius and 

, , in meters. In which direction does the temperature increase fastest at the point
? What is the maximum rate of increase?

SOLUTION The gradient of is

f15

� � f �x� �Du f �x�
� f �x�u

Du f � � f � u � � � f �� u � cos � � � � f � cos �

cos �u� f�
� � 0� � f �Du f� � 0

� fu

EXAMPLE 6
P�2, 0�ff �x, y� � xe y

Q( 1
2, 2)P

f

� f �x, y� � � fx, fy� � �e y, xey �

� f �2, 0� � �1, 2 �

u � �� 3
5, 45 �PQ

l
� ��1.5, 2 �

QPf

Du f �2, 0� � � f �2, 0� � u � �1, 2 � � �� 3
5, 45 �

� 1(� 3
5 ) � 2(4

5 ) � 1

f
� f �2, 0� � �1, 2 �

� � f �2, 0� � � � �1, 2 � � � s5

�x, y, z�EXAMPLE 7
TT�x, y, z� � 80
�1 � x 2 � 2y 2 � 3z2�

zyx
�1, 1, �2�

T

�T �
�T

�x
i �

�T

�y
j �

�T

�z
k

� �
160x

�1 � x 2 � 2y 2 � 3z2�2 i �
320y

�1 � x 2 � 2y 2 � 3z2�2 j �
480z

�1 � x 2 � 2y 2 � 3z2�2 k

�
160

�1 � x 2 � 2y 2 � 3z2 �2 ��x i � 2y j � 3z k�

Visual 14.6B provides visual 
confirmation of Theorem 15.
TEC

FIGURE 7

Q

±f(2, 0)

0 1 3

1

2

P x

y

At the function in Example 6 increases
fastest in the direction of the gradient vector

. Notice from Figure 7 that
this vector appears to be perpendicular to the
level curve through . Figure 8 shows the
graph of and the gradient vector.f

�2, 0�

� f �2, 0� � �1, 2 �

�2, 0�

FIGURE 8

20

5

0 1 3x y

z 10

1

15
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964 CHAPTER 14 PARTIAL DERIVATIVES

At the point the gradient vector is

By Theorem 15 the temperature increases fastest in the direction of the gradient vector
or, equivalently, in the direction of or

the unit vector . The maximum rate of increase is the length of the
gradient vector:

Therefore the maximum rate of increase of temperature is .

Tangent Planes to Level Surfaces
Suppose is a surface with equation , that is, it is a level surface of a func-
tion of three variables, and let be a point on . Let be any curve that lies
on the surface and passes through the point . Recall from Section 13.1 that the curve
is described by a continuous vector function . Let be the param-
eter value corresponding to ; that is, . Since lies on , any point

must satisfy the equation of , that is,

If , , and are differentiable functions of and is also differentiable, then we can use
the Chain Rule to differentiate both sides of Equation 16 as follows:

But, since and , Equation 17 can be written in
terms of a dot product as

In particular, when we have , so

Equation 18 says that the gradient vector at , , is perpendicular to the 
tangent vector to any curve on that passes through . (See Figure 9.) If

, it is therefore natural to define the tangent plane to the level surface
at as the plane that passes through and has normal vector

. Using the standard equation of a plane (Equation 12.5.7), we can write the
equation of this tangent plane as

�1, 1, �2�

�T�1, 1, �2� � 160
256 ��i � 2 j � 6 k� � 5

8 ��i � 2 j � 6 k�

�i � 2 j � 6 k�T �1, 1, �2� � 5
8 ��i � 2 j � 6 k�

��i � 2 j � 6 k�
s41

� �T �1, 1, �2� � � 5
8 � �i � 2 j � 6 k � � 5

8 s41

5
8 s41 � 4�C
m

F�x, y, z� � kS
CSP�x0, y0, z0 �F

CPS
t0r�t� � �x�t�, y�t�, z�t��

SCr�t0� � �x0, y0, z0�P
S(x�t�, y�t�, z�t�)

F(x�t�, y�t�, z�t�) � k16

Ftzyx

�F

�x

dx

dt
�

�F

�y

dy

dt
�

�F

�z

dz

dt
� 017

r	�t� � �x	�t�, y	�t�, z	�t���F � �Fx , Fy , Fz �

�F � r	�t� � 0

r�t0� � �x0, y0, z0�t � t0

�F�x0, y0, z0� � r	�t0 � � 018

�F�x0, y0, z0 �P
PSCr	�t0 �

�F�x0, y0, z0� � 0
PP�x0, y0, z0�F�x, y, z� � k

�F�x0, y0, z0�

Fx�x0, y0, z0 ��x � x0 � � Fy�x0, y0, z0 ��y � y0 � � Fz�x0, y0, z0 ��z � z0 � � 019

0 

S C 

±F (x ̧ , y ̧,  z¸) 

tangent plane 

P r ª(t¸ ) 

FIGURE 9
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 965

The normal line to at is the line passing through and perpendicular to the tan-
gent plane. The direction of the normal line is therefore given by the gradient vector

and so, by Equation 12.5.3, its symmetric equations are

In the special case in which the equation of a surface is of the form (that is,
is the graph of a function of two variables), we can rewrite the equation as

and regard as a level surface (with ) of . Then

so Equation 19 becomes

which is equivalent to Equation 14.4.2. Thus our new, more general, definition of a tangent
plane is consistent with the definition that was given for the special case of Section 14.4.

Find the equations of the tangent plane and normal line at the point
to the ellipsoid

SOLUTION The ellipsoid is the level surface (with ) of the function

Therefore we have

Then Equation 19 gives the equation of the tangent plane at as

which simplifies to .
By Equation 20, symmetric equations of the normal line are

PPS

�F�x0, y0, z0�

x � x0

Fx�x0, y0, z0 �
�

y � y0

Fy�x0, y0, z0 �
�

z � z0

Fz�x0, y0, z0 �
20

S
z � f �x, y�S

f

F�x, y, z� � f �x, y� � z � 0

Fk � 0S

Fx�x0, y0, z0 � � fx�x0, y0 �

Fy�x0, y0, z0 � � fy�x0, y0 �

Fz�x0, y0, z0 � � �1 

fx�x0, y0 ��x � x0 � � fy�x0, y0 ��y � y0 � � �z � z0� � 0

EXAMPLE 8v
��2, 1, �3�

x 2

4
� y 2 �

z2

9
� 3

k � 3

F�x, y, z� �
x 2

4
� y 2 �

z2

9

Fz�x, y, z� �
2z

9
Fy�x, y, z� � 2yFx�x, y, z� �

x

2

Fz��2, 1, �3� � �
2
3Fy��2, 1, �3� � 2Fx��2, 1, �3� � �1

��2, 1, �3�

�1�x � 2� � 2�y � 1� �
2
3 �z � 3� � 0

3x � 6y � 2z � 18 � 0
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�1
�
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2
�
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Figure 10 shows the ellipsoid, tangent plane, 
and normal line in Example 8.
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966 CHAPTER 14 PARTIAL DERIVATIVES

Significance of the Gradient Vector
We now summarize the ways in which the gradient vector is significant. We first consider
a function of three variables and a point in its domain. On the one hand, we
know from Theorem 15 that the gradient vector gives the direction of fastest
increase of . On the other hand, we know that is orthogonal to the level sur-
face of through . (Refer to Figure 9.) These two properties are quite compatible intu-
itively because as we move away from on the level surface , the value of does not
change at all. So it seems reasonable that if we move in the perpendicular direction, we get
the maximum increase.

In like manner we consider a function of two variables and a point in its
domain. Again the gradient vector gives the direction of fastest increase of .
Also, by considerations similar to our discussion of tangent planes, it can be shown that

is perpendicular to the level curve that passes through . Again this
is intuitively plausible because the values of remain constant as we move along the curve.
(See Figure 11.)

If we consider a topographical map of a hill and let represent the height above sea
level at a point with coordinates , then a curve of steepest ascent can be drawn as in
Figure 12 by making it perpendicular to all of the contour lines. This phenomenon can also
be noticed in Figure 12 in Section 14.1, where Lonesome Creek follows a curve of steep-
est descent.

Computer algebra systems have commands that plot sample gradient vectors. Each gra-
dient vector is plotted starting at the point . Figure 13 shows such a plot
(called a gradient vector field ) for the function superimposed on a con-
tour map of f. As expected, the gradient vectors point “uphill” and are perpendicular to the
level curves.

f P�x0, y0, z0�
� f �x0, y0, z0�

f � f �x0, y0, z0�
S f P

P S f

f P�x0, y0 �
� f �x0, y0 � f

� f �x0, y0 � f �x, y� � k P
f

y

0 x

P(x¸, y¸)

level curve
f(x, y)=k

±f(x¸, y¸)

300
200

100

curve of
steepest
ascent

FIGURE 11 FIGURE 12

f �x, y�
�x, y�

� f �a, b� �a, b�
f �x, y� � x 2 � y 2

x

y

0 3 6 9

_3
_6

_9

FIGURE 13
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 967

1. Level curves for barometric pressure (in millibars) are shown
for 6:00 AM on November 10, 1998. A deep low with pressure
972 mb is moving over northeast Iowa. The distance along the
red line from K (Kearney, Nebraska) to S (Sioux City, Iowa) is
300 km. Estimate the value of the directional derivative of the
pressure function at Kearney in the direction of Sioux City.
What are the units of the directional derivative?

2. The contour map shows the average maximum temperature for
November 2004 (in ). Estimate the value of the directional
derivative of this temperature function at Dubbo, New South
Wales, in the direction of Sydney. What are the units?

3. A table of values for the wind-chill index is given
in Exercise 3 on page 935. Use the table to estimate the value
of , where .

4–6 Find the directional derivative of at the given point in the
direction indicated by the angle .

4. ,  ,  

5. ,  ,  

6. ,  ,  
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984

1016
1020

1024

972

K

S

�C

Sydney

Dubbo

30

27 24

24

21
18

0 100 200 300
(Distance in kilometers)

Re
pr

in
te

d 
by

 p
er

m
is

si
on

 o
f t

he
 C

om
m

on
w

ea
lth

 o
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.

W � f �T, v�

Du f ��20, 30� u � �i � j�
s2

f
�

f �x, y� � x 3y 4 � x 4y 3 �1, 1� � � �
6

f �x, y� � ye�x �0, 4� � � 2�
3

f �x, y� � e x cos y �0, 0� � � �
4

7–10
(a) Find the gradient of .
(b) Evaluate the gradient at the point .
(c) Find the rate of change of at in the direction of the 

vector .

7. ,  ,  

8. ,  ,  

9. ,  ,  

10. ,  ,  

11–17 Find the directional derivative of the function at the given
point in the direction of the vector .

11. ,  ,  

12. ,  ,  

13. ,  ,  

14. ,  ,  

15. ,  ,  

16. ,  ,  

17. ,  ,  

18. Use the figure to estimate .

19. Find the directional derivative of at in
the direction of .

20. Find the directional derivative of at
in the direction of .

21–26 Find the maximum rate of change of at the given point and
the direction in which it occurs.

21. ,  

22. ,  

23. ,  

24. ,  

25. ,  

26. ,  

f
P

f P
u

f �x, y� � sin�2x � 3y� P��6, 4� u � 1
2 (s3 i � j)

f �x, y� � y 2
x P�1, 2� u � 1
3 (2 i � s5 j)

f �x, y, z� � x 2yz � xyz 3 P�2, �1, 1� u � �0, 4
5 , �3

5 �
f �x, y, z� � y 2e xyz P�0, 1, �1� u � � 3

13 , 4
13 , 12

13 �

v

f �x, y� � e x sin y �0, �
3� v � ��6, 8 �

f �x, y� �
x

x 2 � y 2 �1, 2� v � �3, 5 �

t�p, q� � p4 � p2q3 �2, 1� v � i � 3 j

t�r, s� � tan�1�rs� �1, 2� v � 5 i � 10 j

f �x, y, z� � xe y � ye z � ze x �0, 0, 0� v � �5, 1, �2 �

f �x, y, z� � sxyz �3, 2, 6� v � ��1, �2, 2 �

h�r, s, t� � ln�3r � 6s � 9t� �1, 1, 1� v � 4 i � 12 j � 6k

Du f �2, 2�
y

x0

(2, 2)

±f(2, 2)

u

f �x, y� � sxy P�2, 8�
Q�5, 4�

f �x, y, z� � xy � yz � zx
P�1, �1, 3� Q�2, 4, 5�

f

f �x, y� � 4ysx �4, 1�

f �s, t� � te st �0, 2�

f �x, y� � sin�xy� �1, 0�

f �x, y, z� � �x � y�
z �1, 1, �1�

f �x, y, z� � sx 2 � y 2 � z 2 �3, 6, �2�

f �p, q, r� � arctan�pqr� �1, 2, 1�

14.6 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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968 CHAPTER 14 PARTIAL DERIVATIVES

27. (a) Show that a differentiable function decreases most
rapidly at in the direction opposite to the gradient vector,
that is, in the direction of .

(b) Use the result of part (a) to find the direction in which the
function decreases fastest at the 
point .

28. Find the directions in which the directional derivative of
at the point has the value 1.

29. Find all points at which the direction of fastest change of the
function is .

30. Near a buoy, the depth of a lake at the point with coordi nates
is , where , , and are

measured in meters. A fisherman in a small boat starts at the
point and moves toward the buoy, which is located at

. Is the water under the boat getting deeper or shallower
when he departs? Explain.

31. The temperature in a metal ball is inversely proportional to
the distance from the center of the ball, which we take to be the
origin. The temperature at the point is .
(a) Find the rate of change of at in the direction

toward the point .
(b) Show that at any point in the ball the direction of greatest

increase in temperature is given by a vector that points
toward the origin.

32. The temperature at a point is given by 

where is measured in and , , in meters.
(a) Find the rate of change of temperature at the point

in the direction toward the point .
(b) In which direction does the temperature increase fastest 

at ?
(c) Find the maximum rate of increase at .

33. Suppose that over a certain region of space the electrical poten-
tial is given by .
(a) Find the rate of change of the potential at in the

direction of the vector .
(b) In which direction does change most rapidly at ?
(c) What is the maximum rate of change at ?

34. Suppose you are climbing a hill whose shape is given by the
equation , where , , and are
measured in meters, and you are standing at a point with coor-
dinates . The positive -axis points east and the
positive -axis points north.
(a) If you walk due south, will you start to ascend or descend?

At what rate?
(b) If you walk northwest, will you start to ascend or descend?

At what rate?
(c) In which direction is the slope largest? What is the rate of

ascent in that direction? At what angle above the horizontal
does the path in that direction begin?

f
x

�� f �x�

f �x, y� � x 4y � x 2 y 3

�2, �3�

f �x, y� � ye�xy �0, 2�

f �x, y� � x 2 � y 2 � 2x � 4y i � j

�x, y� z � 200 � 0.02x 2 � 0.001y 3 x y z

�80, 60�
�0, 0�

T

�1, 2, 2� 120�
T �1, 2, 2�

�2, 1, 3�

�x, y, z�

T�x, y, z� � 200e�x 2�3y 2�9z 2

T �C x y z

P�2, �1, 2� �3, �3, 3�

P
P

V V�x, y, z� � 5x 2 � 3xy � xyz
P�3, 4, 5�

v � i � j � k
V P

P

z � 1000 � 0.005x 2 � 0.01y 2 x y z

�60, 40, 966� x
y

35. Let be a function of two variables that has continuous 
partial derivatives and consider the points , ,

, and . The directional derivative of at in
the direction of the vector is 3 and the directional deriva-
tive at in the direction of is 26. Find the directional
derivative of at in the direction of the vector .

36. Shown is a topographic map of Blue River Pine Provincial
Park in British Columbia. Draw curves of steepest descent
from point (descending to Mud Lake) and from point .

37. Show that the operation of taking the gradient of a function has
the given property. Assume that and are differen tiable func-
tions of and and that , are constants.

(a) (b) 

(c) (d) 

38. Sketch the gradient vector for the function whose
level curves are shown. Explain how you chose the direction
and length of this vector.

39. The second directional derivative of is

If and , calculate
.

f
A�1, 3� B�3, 3�

C�1, 7� D�6, 15� f A
AB
l

A AC
l

f A AD
l

A B

2000 m
2200 m

2200 m

2200 m

Blue RiverBlue River

Smoke CreekSmoke Creek

North Thompson RiverNorth Thompson River

Mud LakeMud Lake

Mud CreekMud Creek

Blue River

Blue River Pine Provincial Park

A

B
1000 m

Reproduced with the permission of Natural Resources Canada 2009,  
courtesy of the Centre of Topographic Information.

u v
x y a b

��au � bv� � a �u � b �v ��uv� � u �v � v �u

�� u

v� �
v �u � u �v

v 2 �un � nu n�1 �u

� f �4, 6� f

20

2

4

6

4 6 x

y

_1

0
1 3 5

_3

_5

(4, 6)

f �x, y�

Du
2 f �x, y� � Du�Du f �x, y�

u � � 3
5 , 45 �f �x, y� � x 3 � 5x 2y � y 3

Du
2 f �2, 1�
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 969

40. (a) If is a unit vector and has continuous
second partial derivatives, show that

(b) Find the second directional derivative of in
the direction of .

41–46 Find equations of (a) the tangent plane and (b) the normal
line to the given surface at the specified point.

41. ,  

42. ,  

43. ,  

44. ,  

45. ,  

46.  ,  

; 47–48 Use a computer to graph the surface, the tangent plane, and
the normal line on the same screen. Choose the domain carefully
so that you avoid extraneous vertical planes. Choose the
viewpoint so that you get a good view of all three objects.

47. ,  48. ,  

49. If , find the gradient vector and use it 
to find the tangent line to the level curve at the
point . Sketch the level curve, the tangent line, and the
gradient vector.

50. If , find the gradient vector
and use it to find the tangent line to the level curve

at the point . Sketch the level curve, the tan-
gent line, and the gradient vector.

51. Show that the equation of the tangent plane to the ellipsoid
at the point can be 

written as

52. Find the equation of the tangent plane to the hyperboloid
at and express it in a

form similar to the one in Exercise 51.

53. Show that the equation of the tangent plane to the elliptic
paraboloid at the point can
be written as

54. At what point on the paraboloid is the tangent
plane parallel to the plane ?

55. Are there any points on the hyperboloid
where the tangent plane is parallel to the plane ?

fu � �a, b �

Du
2 f � fxx a 2 � 2 fxy ab � fyy b2

f �x, y� � xe 2y

v � �4, 6 �

�3, 3, 5�2�x � 2�2 � �y � 1�2 � �z � 3�2 � 10

�4, 7, 3�y � x 2 � z 2

�3, 2, 1�xyz 2 � 6

�1, 2, 1�xy � yz � zx � 5

�0, 0, 1�x � y � z � e xyz

�1, 1, 1�x 4 � y 4 � z 4 � 3x 2y 2z 2

�1, 2, 3�xyz � 6�1, 1, 1�xy � yz � zx � 3

� f �3, 2�f �x, y� � xy
f �x, y� � 6

�3, 2�

�t�1, 2�t�x, y� � x 2 � y 2 � 4x

�1, 2�t�x, y� � 1

�x0, y0, z0 �x 2
a 2 � y 2
b 2 � z2
c 2 � 1

xx0

a 2 �
yy0

b 2 �
zz0

c 2 � 1

�x0, y0, z0 �x 2
a 2 � y 2
b 2 � z2
c 2 � 1

�x0, y0, z0 �z
c � x 2
a 2 � y 2
b 2

2xx0

a 2 �
2yy0

b 2 �
z � z0

c

y � x 2 � z2

x � 2y � 3z � 1

x 2 � y 2 � z2 � 1
z � x � y

56. Show that the ellipsoid and the sphere
are tangent to each

other at the point . (This means that they have a com-
mon tangent plane at the point.)

57. Show that every plane that is tangent to the cone
passes through the origin.

58. Show that every normal line to the sphere
passes through the center of the sphere.

59. Where does the normal line to the paraboloid at
the point intersect the paraboloid a second time?

60. At what points does the normal line through the point
on the ellipsoid intersect the

sphere ?

61. Show that the sum of the -, -, and -intercepts of any 
tangent plane to the surface is a 
constant.

62. Show that the pyramids cut off from the first octant by any
tangent planes to the surface at points in the first
octant must all have the same volume.

63. Find parametric equations for the tangent line to the curve of
intersection of the paraboloid and the ellipsoid

at the point .

64. (a) The plane intersects the cylinder 
in an ellipse. Find parametric equations for the tangent
line to this ellipse at the point .

; (b) Graph the cylinder, the plane, and the tangent line on the
same screen.

65. (a) Two surfaces are called orthogonal at a point of inter-
section if their normal lines are perpendicular at that
point. Show that surfaces with equations 
and are orthogonal at a point where

and if and only if

at 

(b) Use part (a) to show that the surfaces and
are orthogonal at every point of 

intersection. Can you see why this is true without using 
calculus?

66. (a) Show that the function is continuous and
the partial derivatives and exist at the origin but the
directional derivatives in all other directions do not exist.

; (b) Graph near the origin and comment on how the graph
confirms part (a).

67. Suppose that the directional derivatives of are known 
at a given point in two nonparallel directions given by unit 
vectors and . Is it possible to find at this point? If so,
how would you do it?

68. Show that if is differentiable at then

[Hint: Use Definition 14.4.7 directly.]

x 2 � y 2 � z2 � 8x � 6y � 8z � 24 � 0
�1, 1, 2�

x 2 � y 2 � z2

x 2 � y 2 � z2 � r 2

z � x 2 � y 2

�1, 1, 2�

�1, 2, 1� 4x 2 � y 2 � 4z 2 � 12
x 2 � y 2 � z 2 � 102

x y z
sx � sy � sz � sc

xyz � 1

z � x 2 � y 2

4x 2 � y 2 � z2 � 9 ��1, 1, 2�

y � z � 3 x 2 � y 2 � 5

�1, 2, 1�

F�x, y, z� � 0
G�x, y, z� � 0 P

�F � 0 �G � 0

Fx Gx � FyGy � FzGz � 0 P

z2 � x 2 � y 2

x 2 � y 2 � z2 � r 2

f �x, y� � s
3 xy

fx fy

f

f �x, y�

u v � f

z � f �x, y� x0 � �x0, y0 �,

lim
x l x 0

f �x� � f �x0 � � � f �x0 � � �x � x0 �

� x � x0 � � 0

3x 2 � 2y 2 � z2 � 9
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970 CHAPTER 14 PARTIAL DERIVATIVES

As we saw in Chapter 3, one of the main uses of ordinary derivatives is in finding maxi-
mum and minimum values (extreme values). In this section we see how to use partial 
derivatives to locate maxima and minima of functions of two variables. In particular, in
Example 6 we will see how to maximize the volume of a box without a lid if we have a fixed
amount of cardboard to work with.

Look at the hills and valleys in the graph of shown in Figure 1. There are two points
where has a local maximum, that is, where is larger than nearby values of
. The larger of these two values is the absolute maximum. Likewise, has two local

minima, where is smaller than nearby values. The smaller of these two values is the
absolute minimum.

Definition A function of two variables has a local maximum at if
when is near . [This means that for

all points in some disk with center .] The number is called a
local maximum value. If when is near , then has a
local minimum at and is a local minimum value.

If the inequalities in Definition 1 hold for all points in the domain of , then has
an absolute maximum (or absolute minimum) at .

Theorem If has a local maximum or minimum at and the first-order
partial derivatives of exist there, then and .

PROOF Let . If has a local maximum (or minimum) at , then has a
local maximum (or minimum) at , so by Fermat’s Theorem (see Theorem 3.1.4).
But (see Equation 14.3.1) and so . Similarly, by applying Fer-
mat’s Theorem to the function , we obtain .

If we put and in the equation of a tangent plane (Equation
14.4.2), we get . Thus the geometric interpretation of Theorem 2 is that if the graph
of has a tangent plane at a local maximum or minimum, then the tangent plane must be
horizontal.

A point is called a critical point (or stationary point) of if and
, or if one of these partial derivatives does not exist. Theorem 2 says that if

has a local maximum or minimum at , then is a critical point of . However, as
in single-variable calculus, not all critical points give rise to maxima or minima. At a criti-
cal point, a function could have a local maximum or a local minimum or neither.

Let . Then

These partial derivatives are equal to 0 when and , so the only critical point
is . By completing the square, we find that

Since and , we have for all values of and .
Therefore is a local minimum, and in fact it is the absolute minimum of . 

f
�a, b� f f �a, b�
f �x, y� f

f �a, b�

1 �a, b�
f �x, y� � f �a, b� �x, y� �a, b� f �x, y� � f �a, b�

�x, y� �a, b� f �a, b�
f �x, y� � f �a, b� �x, y� �a, b� f

�a, b� f �a, b�

�x, y� f f
�a, b�

2 f �a, b�
f fx�a, b� � 0 fy�a, b� � 0

t�x� � f �x, b� f �a, b� t

a t��a� � 0
t��a� � fx�a, b� fx�a, b� � 0

G�y� � f �a, y� fy�a, b� � 0

fx�a, b� � 0 fy�a, b� � 0
z � z0

f

�a, b� f fx�a, b� � 0
fy�a, b� � 0 f

�a, b� �a, b� f

f �x, y� � x 2 � y 2 � 2x � 6y � 14

fx�x, y� � 2x � 2 fy�x, y� � 2y � 6

x � 1 y � 3
�1, 3�

f �x, y� � 4 � �x � 1�2 � �y � 3�2

EXAMPLE 1

yxf �x, y� � 4�y � 3�2 � 0�x � 1�2 � 0
ff �1, 3� � 4

14.7 Maximum and Minimum Values

FIGURE 1
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z

y
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maximum

absolute
minimum
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minimum
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Notice that the conclusion of Theorem 2 can 
be stated in the notation of gradient vectors 
as .�f �a, b� � 0

y 
x 

z 

0 

(1, 3, 4) 

FIGURE 2
z=≈+¥-2x-6y+14 
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES 971

This can be confirmed geometrically from the graph of which is the elliptic paraboloid
with vertex shown in Figure 2.

Find the extreme values of .

SOLUTION Since and , the only critical point is . Notice that 
for points on the -axis we have , so (if ). However, for
points on the -axis we have , so (if ). Thus every disk 
with center contains points where takes positive values as well as points where 

takes negative values. Therefore can’t be an extreme value for , so has
no extreme value.

Example 2 illustrates the fact that a function need not have a maximum or minimum
value at a critical point. Figure 3 shows how this is possible. The graph of is the hyper-
bolic paraboloid , which has a horizontal tangent plane ( ) at the origin.
You can see that is a maximum in the direction of the -axis but a minimum in
the direction of the -axis. Near the origin the graph has the shape of a saddle and so
is called a saddle point of .

A mountain pass also has the shape of a saddle. As the photograph of the geological for-
mation illustrates, for people hiking in one direction the saddle point is the lowest point on
their route, while for those traveling in a different direction the saddle point is the highest
point.

We need to be able to determine whether or not a function has an extreme value at a crit-
ical point. The following test, which is proved at the end of this section, is analogous to the
Second Derivative Test for functions of one variable.

Second Derivatives Test Suppose the second partial derivatives of are con tin -
uous on a disk with center , and suppose that and
[that is, is a critical point of ]. Let

(a) If and , then is a local minimum.

(b) If and , then is a local maximum.

(c) If , then is not a local maximum or minimum.

NOTE 1 In case (c) the point is called a saddle point of and the graph of 
crosses its tangent plane at .

NOTE 2 If , the test gives no information: could have a local maximum or local
minimum at , or could be a saddle point of .

NOTE 3 To remember the formula for , it’s helpful to write it as a determinant:

Find the local maximum and minimum values and saddle points of
.

SOLUTION We first locate the critical points:

Setting these partial derivatives equal to 0, we obtain the equations

f,
�1, 3, 4�

f �x, y� � y 2 � x 2EXAMPLE 2

�0, 0�fy � 2yfx � �2x
x � 0f �x, y� � �x 2 � 0y � 0x

y � 0f �x, y� � y 2 	 0x � 0y
f�0, 0�

fff �0, 0� � 0f

f
z � 0z � y 2 � x 2

xf �0, 0� � 0
�0, 0�y

f

f3
fy�a, b� � 0fx�a, b� � 0�a, b�

f�a, b�

D � D�a, b� � fxx�a, b� fyy �a, b� � � fx y�a, b��2

f �a, b�fxx�a, b� 	 0D 	 0

f �a, b�fxx�a, b� � 0D 	 0

f �a, b�D � 0

ff�a, b�
�a, b�

fD � 0
f�a, b��a, b�

D

D � � fxx

fyx

fx y

fyy
� � fxx fyy � � fx y�2

EXAMPLE 3v
f �x, y� � x 4 � y 4 � 4xy � 1

fy � 4y 3 � 4xfx � 4x 3 � 4y

y 3 � x � 0andx 3 � y � 0

FIGURE 3
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972 CHAPTER 14 PARTIAL DERIVATIVES

To solve these equations we substitute from the first equation into the second
one. This gives

so there are three real roots: , , . The three critical points are , , 
and .

Next we calculate the second partial derivatives and :

Since , it follows from case (c) of the Second Derivatives Test that
the origin is a saddle point; that is, has no local maximum or minimum at . 
Since and , we see from case (a) of the test that

is a local minimum. Similarly, we have and
, so is also a local minimum.

The graph of is shown in Figure 4.

Find and classify the critical points of the function

Also find the highest point on the graph of .

SOLUTION The first-order partial derivatives are

So to find the critical points we need to solve the equations

From Equation 4 we see that either

y � x 3

0 � x 9 � x � x�x 8 � 1� � x�x 4 � 1��x 4 � 1� � x�x 2 � 1��x 2 � 1��x 4 � 1�

�1, 1��0, 0��11x � 0
��1, �1�

D�x, y�

fyy � 12y 2fx y � �4fxx � 12x 2

D�x, y� � fxx fyy � � fx y�2 � 144x 2 y 2 � 16

D�0, 0� � �16 � 0
�0, 0�f

fxx�1, 1� � 12 	 0D�1, 1� � 128 	 0
D��1, �1� � 128 	 0f �1, 1� � �1

f ��1, �1� � �1fxx��1, �1� � 12 	 0
f

FIGURE 5

y

x
1
0.9

0.5
0
_0.5

1.1
1.5

2
3

EXAMPLE 4

f �x, y� � 10x 2y � 5x 2 � 4y 2 � x 4 � 2y 4

f

fy � 10x 2 � 8y � 8y 3fx � 20xy � 10x � 4x 3

2x�10y � 5 � 2x 2 � � 04

5x 2 � 4y � 4y 3 � 05

10y � 5 � 2x 2 � 0orx � 0

x
y

z

FIGURE 4
z=x$+y$-4xy+1

A contour map of the function in Example 3 is
shown in Figure 5. The level curves near 
and are oval in shape and indicate
that as we move away from or 
in any direction the values of are increasing.
The level curves near , on the other hand,
resemble hyper bolas. They reveal that as we
move away from the origin (where the value of 
is ), the values of decrease in some directions
but increase in other directions. Thus the contour
map suggests the presence of the minima and
saddle point that we found in Example 3.

f1
f

�0, 0�
f

��1, �1��1, 1�
��1, �1�

�1, 1�
f

In Module 14.7 you can use contour maps
to estimate the locations of critical points.
TEC
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES 973

In the first case ( ), Equation 5 becomes , so and we
have the critical point .

In the second case , we get

and, putting this in Equation 5, we have . So we have to
solve the cubic equation

Using a graphing calculator or computer to graph the function

as in Figure 6, we see that Equation 7 has three real roots. By zooming in, we can find
the roots to four decimal places:

(Alternatively, we could have used Newton’s method or a rootfinder to locate these
roots.) From Equation 6, the corresponding -values are given by

If , then x has no corresponding real values. If , then
. If , then . So we have a total of five critical

points, which are analyzed in the following chart. All quantities are rounded to two 
decimal places.

Figures 7 and 8 give two views of the graph of and we see that the surface opens
downward. [This can also be seen from the expression for : The dominant terms
are when and are large.] Comparing the values of at its local maxi-
mum points, we see that the absolute maximum value of is . In
other words, the highest points on the graph of are .

y � 0�4y�1 � y 2 � � 0x � 0
�0, 0�
�10y � 5 � 2x 2 � 0�

x 2 � 5y � 2.56

25y � 12.5 � 4y � 4y 3 � 0

4y 3 � 21y � 12.5 � 07

t�y� � 4y 3 � 21y � 12.5

y � 1.8984y � 0.6468y � �2.5452

x

x � 
s5y � 2.5

y � 0.6468y � �2.5452
x � 
2.6442y � 1.8984x � 
0.8567

f
f �x, y�

f� y �� x ��x 4 � 2y 4

f �
2.64, 1.90� � 8.50f
�
2.64, 1.90, 8.50�f

FIGURE 7 FIGURE 8

y
x

z

y

z

x

FIGURE 6

_3 2.7

Critical point Value of D Conclusion

0.00 �10.00 80.00 local maximum

8.50 �55.93 2488.72 local maximum

�1.48 �5.87 �187.64 saddle point

f

�
0.86, 0.65�

�
2.64, 1.90�

�0, 0�

fxx

Visual 14.7 shows several families 
of surfaces. The surface in Figures 7 and 8 
is a member of one of these families.

TEC

97817_14_ch14_p970-979.qk_97817_14_ch14_p970-979  11/8/10  1:32 PM  Page 973

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



974 CHAPTER 14 PARTIAL DERIVATIVES

Find the shortest distance from the point to the plane
.

SOLUTION The distance from any point to the point is

but if lies on the plane , then and so we have
. We can minimize by minimizing the simpler

expression

By solving the equations

we find that the only critical point is . Since , , and , we
have and , so by the Second Derivatives Test

has a local minimum at . Intuitively, we can see that this local minimum is actu-
ally an absolute minimum because there must be a point on the given plane that is clos-
est to . If and , then

The shortest distance from to the plane is .

A rectangular box without a lid is to be made from 12 m of cardboard.
Find the maximum volume of such a box.

SOLUTION Let the length, width, and height of the box (in meters) be , , and , as shown
in Figure 10. Then the volume of the box is

We can express as a function of just two variables and by using the fact that the
area of the four sides and the bottom of the box is

�1, 0, �2�
x � 2y � z � 4

�x, y, z� �1, 0, �2�

d � s�x � 1�2 � y 2 � �z � 2�2 

�x, y, z� x � 2y � z � 4 z � 4 � x � 2y
d � s�x � 1�2 � y 2 � �6 � x � 2y�2 d

d 2 � f �x, y� � �x � 1�2 � y 2 � �6 � x � 2y�2

fx � 2�x � 1� � 2�6 � x � 2y� � 4x � 4y � 14 � 0

fy � 2y � 4�6 � x � 2y� � 4x � 10y � 24 � 0

( 11
6 , 53 ) fxx � 4 fx y � 4 fyy � 10

D�x, y� � fxx fy y � � fx y�2 � 24 	 0 fxx 	 0
f ( 11

6 , 53 )

�1, 0, �2� x � 11
6 y � 5

3

d � s�x � 1�2 � y 2 � �6 � x � 2y�2 � s(5
6)2 � (5

3)2 � (5
6)2 � 5

6 s6

�1, 0, �2� x � 2y � z � 4 5
6 s6

2

x y z

V � xyz

V x y

2xz � 2yz � xy � 12

FIGURE 9

3 x

1

_1

2

y

_3

_10 _20_30

3
7

_1.48
_0.8

_3

v EXAMPLE 5

v EXAMPLE 6

The five critical points of the function in 
Example 4 are shown in red in the contour 
map of in Figure 9.f

f

Example 5 could also be solved using 
vectors. Compare with the methods of 
Section 12.5.

FIGURE 10

y
x

z
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES 975

Solving this equation for , we get , so the expression for
becomes

We compute the partial derivatives:

If is a maximum, then , but or gives , so we
must solve the equations

These imply that and so . (Note that and must both be positive in this
problem.) If we put in either equation we get , which gives ,

, and .
We could use the Second Derivatives Test to show that this gives a local maximum 

of , or we could simply argue from the physical nature of this problem that there must
be an absolute maximum volume, which has to occur at a critical point of , so it must
occur when , , . Then , so the maximum volume of
the box is 4 m .

Absolute Maximum and Minimum Values
For a function of one variable, the Extreme Value Theorem says that if is continuous on
a closed interval , then has an absolute minimum value and an absolute maximum
value. According to the Closed Interval Method in Section 3.1, we found these by evalu-
ating not only at the critical numbers but also at the endpoints and .

There is a similar situation for functions of two variables. Just as a closed interval con-
tains its endpoints, a closed set in is one that contains all its boundary points. [A bound-
ary point of D is a point such that every disk with center contains points in D
and also points not in D.] For instance, the disk

which consists of all points on and inside the circle , is a closed set because it
contains all of its boundary points (which are the points on the circle ). But if
even one point on the boundary curve were omitted, the set would not be closed. (See 
Figure 11.)

A bounded set in is one that is contained within some disk. In other words, it is finite
in extent. Then, in terms of closed and bounded sets, we can state the following counterpart
of the Extreme Value Theorem in two dimensions.

Extreme Value Theorem for Functions of Two Variables If is continuous on a 
closed, bounded set in , then attains an absolute maximum value
and an absolute minimum value at some points and in .

z z � �12 � xy�	�2�x � y�� V

V � xy
12 � xy

2�x � y�
�

12xy � x 2y 2

2�x � y�

�V

�x
�

y 2�12 � 2xy � x 2�
2�x � y�2

�V

�y
�

x 2�12 � 2xy � y 2 �
2�x � y�2

V �V	�x � �V	�y � 0 x � 0 y � 0 V � 0

12 � 2xy � x 2 � 0 12 � 2xy � y 2 � 0

x 2 � y 2 x � y x y
x � y 12 � 3x 2 � 0 x � 2

y � 2 z � �12 � 2 � 2�	�2�2 � 2�� � 1

V
V

x � 2 y � 2 z � 1 V � 2 � 2 � 1 � 4
3

f f
�a, b� f

f a b

� 2

�a, b� �a, b�

D � 
�x, y� � x 2 � y 2 � 1�

x 2 � y 2 � 1
x 2 � y 2 � 1

� 2

8 f
D � 2 f f �x1, y1�

f �x2, y2� �x1, y1� �x2, y2� D

(a) Closed sets

(b) Sets that are not closed

FIGURE 11
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976 CHAPTER 14 PARTIAL DERIVATIVES

To find the extreme values guaranteed by Theorem 8, we note that, by Theorem 2, if
has an extreme value at , then is either a critical point of or a boundary
point of . Thus we have the following extension of the Closed Interval Method.

To find the absolute maximum and minimum values of a continuous function 
on a closed, bounded set :

1. Find the values of at the critical points of in .

2. Find the extreme values of on the boundary of .

3. The largest of the values from steps 1 and 2 is the absolute maximum value; 
the smallest of these values is the absolute minimum value.

Find the absolute maximum and minimum values of the function
on the rectangle .

SOLUTION Since is a polynomial, it is continuous on the closed, bounded rectangle , 
so Theorem 8 tells us there is both an absolute maximum and an absolute minimum.
According to step 1 in , we first find the critical points. These occur when

so the only critical point is , and the value of there is .
In step 2 we look at the values of on the boundary of , which consists of the four

line segments , , , shown in Figure 12. On we have and

This is an increasing function of , so its minimum value is and its maxi-
mum value is . On we have and

This is a decreasing function of , so its maximum value is and its minimum
value is . On we have and

By the methods of Chapter 3, or simply by observing that , we see
that the minimum value of this function is and the maximum value is

. Finally, on we have and

with maximum value and minimum value . Thus, on the bound-
ary, the minimum value of is 0 and the maximum is 9.

In step 3 we compare these values with the value at the critical point and
conclude that the absolute maximum value of on is and the absolute
minimum value is . Figure 13 shows the graph of .

f
�x1, y1� �x1, y1� f

D

9
f D

f f D

f D

f �x, y� � x 2 � 2xy � 2y D � 
�x, y� � 0 � x � 3, 0 � y � 2�

f D

fx � 2x � 2y � 0 fy � �2x � 2 � 0

�1, 1� f f �1, 1� � 1
f D

L1 L 2 L3 L 4 L1 y � 0

f �x, 0� � x 2 0 � x � 3

x f �0, 0� � 0
f �3, 0� � 9 L 2 x � 3

f �3, y� � 9 � 4y 0 � y � 2

y f �3, 0� � 9
f �3, 2� � 1 L3 y � 2

f �x, 2� � x 2 � 4x � 4 0 � x � 3

f �x, 2� � �x � 2�2

f �2, 2� � 0
f �0, 2� � 4 L4 x � 0

f �0, y� � 2y 0 � y � 2

f �0, 2� � 4 f �0, 0� � 0
f

f �1, 1� � 1
f D f �3, 0� � 9

f �0, 0� � f �2, 2� � 0 f

EXAMPLE 7

9

y

x(0, 0)

(0, 2)
(2, 2)

(3, 2)

(3, 0)L¡

L¢ L™
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FIGURE 12

9

0

0
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3
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FIGURE 13
f(x, y)=≈-2xy+2y
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES 977

We close this section by giving a proof of the first part of the Second Derivatives Test.
Part (b) has a similar proof.

PROOF OF THEOREM 3, PART (a) We compute the second-order directional derivative of
in the direction of . The first-order derivative is given by Theorem 14.6.3:

Applying this theorem a second time, we have

(by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

We are given that and . But and are con-
tinuous functions, so there is a disk with center and radius such that

and whenever is in . Therefore, by looking at Equation
10, we see that whenever is in . This means that if is the curve
obtained by intersecting the graph of with the vertical plane through in
the direction of , then is concave upward on an interval of length . This is true in
the direction of every vector , so if we restrict to lie in , the graph of lies above
its horizontal tangent plane at . Thus whenever is in . This
shows that is a local minimum.

u � �h, k 

Du f � fxh � fyk

D 2
u f � Du�Du f � �

�

�x
�Du f �h �

�

�y
�Du f �k

� � fxx h � fyxk�h � � fxy h � fyy k�k

� fxx h2 � 2 fxyhk � fyyk 2

D 2
u f � fxx�h �

fx y

fxx
k�2

�
k 2

fxx
� fxx fyy � f 2

xy �

fxx�a, b� 	 0 D�a, b� 	 0 fxx D � fxx fyy � fx y
2

B �a, b� � 	 0
fxx�x, y� 	 0 D�x, y� 	 0 �x, y� B

Du
2 f �x, y� 	 0 �x, y� B C

f P�a, b, f �a, b��
u C 2�

u �x, y� B f
P f �x, y� � f �a, b� �x, y� B

f �a, b�

f

10

1. Suppose is a critical point of a function with contin-
uous second derivatives. In each case, what can you say 
about ?

(a)

(b)

2. Suppose (0, 2) is a critical point of a function t with contin-
uous second derivatives. In each case, what can you say 
about t?

(a)

(b)

(c)

3–4 Use the level curves in the figure to predict the location of 
the critical points of and whether has a saddle point or a 
local maximum or minimum at each critical point. Explain your 

�1, 1� f

f

fxx�1, 1� � 4, fx y�1, 1� � 1, fyy�1, 1� � 2

fxx�1, 1� � 4, fx y�1, 1� � 3, fyy�1, 1� � 2

txx�0, 2� � �1, tx y�0, 2� � 6, tyy�0, 2� � 1

txx�0, 2� � �1, tx y�0, 2� � 2, tyy�0, 2� � �8

txx�0, 2� � 4, tx y�0, 2� � 6, tyy�0, 2� � 9

f f

reasoning. Then use the Second Derivatives Test to confirm your
predictions.

3. f �x, y� � 4 � x 3 � y 3 � 3xy

x

y

4
4.2

5
6

1

1

3.7

3.7

3.2

3.2
2

1
0

_1

_1

14.7 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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978 CHAPTER 14 PARTIAL DERIVATIVES

4.

5–18 Find the local maximum and minimum values and saddle
point(s) of the function. If you have three-dimensional graphing
software, graph the function with a domain and viewpoint that
reveal all the important aspects of the function.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17. ,  

18. ,  ,  

19. Show that has an infinite
number of critical points and that at each one. Then
show that has a local (and absolute) minimum at each criti-
cal point.

20. Show that has maximum values at
and minimum values at . Show 

also that has infinitely many other critical points and 
at each of them. Which of them give rise to maximum
values? Minimum values? Saddle points?

; 21–24 Use a graph or level curves or both to estimate the local 
maximum and minimum values and saddle point(s) of the func-
tion. Then use calculus to find these values precisely.

21.

f �x, y� � 3x � x 3 � 2y 2 � y 4

y

x

_2.5

_2.9
_2.7

_
1

_
1.

5

1.9
1.7
1.5

1.5

10.
5

0

_2
1

1

_1

_1

f �x, y� � x 2 � xy � y 2 � y

f �x, y� � xy � 2x � 2y � x 2 � y 2

f �x, y� � �x � y��1 � xy�

f �x, y� � xe�2x2�2y2

f �x, y� � y 3 � 3x 2y � 6x 2 � 6y 2 � 2

f �x, y� � xy�1 � x � y�

f �x, y� � x 3 � 12xy � 8y 3

f �x, y� � xy �
1

x
�

1

y

f �x, y� � e x cos y

f �x, y� � y cos x

f �x, y� � �x 2 � y 2�e y2�x2

f �x, y� � e y�y 2 � x 2�

�1 � x � 7f �x, y� � y 2 � 2y cos x

� � y � � � x � f �x, y� � sin x sin y

f �x, y� � x 2 � 4y 2 � 4xy � 2
D � 0

f

f �x, y� � x 2ye�x2�y2

(
1, �1	s2 )(
1, 1	s2 )
D � 0f

f �x, y� � x 2 � y 2 � x�2y�2

22.

23. ,
, 

24. ,
, 

; 25–28 Use a graphing device as in Example 4 (or Newton’s
method or a rootfinder) to find the critical points of correct to
three decimal places. Then classify the critical points and find the
highest or lowest points on the graph, if any.

25.

26.

27.

28. ,  ,  

29–36 Find the absolute maximum and minimum values of on
the set .

29. , is the closed triangular region
with vertices , , and 

30. , is the closed triangular region
with vertices , , and 

31. ,

32. ,

33. ,

34. ,  

35. ,  

36. ,  is the quadrilateral
whose vertices are , , , and .

; 37. For functions of one variable it is impossible for a con tinuous
function to have two local maxima and no local minimum.
But for functions of two variables such functions exist. Show
that the function

has only two critical points, but has local maxima at both of
them. Then use a computer to produce a graph with a care-
fully chosen domain and viewpoint to see how this is
possible.

; 38. If a function of one variable is continuous on an interval and
has only one critical number, then a local maximum has to be 

f �x, y� � xye�x2�y2

f �x, y� � sin x � sin y � sin�x � y�
0 � x � 2 0 � y � 2

f �x, y� � sin x � sin y � cos�x � y�
0 � x � 	4 0 � y � 	4

f

f �x, y� � x 4 � y 4 � 4x 2y � 2y

f �x, y� � y 6 � 2y 4 � x 2 � y 2 � y

f �x, y� � x 4 � y 3 � 3x 2 � y 2 � x � 2y � 1

f �x, y� � 20e�x2�y2

sin 3x cos 3y � x � � 1 � y � � 1

f
D

f �x, y� � x 2 � y 2 � 2x D
�2, 0� �0, 2� �0, �2�

f �x, y� � x � y � xy D
�0, 0� �0, 2� �4, 0�

f �x, y� � x 2 � y 2 � x 2 y � 4
D � 
�x, y� � � x � � 1, � y � � 1�

f �x, y� � 4x � 6y � x 2 � y 2

D � 
�x, y� � 0 � x � 4, 0 � y � 5�

f �x, y� � x 4 � y 4 � 4xy � 2
D � 
�x, y� � 0 � x � 3, 0 � y � 2�

f �x, y� � xy 2 D � 
�x, y� � x � 0, y � 0, x 2 � y 2 � 3�

f �x, y� � 2x 3 � y 4 D � 
�x, y� � x 2 � y 2 � 1�

f �x, y� � x 3 � 3x � y 3 � 12y D
��2, 3� �2, 3� �2, 2� ��2, �2�

f �x, y� � ��x 2 � 1�2 � �x 2 y � x � 1�2
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES 979

an absolute maximum. But this is not true for functions of two
variables. Show that the function

has exactly one critical point, and that has a local maxi mum
there that is not an absolute maximum. Then use a computer to
produce a graph with a carefully chosen domain and viewpoint
to see how this is possible.

39. Find the shortest distance from the point to the plane
.

40. Find the point on the plane that is closest to
the point .

41. Find the points on the cone that are closest to the
point .

42. Find the points on the surface that are closest to
the origin.

43. Find three positive numbers whose sum is 100 and whose 
product is a maximum.

44. Find three positive numbers whose sum is 12 and the sum of
whose squares is as small as possible.

45. Find the maximum volume of a rectangular box that is
inscribed in a sphere of radius .

46. Find the dimensions of the box with volume that has
minimal surface area.

47. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one 
vertex in the plane .

48. Find the dimensions of the rectangular box with largest 
volume if the total surface area is given as 64 cm .

49. Find the dimensions of a rectangular box of maximum volume
such that the sum of the lengths of its 12 edges is a constant .

50. The base of an aquarium with given volume is made of slate
and the sides are made of glass. If slate costs five times as
much (per unit area) as glass, find the dimensions of the aquar-
ium that minimize the cost of the materials.

51. A cardboard box without a lid is to have a volume of
32,000 cm Find the dimensions that minimize the amount 
of cardboard used.

52. A rectangular building is being designed to minimize 
heat loss. The east and west walls lose heat at a rate of

per day, the north and south walls at a rate of
per day, the floor at a rate of per day, and

the roof at a rate of per day. Each wall must be at
least 30 m long, the height must be at least 4 m, and the
volume must be exactly .
(a) Find and sketch the domain of the heat loss as a function of

the lengths of the sides.

f �x, y� � 3xe y � x 3 � e 3y

f

�2, 0, �3�
x � y � z � 1

x � 2y � 3z � 6
�0, 1, 1�

z 2 � x 2 � y 2

�4, 2, 0�

y 2 � 9 � xz

r

1000 cm3

x � 2y � 3z � 6

2

c

V

3.

10 units	m2

1 unit	m28 units	m2

5 units	m2

4000 m3

(b) Find the dimensions that minimize heat loss. (Check both
the critical points and the points on the boundary of the
domain.)

(c) Could you design a building with even less heat loss 
if the restrictions on the lengths of the walls were removed?

53. If the length of the diagonal of a rectangular box must be ,
what is the largest possible volume?

54. Three alleles (alternative versions of a gene) A, B, and O 
determine the four blood types A (AA or AO), B (BB or BO),
O (OO), and AB. The Hardy-Weinberg Law states that the pro-
portion of individuals in a population who carry two different
alleles is

where , , and are the proportions of A, B, and O in the 
population. Use the fact that to show that is
at most .

55. Suppose that a scientist has reason to believe that two quan ti-
ties and are related linearly, that is, , at least
approximately, for some values of and . The scientist
performs an experiment and collects data in the form of points

, , , and then plots these points. The
points don’t lie exactly on a straight line, so the scientist wants
to find constants and so that the line “fits” the
points as well as possible (see the figure).

Let be the vertical deviation of the point
from the line. The method of least squares determines

and so as to minimize , the sum of the squares of
these deviations. Show that, according to this method, the line
of best fit is obtained when

Thus the line is found by solving these two equations in the
two unknowns and . (See Section 1.2 for a further discus-
sion and applications of the method of least squares.)

56. Find an equation of the plane that passes through the point
and cuts off the smallest volume in the first octant.

L

P � 2pq � 2pr � 2rq

p q r
p � q � r � 1 P

2
3

x y y � mx � b
m b

�x1, y1� �x2, y2 � . . . , �xn, yn �

m b y � mx � b

(⁄, ›)

(xi, yi)

mxi+b

di

y

x0

di � yi � �mxi � b�
�xi, yi�
m b �n

i�1 di
2

m �
n

i�1
xi � bn � �

n

i�1
yi

m �
n

i�1
xi

2 � b �
n

i�1
xi � �

n

i�1
xi yi

m b

�1, 2, 3�
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980 CHAPTER 14 PARTIAL DERIVATIVES

A P P L I E D  P R O J E C T DESIGNING A DUMPSTER

For this project we locate a rectangular trash Dumpster in order to study its shape and construc-
tion. We then attempt to determine the dimensions of a container of similar design that minimize 
con struction cost.

1. First locate a trash Dumpster in your area. Carefully study and describe all details of its
construction, and determine its volume. Include a sketch of the container.

2. While maintaining the general shape and method of construction, determine the dimensions
such a container of the same volume should have in order to minimize the cost of construc-
tion. Use the following assumptions in your analysis:

■ The sides, back, and front are to be made from 12-gauge (0.1046 inch thick) steel sheets,
which cost $0.70 per square foot (including any required cuts or bends).

■ The base is to be made from a 10-gauge (0.1345 inch thick) steel sheet, which costs $0.90
per square foot.

■ Lids cost approximately $50.00 each, regardless of dimensions.

■ Welding costs approximately $0.18 per foot for material and labor combined.

Give justification of any further assumptions or simplifications made of the details of 
construction.

3. Describe how any of your assumptions or simplifications may affect the final result.

4. If you were hired as a consultant on this investigation, what would your conclusions be?
Would you recommend altering the design of the Dumpster? If so, describe the savings that
would result.

D I S C O V E R Y  P R O J E C T QUADRATIC APPROXIMATIONS AND CRITICAL POINTS

The Taylor polynomial approximation to functions of one variable that we discussed in Chapter 11
can be extended to functions of two or more variables. Here we investigate qua dratic approxima-
tions to functions of two variables and use them to give insight into the Second Derivatives Test
for classifying critical points.

In Section 14.4 we discussed the linearization of a function of two variables at a point :

Recall that the graph of is the tangent plane to the surface at and the
corresponding linear approximation is . The linearization is also called the
first-degree Taylor polynomial of at .

1. If has continuous second-order partial derivatives at , then the second-degree 
Taylor polynomial of at is

and the approximation is called the quadratic approximation to at
. Verify that has the same first- and second-order partial derivatives as at 

�a, b�f

L�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�a, b, f �a, b��z � f �x, y�L
Lf �x, y� � L�x, y�

�a, b�f

�a, b�f
�a, b�f

Q�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�
1
2 fxx�a, b��x � a�2 � fx y�a, b��x � a��y � b� �

1
2 fyy�a, b��y � b�2

ff �x, y� � Q�x, y�
Q�a, b� �a, b�.f
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SECTION 14.8 LAGRANGE MULTIPLIERS 981

2. (a) Find the first- and second-degree Taylor polynomials and of 
at (0, 0).

; (b) Graph , , and . Comment on how well and approximate .

3. (a) Find the first- and second-degree Taylor polynomials and for 
at (1, 0).

(b) Compare the values of , , and at (0.9, 0.1).

; (c) Graph , , and . Comment on how well and approximate .

4. In this problem we analyze the behavior of the polynomial 
(without using the Second Derivatives Test) by identifying the graph as a paraboloid.
(a) By completing the square, show that if , then

(b) Let . Show that if and , then has a local minimum 
at (0, 0).

(c) Show that if and , then has a local maximum at (0, 0).
(d) Show that if , then (0, 0) is a saddle point.

5. (a) Suppose is any function with continuous second-order partial derivatives such that
and (0, 0) is a critical point of . Write an expression for the second-

degree Taylor polynomial, , of at (0, 0).
(b) What can you conclude about from Problem 4?
(c) In view of the quadratic approximation , what does part (b) suggest 

about ?

f L Q L Q f

L Q f �x, y� � xe y

L Q f
f L Q L Q f

f �x, y� � ax 2 � bxy � cy 2

a � 0

f �x, y� � ax 2 � bxy � cy 2 � a��x �
b

2a
y�2

� �4ac � b 2

4a 2 �y 2�
D � 4ac � b 2 D � 0 a � 0 f

D � 0 a � 0 f
D � 0

f
f �0, 0� � 0 f

Q f
Q

f �x, y� � Q�x, y�
f

L Q f �x, y� � e�x2�y2

; Graphing calculator or computer required

In Example 6 in Section 14.7 we maximized a volume function subject to the con-
straint , which expressed the side condition that the surface area was
12 m . In this section we present Lagrange’s method for maximizing or minimizing a gen-
eral function subject to a constraint (or side condition) of the form .

It’s easier to explain the geometric basis of Lagrange’s method for functions of two vari-
ables. So we start by trying to find the extreme values of subject to a constraint of
the form . In other words, we seek the extreme values of when the point

is restricted to lie on the level curve . Figure 1 shows this curve together
with several level curves of . These have the equations where , , , ,

. To maximize subject to is to find the largest value of such that the
level curve intersects . It appears from Figure 1 that this happens
when these curves just touch each other, that is, when they have a common tangent line.
(Otherwise, the value of c could be increased further.) This means that the normal lines at
the point where they touch are identical. So the gradient vectors are parallel; that is,

for some scalar .
This kind of argument also applies to the problem of finding the extreme values of

subject to the constraint . Thus the point is restricted to lie
on the level surface with equation . Instead of the level curves in Figure 1,

V � xyz
2xz � 2yz � xy � 12

2

f �x, y, z� t�x, y, z� � k

f �x, y�
t�x, y� � k f �x, y�

�x, y� t�x, y� � k
f f �x, y� � c, c � 7 8 9 10

11 f �x, y� t�x, y� � k c
f �x, y� � c t�x, y� � k

�x0, y0�
� f �x0, y0� � � �t�x0, y0� �

�x, y, z�t�x, y, z� � kf �x, y, z�
t�x, y, z� � kS

14.8 Lagrange Multipliers

f(x, y)=11

f(x, y)=10

f(x, y)=9

f(x, y)=8

f(x, y)=7

x

y

0

g(x, y)=k

FIGURE 1

Visual 14.8 animates Figure 1 for both
level curves and level surfaces.
TEC

97817_14_ch14_p980-989.qk_97817_14_ch14_p980-989  11/8/10  1:32 PM  Page 981

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



982 CHAPTER 14 PARTIAL DERIVATIVES

we consider the level surfaces and argue that if the maximum value of 
is , then the level surface is tangent to the level surface

and so the corresponding gradient vectors are parallel.
This intuitive argument can be made precise as follows. Suppose that a function has

an extreme value at a point on the surface and let be a curve with vector
equation that lies on and passes through . If is the parameter
value corresponding to the point , then . The composite function

represents the values that takes on the curve . Since has an
extreme value at , it follows that has an extreme value at , so . But
if is differentiable, we can use the Chain Rule to write

This shows that the gradient vector is orthogonal to the tangent vector
to every such curve . But we already know from Section 14.6 that the gradient vector 
of , , is also orthogonal to for every such curve. (See Equation 14.6.18.)
This means that the gradient vectors and must be parallel. There  -
fore, if , there is a number such that

The number in Equation 1 is called a Lagrange multiplier. The procedure based on
Equation 1 is as follows.

Method of Lagrange Multipliers To find the maximum and minimum values of
subject to the constraint [assuming that these extreme val-

ues exist and on the surface ]:

(a) Find all values of , , , and such that

and

(b) Evaluate at all the points that result from step (a). The largest of
these values is the maximum value of ; the smallest is the minimum value 
of .

If we write the vector equation in terms of components, then the equations in
step (a) become

This is a system of four equations in the four unknowns , , , and , but it is not neces  sary
to find explicit values for .

f �x0, y0, z0 � � c f �x, y, z� � c
t�x, y, z� � k

f
P�x0, y0, z0 � S C

r�t� � 	x�t�, y�t�, z�t�
 S P t0

P r�t0� � 	x0, y0, z0 

h�t� � f �x�t�, y�t�, z�t�� f C f

�x0, y0, z0 � h t0 h��t0� � 0
f

0 � h��t0�

� fx�x0, y0, z0 �x��t0 � � fy�x0, y0, z0�y��t0� � fz�x0, y0, z0 �z��t0 �

� � f �x0, y0, z0� � r��t0�

� f �x0, y0, z0 � r��t0�
C

t �t�x0, y0, z0 � r��t0 �
� f �x0, y0, z0� �t�x0, y0, z0 �

�t�x0, y0, z0 � � 0 �

1 � f �x0, y0, z0� � � �t�x0, y0, z0 �

�

f �x, y, z� t�x, y, z� � k
�t � 0 t�x, y, z� � k

x y z �

� f �x, y, z� � � �t�x, y, z�

t�x, y, z� � k

f �x, y, z�
f

f

� f � � �t

fx � �tx fy � �ty fz � �tz t�x, y, z� � k

ff �x, y, z� � c

�zyx
�

Lagrange multipliers are named after the
French-Italian mathematician Joseph-Louis
Lagrange (1736–1813). See page 210 for a 
biographical sketch of Lagrange.

In deriving Lagrange’s method we assumed 
that . In each of our examples you
can check that at all points where

. See Exercise 23 for what can 
go wrong if .�t � 0
t�x, y, z� � k

�t � 0
�t � 0
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SECTION 14.8 LAGRANGE MULTIPLIERS 983

For functions of two variables the method of Lagrange multipliers is similar to the
method just described. To find the extreme values of subject to the constraint

, we look for values of , , and such that

This amounts to solving three equations in three unknowns:

Our first illustration of Lagrange’s method is to reconsider the problem given in Exam-
ple 6 in Section 14.7.

A rectangular box without a lid is to be made from 12 m of cardboard.
Find the maximum volume of such a box.

SOLUTION As in Example 6 in Section 14.7, we let , , and be the length, width, and
height, respectively, of the box in meters. Then we wish to maximize

subject to the constraint

Using the method of Lagrange multipliers, we look for values of , , , and such that
and . This gives the equations

which become

There are no general rules for solving systems of equations. Sometimes some ingenuity is
required. In the present example you might notice that if we multiply by by ,
and by , then the left sides of these equations will be identical. Doing this, we have

We observe that because would imply from , ,
and and this would contradict . Therefore, from and , we have

f �x, y�
t�x, y� � k x y �

� f �x, y� � � �t�x, y� and t�x, y� � k

fx � �tx fy � �ty t�x, y� � k

2

x y z

V � xyz

t�x, y, z� � 2xz � 2yz � xy � 12

x y z �
�V � � �t t�x, y, z� � 12

Vx � �tx

Vy � �ty

Vz � �tz

2xz � 2yz � xy � 12

v EXAMPLE 1

2 yz � ��2z � y�

3 xz � ��2z � x�

4 xy � ��2x � 2y�

5 2xz � 2yz � xy � 12

x, y
z

6 xyz � ��2xz � xy�

7 xyz � ��2yz � xy�

8 xyz � ��2xz � 2yz�

� � 0 � � 0 yz � xz � xy � 0

2 3
4

2 3
4 5 6 7

2xz � xy � 2yz � xy

Another method for solving the system of equa-
tions (2 –5) is to solve each of Equations 2, 3,
and 4 for and then to equate the resulting
expressions.

�

97817_14_ch14_p980-989.qk_97817_14_ch14_p980-989  11/8/10  1:32 PM  Page 983

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



984 CHAPTER 14 PARTIAL DERIVATIVES

which gives . But (since would give ), so . From
and we have

which gives and so (since ) . If we now put in ,
we get

Since , , and are all positive, we therefore have and so and . This
agrees with our answer in Section 14.7.

Find the extreme values of the function on the 
circle .

SOLUTION We are asked for the extreme values of subject to the constraint
. Using Lagrange multipliers, we solve the equations

and , which can be written as

or as

From we have or . If , then gives . If , then
from , so then gives . Therefore has possible extreme values 

at the points , , , and . Evaluating at these four points, we
find that

Therefore the maximum value of on the circle is and the
minimum value is . Checking with Figure 2, we see that these values look
reasonable.

Find the extreme values of on the disk .

SOLUTION According to the procedure in (14.7.9), we compare the values of at the criti-
cal points with values at the points on the boundary. Since and , the only
critical point is . We compare the value of at that point with the extreme values on
the boundary from Example 2:

Therefore the maximum value of on the disk is and the
minimum value is .

Find the points on the sphere that are closest to and 
farthest from the point .

SOLUTION The distance from a point to the point is

2yz � xy � 2xz � 2yz

2xz � xy x � 0 y � 2z x � y � 2z

4z2 � 4z2 � 4z2 � 12

x y z z � 1 x � 2 y � 2

8

5

f �x, y� � x 2 � 2y 2

x 2 � y 2 � 1

f
t�x, y� � x 2 � y 2 � 1 � f � � �t

t�x, y� � 1

fx � �tx fy � �ty t�x, y� � 1

9 2x � 2x�

10 4y � 2y�

11 x 2 � y 2 � 1

x � 0 � � 1 x � 0 y � 	1 � � 1
y � 0 x � 	1 f

�0, 1� �0, �1� �1, 0� ��1, 0� f

f �0, 1� � 2 f �0, �1� � 2 f �1, 0� � 1 f ��1, 0� � 1

f x 2 � y 2 � 1 f �0, 	1� � 2
f �	1, 0� � 1

v EXAMPLE 2

9
10

11
11

f �x, y� � x 2 � 2y 2 x 2 � y 2 
 1

f
fx � 2x fy � 4y

�0, 0� f

f �0, 0� � 0 f �	1, 0� � 1 f �0, 	1� � 2

f x 2 � y 2 
 1 f �0, 	1� � 2
f �0, 0� � 0

x 2 � y 2 � z2 � 4
�3, 1, �1�

�x, y, z� �3, 1, �1�

EXAMPLE 3

EXAMPLE 4

7x � yV � 0z � 0z � 0xz � yz

d � s�x � 3�2 � �y � 1�2 � �z � 1�2 

FIGURE 2

z

x
y

 ≈+¥=1

z=≈+2¥

C

In geometric terms, Example 2 asks for 
the highest and lowest points on the curve 

in Figure 2 that lie on the paraboloid
and directly above the con-

straint circle .x2 � y2 � 1
z � x2 � 2y2

C

The geometry behind the use of Lagrange 
multipliers in Example 2 is shown in Figure 3.
The extreme values of 
correspond to the level curves that touch the 
circle .x 2 � y 2 � 1

f �x, y� � x 2 � 2y 2

FIGURE 3

x

y

0

≈+2¥=1

≈+2¥=2
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SECTION 14.8 LAGRANGE MULTIPLIERS 985

but the algebra is simpler if we instead maximize and minimize the square of the 
distance:

The constraint is that the point lies on the sphere, that is,

According to the method of Lagrange multipliers, we solve , . This gives

The simplest way to solve these equations is to solve for , , and in terms of from
, , and , and then substitute these values into . From we have

[Note that because is impossible from .] Similarly, and give

Therefore, from , we have

which gives , , so

These values of then give the corresponding points :

and    

It’s easy to see that has a smaller value at the first of these points, so the closest point
is and the farthest is .

Two Constraints
Suppose now that we want to find the maximum and minimum values of a function
subject to two constraints (side conditions) of the form and .
Geometrically, this means that we are looking for the extreme values of when is
restricted to lie on the curve of intersection of the level surfaces and

. (See Figure 5.) Suppose has such an extreme value at a point .

d 2 � f �x, y, z� � �x � 3�2 � �y � 1�2 � �z � 1�2

�x, y, z�

t�x, y, z� � x 2 � y 2 � z2 � 4

� f � � �t t � 4

12 2�x � 3� � 2x�

13 2�y � 1� � 2y�

14 2�z � 1� � 2z�

15 x 2 � y 2 � z2 � 4

x y z �

x � 3 � x� or x�1 � �� � 3 or x �
3

1 � �

1 � � � 0 � � 1

y �
1

1 � �
z � �

1

1 � �

32

�1 � ��2 �
12

�1 � ��2 �
��1�2

�1 � ��2 � 4

�1 � ��2 � 11
4 1 � � � 	s11�2

� � 1 	
s11

2

� �x, y, z�

� 6

s11
, 

2

s11
, �

2

s11� ��
6

s11
, �

2

s11
, 

2

s11�
f

(6�s11, 2�s11, �2�s11) (�6�s11, �2�s11, 2�s11)

12 13 14 15 12

12 13 14

15

f �x, y, z�
t�x, y, z� � k h�x, y, z� � c

�x, y, z�f
t�x, y, z� � kC

P�x0, y0, z0�fh�x, y, z� � c

Figure 4 shows the sphere and the nearest point
in Example 4. Can you see how to find the

coordinates of without using calculus?P
P

FIGURE 4

z

y
x

(3, 1, _1)

P

FIGURE 5

h=c

g=k

C

±g

P ±h

g

P ±h

±f

97817_14_ch14_p980-989.qk_97817_14_ch14_p980-989  11/8/10  1:32 PM  Page 985

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



986 CHAPTER 14 PARTIAL DERIVATIVES

We know from the beginning of this section that is orthogonal to at . But we also
know that is orthogonal to and is orthogonal to , so
and are both orthogonal to . This means that the gradient vector is in the
plane determined by and . (We assume that these gradient vec-
tors are not zero and not parallel.) So there are numbers and (called Lagrange multi-
pliers) such that

In this case Lagrange’s method is to look for extreme values by solving five equations in
the five unknowns , , , , and . These equations are obtained by writing Equa tion 16
in terms of its components and using the constraint equations:

Find the maximum value of the function on the
curve of intersection of the plane and the cylinder .

SOLUTION We maximize the function subject to the constraints
and . The Lagrange condition is

, so we solve the equations

Putting [from ] in , we get , so . Similarly, gives
. Substitution in then gives

and so , . Then , , and, from ,
. The corresponding values of are

Therefore the maximum value of on the given curve is .

�t t�x, y, z� � k �h h�x, y, z� � c �t

�h C � f �x0, y0, z0 �
�t�x0, y0, z0 � �h�x0, y0, z0 �

� �

16 � f �x0, y0, z0� � � �t�x0, y0, z0 � � � �h�x0, y0, z0�

x y z � �

fx � �tx � �hx

fy � �ty � �hy

fz � �tz � �hz

t�x, y, z� � k

h�x, y, z� � c

f �x, y, z� � x � 2y � 3z
x � y � z � 1 x 2 � y 2 � 1

f �x, y, z� � x � 2y � 3z
t�x, y, z� � x � y � z � 1 h�x, y, z� � x 2 � y 2 � 1
� f � � �t � � �h

17 1 � � � 2x�

18 2 � �� � 2y�

19 3 � �

20 x � y � z � 1

21 x 2 � y 2 � 1

� � 3 2x� � �2 x � �1��
y � 5��2��

1

�2 �
25

4�2 � 1

�2 � 29
4 � � 	s29�2 x � �2�s29 y � 	5�s29

z � 1 � x � y � 1 	 7�s29 f

�
2

s29
� 2�	

5

s29
� � 3�1 	

7

s29
� � 3 	 s29

f 3 � s29

v EXAMPLE 5

19 17 18
21

20

PC� f

The cylinder intersects the 
plane in an ellipse (Figure 6).
Example 5 asks for the maximum value of 
when is restricted to lie on the ellipse.�x, y, z�

f
x � y � z � 1

x 2 � y 2 � 1

FIGURE 6
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SECTION 14.8 LAGRANGE MULTIPLIERS 987

1. Pictured are a contour map of and a curve with equation
. Estimate the maximum and minimum values 

of subject to the constraint that . Explain your
reasoning.

; 2. (a) Use a graphing calculator or computer to graph the circle
. On the same screen, graph several curves of

the form until you find two that just touch the
circle. What is the significance of the values of for these
two curves?

(b) Use Lagrange multipliers to find the extreme values of
subject to the constraint .

Compare your answers with those in part (a).

3–14 Use Lagrange multipliers to find the maximum and mini-
mum values of the function subject to the given constraint.

3. ;  

4. ;  

5. ;  

6. ;  

7. ;  

8. ;  

9. ;  

10. ;  

11. ;  

12. ;  

13. ;  

14. ;

15–18 Find the extreme values of subject to both constraints.

15. ;  ,  

f
t�x, y� � 8

f t�x, y� � 8

y

x0

70
60

50
40

30

20

10

g(x, y)=8

x 2 � y 2 � 1
x 2 � y � c

c

f �x, y� � x 2 � y x 2 � y 2 � 1

f �x, y� � x 2 � y 2 xy � 1

f �x, y� � 3x � y x 2 � y 2 � 10

f �x, y� � y 2 � x 2 1
4 x 2 � y 2 � 1

f �x, y� � e xy x 3 � y 3 � 16

f �x, y, z� � 2x � 2y � z x 2 � y 2 � z 2 � 9

f �x, y, z� � x 2 � y 2 � z 2

f �x, y, z� � xyz x 2 � 2y 2 � 3z2 � 6

f �x, y, z� � x 2 y 2z2 x 2 � y 2 � z2 � 1

f �x, y, z� � x 2 � y 2 � z2 x 4 � y 4 � z4 � 1

f �x, y, z� � x 4 � y 4 � z4 x 2 � y 2 � z2 � 1

f �x, y, z, t� � x � y � z � t x 2 � y 2 � z2 � t 2 � 1

f �x1, x2, . . . , xn� � x1 � x2 �    � xn

x 2
1 � x 2

2 �    � x 2
n � 1

f

f �x, y, z� � x � 2y x � y � z � 1 y 2 � z2 � 4

x � y � z � 12

16. ;
,  

17. ;  ,  

18. ;  ,  

19–21 Find the extreme values of on the region described by
the inequality.

19. ,  

20. ,  

21. ,  

22. Consider the problem of maximizing the function
subject to the constraint .

(a) Try using Lagrange multipliers to solve the problem.
(b) Does give a larger value than the one in part (a)?

; (c) Solve the problem by graphing the constraint equation
and several level curves of .

(d) Explain why the method of Lagrange multipliers fails to
solve the problem.

(e) What is the significance of ?

23. Consider the problem of minimizing the function
on the curve (a piriform).
(a) Try using Lagrange multipliers to solve the problem.
(b) Show that the minimum value is but the

Lagrange condition is not satisfied
for any value of .

(c) Explain why Lagrange multipliers fail to find the mini-
mum value in this case.

24. (a) If your computer algebra system plots implicitly defined
curves, use it to estimate the minimum and maximum
values of subject to the con -
straint by graphical methods.

(b) Solve the problem in part (a) with the aid of Lagrange 
multipliers. Use your CAS to solve the equations numeri-
cally. Compare your answers with those in part (a).

25. The total production of a certain product depends on the
amount of labor used and the amount of capital invest-
ment. In Sections 14.1 and 14.3 we discussed how the Cobb-
Douglas model follows from certain economic
assumptions, where and are positive constants and 

. If the cost of a unit of labor is and the cost of a unit
of capital is , and the company can spend only dollars as
its total budget, then maximizing the production is subject
to the constraint . Show that the maximum
production occurs when

x � y � z � 0 x 2 � 2z2 � 1

f �x, y, z� � yz � xy xy � 1 y 2 � z2 � 1

f �x, y, z� � x 2 � y 2 � z 2 x � y � 1 y 2 � z 2 � 1

f

f �x, y� � x 2 � y 2 � 4x � 4y x 2 � y 2 
 9

f �x, y� � 2x 2 � 3y 2 � 4x � 5 x 2 � y 2 
 16

f �x, y� � e �xy x 2 � 4y 2 
 1

f �x, y� � 2x � 3y sx � sy � 5

f �25, 0�

f

f �9, 4�

f �x, y� � x
y 2 � x 4 � x 3 � 0

f �0, 0� � 0
� f �0, 0� � ��t�0, 0�

�

CAS

f �x, y� � x 3 � y 3 � 3xy
�x � 3�2 � �y � 3�2 � 9

P
L K

P � bL�K 1��

b �
� � 1 m

n p
P

mL � nK � p

f �x, y, z� � 3x � y � 3z

K �
�1 � ��p

n
andL �

�p

m

14.8 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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988 CHAPTER 14 PARTIAL DERIVATIVES

26. Referring to Exercise 25, we now suppose that the pro-
duction is fixed at , where is a constant.
What values of and minimize the cost function

?

27. Use Lagrange multipliers to prove that the rectangle with 
maximum area that has a given perimeter is a square.

28. Use Lagrange multipliers to prove that the triangle with 
maximum area that has a given perimeter is equilateral.

Hint: Use Heron’s formula for the area:

where and , , are the lengths of the sides.

29–41 Use Lagrange multipliers to give an alternate solution to
the indicated exercise in Section 14.7.

29. Exercise 39 30. Exercise 40

31. Exercise 41 32. Exercise 42

33. Exercise 43 34. Exercise 44

35. Exercise 45 36. Exercise 46

37. Exercise 47 38. Exercise 48

39. Exercise 49 40. Exercise 50

41. Exercise 53

42. Find the maximum and minimum volumes of a rectangular
box whose surface area is 1500 cm and whose total edge
length is 200 cm.

43. The plane intersects the paraboloid
in an ellipse. Find the points on this ellipse 

that are nearest to and farthest from the origin.

44. The plane intersects the cone
in an ellipse.

; (a) Graph the cone, the plane, and the ellipse.

bL�K 1�� � Q Q
KL

C�L, K � � mL � nK

p

p

A � ss�s � x��s � y��s � z�

zyxs � p�2

2

x � y � 2z � 2
z � x 2 � y 2

4x � 3y � 8z � 5
z2 � x 2 � y 2

(b) Use Lagrange multipliers to find the highest and lowest
points on the ellipse.

45 –46 Find the maximum and minimum values of subject to
the given constraints. Use a computer algebra system to solve 
the system of equations that arises in using Lagrange multipliers.
(If your CAS finds only one solution, you may need to use addi-
tional commands.)

45. ;  , 

46. ;  , 

47. (a) Find the maximum value of 

given that are positive numbers and
, where is a constant.

(b) Deduce from part (a) that if are positive
numbers, then

This inequality says that the geometric mean of 
numbers is no larger than the arithmetic mean of the
numbers. Under what circumstances are these two means
equal?

48. (a) Maximize subject to the constraints
and .

(b) Put

to show that

for any numbers . This inequality is
known as the Cauchy-Schwarz Inequality.

x1 � x2 �    � xn � c c
x1, x2, . . . , xn

s
n x1 x2    xn 


x1 � x2 �    � xn

n

n

�n
i�1 xi yi �n

i�1 xi
2 � 1

�n
i�1 yi

2 � 1

xi �
ai

s� a 2
j

and    yi �
bi

s� b 2
j

 ai bi 
 s� a 2
j s� b 2

j

a1, . . . , an, b1, . . . , bn

f

xy � yz � 19x 2 � 4y 2 � 36z2 � 36f �x, y, z� � ye x�z

x 2 � z2 � 4x 2 � y 2 � zf �x, y, z� � x � y � z

f �x1, x2, . . . , xn � � s
n x1 x2    xn

x1, x2, . . . , xn

CAS

A P P L I E D  P R O J E C T ROCKET SCIENCE

Many rockets, such as the Pegasus XL currently used to launch satellites and the Saturn V that first
put men on the moon, are designed to use three stages in their ascent into space. A large first stage
initially propels the rocket until its fuel is consumed, at which point the stage is jettisoned to 
reduce the mass of the rocket. The smaller second and third stages function similarly in order to
place the rocket’s payload into orbit about the earth. (With this design, at least two stages are
required in order to reach the necessary velocities, and using three stages has proven to be a good
compromise between cost and performance.) Our goal here is to determine the individual masses 
of the three stages, which are to be designed in such a way as to minimize the total mass of the
rocket while enabling it to reach a desired velocity.
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APPLIED PROJECT ROCKET SCIENCE 989

For a single-stage rocket consuming fuel at a constant rate, the change in velocity resulting
from the acceleration of the rocket vehicle has been modeled by

where is the mass of the rocket engine including initial fuel, is the mass of the payload, 
is a structural factor determined by the design of the rocket (specifically, it is the ratio of the

mass of the rocket vehicle without fuel to the total mass of the rocket with payload), and is the
(constant) speed of exhaust relative to the rocket.

Now consider a rocket with three stages and a payload of mass . Assume that outside forces
are negligible and that and remain constant for each stage. If is the mass of the stage, 
we can initially consider the rocket engine to have mass and its payload to have mass

; the second and third stages can be handled similarly.

1. Show that the velocity attained after all three stages have been jettisoned is given by

2. We wish to minimize the total mass of the rocket engine subject 
to the constraint that the desired velocity from Problem 1 is attained. The method of
Lagrange multipliers is appropriate here, but difficult to implement using the current expres-
sions. To simplify, we define variables so that the constraint equation may be expressed as

. Since is now difficult to express in terms of the ’s, we
wish to use a simpler function that will be minimized at the same place as . Show that

and conclude that

3. Verify that is minimized at the same location as ; use Lagrange multipliers
and the results of Problem 2 to find expressions for the values of where the minimum
occurs subject to the constraint . [Hint: Use properties of 
logarithms to help simplify the expressions.]

4. Find an expression for the minimum value of as a function of .

5. If we want to put a three-stage rocket into orbit 100 miles above the earth’s surface, a final
velocity of approximately is required. Suppose that each stage is built with a
structural factor and an exhaust speed of .
(a) Find the minimum total mass of the rocket engines as a function of .
(b) Find the mass of each individual stage as a function of . (They are not equally sized!)

6. The same rocket would require a final velocity of approximately in order to
escape earth’s gravity. Find the mass of each individual stage that would minimize the total
mass of the rocket engines and allow the rocket to propel a 500-pound probe into deep space.

�V � �c ln�1 �
�1 � S�Mr

P � Mr
�

Mr P
S

c

A
c S Mi ith

M1

M2 � M3 � A

vf � c�ln� M1 � M2 � M3 � A

SM1 � M2 � M3 � A� � ln� M2 � M3 � A

SM2 � M3 � A� � ln� M3 � A

SM3 � A��
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990 CHAPTER 14 PARTIAL DERIVATIVES

A P P L I E D  P R O J E C T HYDRO-TURBINE OPTIMIZATION

The Katahdin Paper Company in Millinocket, Maine, operates a hydroelectric generating station
on the Penobscot River. Water is piped from a dam to the power station. The rate at which the
water flows through the pipe varies, depending on external conditions.

The power station has three different hydroelectric turbines, each with a known (and unique)
power function that gives the amount of electric power generated as a function of the water flow
arriving at the turbine. The incoming water can be apportioned in different volumes to each
turbine, so the goal is to determine how to distribute water among the turbines to give the maxi-
mum total energy production for any rate of flow.

Using experimental evidence and Bernoulli’s equation, the following quadratic models were
determined for the power output of each turbine, along with the allowable flows of operation:

,  ,  

where

1. If all three turbines are being used, we wish to determine the flow to each turbine that will
give the maximum total energy production. Our limitations are that the flows must sum to 
the total incoming flow and the given domain restrictions must be observed. Consequently,
use Lagrange multipliers to find the values for the individual flows (as functions of ) that
maximize the total energy production subject to the constraints

and the domain restrictions on each .

2. For which values of is your result valid?

3. For an incoming flow of , determine the distribution to the turbines and verify 
(by trying some nearby distributions) that your result is indeed a maximum.

4. Until now we have assumed that all three turbines are operating; is it possible in some situa-
tions that more power could be produced by using only one turbine? Make a graph of the
three power functions and use it to help decide if an incoming flow of should be
distributed to all three turbines or routed to just one. (If you determine that only one turbine
should be used, which one would it be?) What if the flow is only ?

5. Perhaps for some flow levels it would be advantageous to use two turbines. If the incoming
flow is , which two turbines would you recommend using? Use Lagrange multi-
pliers to determine how the flow should be distributed between the two turbines to maxi-
mize the energy produced. For this flow, is using two turbines more efficient than using all
three?

6. If the incoming flow is , what would you recommend to the company?

KW1 � ��18.89 � 0.1277Q1 � 4.08 � 10�5Q 2
1 ��170 � 1.6 � 10�6Q 2

T �

KW2 � ��24.51 � 0.1358Q2 � 4.69 � 10�5Q 2
2 ��170 � 1.6 � 10�6Q 2

T �

KW3 � ��27.02 � 0.1380Q3 � 3.84 � 10�5Q 2
3 ��170 � 1.6 � 10�6Q 2

T �

250 � Q1 � 1110 250 � Q2 � 1110 250 � Q3 � 1225

Qi � flow through turbine i in cubic feet per second

KWi � power generated by turbine i in kilowatts

QT � total flow through the station in cubic feet per second

Qi

QT

KW1 � KW2 � KW3

Q1 � Q2 � Q3 � QT Qi

QT

2500 ft3�s

1000 ft3�s

600 ft3�s

1500 ft3�s

3400 ft3�s
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CHAPTER 14 REVIEW 991

14 Review

1. (a) What is a function of two variables?
(b) Describe three methods for visualizing a function of two

variables.

2. What is a function of three variables? How can you visualize
such a function?

3. What does

mean? How can you show that such a limit does not exist?

4. (a) What does it mean to say that is continuous at ?
(b) If is continuous on , what can you say about its graph?

5. (a) Write expressions for the partial derivatives and
as limits.

(b) How do you interpret and geometrically?
How do you interpret them as rates of change?

(c) If is given by a formula, how do you calculate
and 

6. What does Clairaut’s Theorem say?

7. How do you find a tangent plane to each of the following types
of surfaces?
(a) A graph of a function of two variables, 
(b) A level surface of a function of three variables,

8. Define the linearization of at . What is the corre spond-
ing linear approximation? What is the geometric interpretation
of the linear approximation?

9. (a) What does it mean to say that is differentiable at ?
(b) How do you usually verify that is differentiable?

10. If , what are the differentials , , and ?

lim
�x, y� l �a, b�

f �x, y� � L

f �a, b�
f �2

fx�a, b�
fy�a, b�

fy�a, b�fx�a, b�

fxf �x, y�
fy ?

z � f �x, y�

F�x, y, z� � k

�a, b�f

�a, b�f
f

dzdydxz � f �x, y�

11. State the Chain Rule for the case where and and
are functions of one variable. What if and are functions of
two variables?

12. If is defined implicitly as a function of and by an equation
of the form , how do you find and ?

13. (a) Write an expression as a limit for the directional derivative
of at in the direction of a unit vector .
How do you interpret it as a rate? How do you interpret it
geometrically?

(b) If is differentiable, write an expression for in
terms of and .

14. (a) Define the gradient vector for a function of two or
three variables.

(b) Express in terms of .
(c) Explain the geometric significance of the gradient.

15. What do the following statements mean?
(a) has a local maximum at .
(b) has an absolute maximum at .
(c) has a local minimum at .
(d) has an absolute minimum at .
(e) has a saddle point at .

16. (a) If has a local maximum at , what can you say about
its partial derivatives at ?

(b) What is a critical point of ?

17. State the Second Derivatives Test.

18. (a) What is a closed set in ? What is a bounded set?
(b) State the Extreme Value Theorem for functions of two 

variables.
(c) How do you find the values that the Extreme Value 

Theorem guarantees?

19. Explain how the method of Lagrange multipliers works 
in finding the extreme values of subject to the
constraint . What if there is a second constraint

?

z x y
F�x, y, z� � 0 �z��x �z��y

f �x0, y0 � u � �a, b �

f Du f �x0, y0 �
fx fy

� f f

Du f � f

f �a, b�
f �a, b�
f �a, b�
f �a, b�
f �a, b�

f �a, b�
�a, b�

f

� 2

f �x, y, z�
t�x, y, z� � k

h�x, y, z� � c

yxz � f �x, y�
yx

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1.

2. There exists a function with continuous second-order 
partial derivatives such that and

.

3.

4.

fy�a, b� � lim
y l b

f �a, y� � f �a, b�
y � b

f
fx�x, y� � x � y 2

fy�x, y� � x � y 2

fxy �
�2f

�x �y

Dk f �x, y, z� � fz�x, y, z�

5. If as along every straight line
through , then .

6. If and both exist, then is differentiable 
at .

7. If has a local minimum at and is differentiable at
, then .

8. If is a function, then

9. If , then .

f �x, y� l L �x, y� l �a, b�
�a, b� lim�x, y� l �a, b� f �x, y� � L

fx�a, b� fy�a, b� f
�a, b�

f �a, b� f
�a, b� � f �a, b� � 0

f

lim
�x, y� l �2, 5�

f �x, y� � f �2, 5�

� f �x, y� � 1�yf �x, y� � ln y

True-False Quiz
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992 CHAPTER 14 PARTIAL DERIVATIVES

10. If is a critical point of and 

then has a saddle point at .

�2, 1� f

fxx�2, 1� fyy�2, 1� � � fx y�2, 1�� 2

f �2, 1�

11. If , then .

12. If has two local maxima, then must have a local 
minimum.

f �x, y� � sin x � sin y �s2 � Du f �x, y� � s2

f �x, y� f

; Graphing calculator or computer required

1–2 Find and sketch the domain of the function.

1.

2.

3–4 Sketch the graph of the function.

3.

4.

5–6 Sketch several level curves of the function.

5. 6.

7. Make a rough sketch of a contour map for the function whose
graph is shown.

8. A contour map of a function is shown. Use it to make a
rough sketch of the graph of .

9–10 Evaluate the limit or show that it does not exist.

9. 10.

11. A metal plate is situated in the -plane and occupies the 
rectangle , , where and are measured
in meters. The temperature at the point in the plate is

, where is measured in degrees Celsius. Temperatures

f �x, y� � ln�x � y � 1�

f �x, y� � s4 � x 2 � y 2 � s1 � x 2

f �x, y� � 1 � y 2

f �x, y� � x 2 � �y � 2�2

f �x, y� � s4x 2 � y 2  f �x, y� � e x � y

2
x

z

2
y

f
f

y

x

1

1.5

2

4

lim
�x, y� l �1, 1�

2xy

x 2 � 2y 2 lim
�x, y� l �0, 0�

2xy

x 2 � 2y 2

xy
0 � x � 10 0 � y � 8 x y

�x, y�
T �x, y� T

at equally spaced points were measured and recorded in the
table.
(a) Estimate the values of the partial derivatives 

and . What are the units?
(b) Estimate the value of , where .

Interpret your result.
(c) Estimate the value of .

12. Find a linear approximation to the temperature function
in Exercise 11 near the point (6, 4). Then use it to estimate the
temperature at the point (5, 3.8).

13–17 Find the first partial derivatives.

13. 14.

15. 16.

17.

18. The speed of sound traveling through ocean water is a function
of temperature, salinity, and pressure. It has been modeled by
the function

where is the speed of sound (in meters per second), is the
temperature (in degrees Celsius), is the salinity (the concen-
tration of salts in parts per thousand, which means the number
of grams of dissolved solids per 1000 g of water), and is the
depth below the ocean surface (in meters). Compute ,

, and when , parts per thousand,
and m. Explain the physical significance of these 
partial derivatives.

Tx�6, 4�
Ty�6, 4�

Du T �6, 4� u � �i � j��s2

Txy�6, 4�

30

52

78

98

96

92

38

56

74

87

90

92

45

60

72

80

86

91

51

62

68

75

80

87

55

61

66

71

75

78

x
y

0

2

4

6

8

10

0 2 4 6 8

T �x, y�

f �x, y� � �5y 3 � 2x 2y�8
t�u, v� �

u � 2v

u 2 � v 2

F ��, 	� � � 2 ln�� 2 � 	 2� G�x, y, z� � e xz sin�y�z�

C � 1449.2 � 4.6T � 0.055T 2 � 0.00029T 3

� �1.34 � 0.01T ��S � 35� � 0.016D

C T
S

D
�C��T

�C��S �C��D T � 10
C S � 35
D � 100

S�u, v, w� � u arctan(vsw )

Exercises
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CHAPTER 14 REVIEW 993

19–22 Find all second partial derivatives of .

19. 20.

21. 22.

23. If , show that .

24. If , show that

25–29 Find equations of (a) the tangent plane and (b) the normal
line to the given surface at the specified point.

25. ,  

26. ,  

27. ,  

28. ,  

29. ,  

; 30. Use a computer to graph the surface and its 
tangent plane and normal line at on the same screen.
Choose the domain and viewpoint so that you get a good
view of all three objects.

31. Find the points on the hyperboloid where
the tangent plane is parallel to the plane .

32. Find if .

33. Find the linear approximation of the function
at the point (2, 3, 4) and use it 

to estimate the number .

34. The two legs of a right triangle are measured as 5 m and
12 m with a possible error in measurement of at most cm
in each. Use differentials to estimate the maximum error in
the calculated value of (a) the area of the triangle and (b) the
length of the hypotenuse.

35. If , where , , and 
, use the Chain Rule to find .

36. If , where and , use the
Chain Rule to find and when and .

37. Suppose , where , ,
, , , ,

, , , and .
Find and when and .

38. Use a tree diagram to write out the Chain Rule for the case
where , , and

are all differentiable functions.

39. If , where is differentiable, show that

f

f �x, y� � 4x 3 � xy 2 z � xe�2y

f �x, y, z� � x k y lz m v � r cos�s � 2t�

z � xy � xe y�x x
�z

�x
� y

�z

�y
� xy � z

z � sin�x � sin t�

�z

�x

�2z

�x �t
�

�z

�t

�2z

�x 2

z � 3x 2 � y 2 � 2x �1, �2, 1�

z � e x cos y �0, 0, 1�

x 2 � 2y 2 � 3z 2 � 3 �2, �1, 1�

xy � yz � zx � 3 �1, 1, 1�

z � x 2 � y 4

�1, 1, 2�

x 2 � 4y 2 � z2 � 4
2x � 2y � z � 5

u � ln�1 � se 2 t �du

f �x, y, z� � x 3
sy 2 � z 2 

�1.98�3
s�3.01� 2 � �3.97� 2 

0.2

y � pe px � p � 3p2u � x 2y3 � z4

du�dpz � p sin p

y � stx � s � 2tv � x 2 sin y � ye xy

t � 1s � 0�v��t�v��s

y � h�s, t�x � t�s, t�z � f �x, y�
h�1, 2� � 6tt�1, 2� � 4ts�1, 2� � �1t�1, 2� � 3

fy�3, 6� � 8fx�3, 6� � 7ht�1, 2� � 10hs�1, 2� � �5
t � 2s � 1�z��t�z��s

u � u� p, q, r, s�w � f �t, u, v�, t � t� p, q, r, s�
v � v� p, q, r, s�

fz � y � f �x 2 � y 2 �

y
�z

�x
� x

�z

�y
� x

sin�xyz� � x � 2y � 3z �2, �1, 0�

40. The length of a side of a triangle is increasing at a rate of
3 in�s, the length of another side is decreasing at a rate of
2 in�s, and the contained angle is increasing at a rate of 

radian�s. How fast is the area of the triangle changing
when in, in, and ?

41. If , where , , and has continuous
second partial derivatives, show that

42. If , find and .

43. Find the gradient of the function .

44. (a) When is the directional derivative of a maximum?
(b) When is it a minimum?
(c) When is it 0?
(d) When is it half of its maximum value?

45–46 Find the directional derivative of at the given point in
the indicated direction.

45. ,  , 
in the direction toward the point 

46. ,  , 
in the direction of 

47. Find the maximum rate of change of 
at the point . In which direction does it occur?

48. Find the direction in which increases most
rapidly at the point . What is the maximum rate of
increase?

49. The contour map shows wind speed in knots during Hurri-
cane Andrew on August 24, 1992. Use it to estimate the
value of the directional derivative of the wind speed at
Homestead, Florida, in the direction of the eye of the 
hurricane.

y
�

0.05
x � 40 y � 50 � � ��6

z � f �u, v� u � xy v � y�x f

x 2 �2z

�x 2 � y 2 �2z

�y 2 � �4uv
�2z

�u �v
� 2v

�z

�v

cos�xyz� � 1 � x 2y 2 � z 2 �z

�x

�z

�y

f �x, y, z� � x 2e yz 2

f

f

f �x, y� � x 2e�y ��2, 0�
�2, �3�

f �x, y, z� � x 2 y � xs1 � z �1, 2, 3�
v � 2 i � j � 2k

f �x, y� � x 2 y � sy
�2, 1�

f �x, y, z� � ze x y

�0, 1, 2�

Key West
30

35
40

45

55
60

60 65
65

70

75

70 80

50

55

0
(Distance in miles)

10 20 30 40

Homestead

x
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994 CHAPTER 14 PARTIAL DERIVATIVES

50. Find parametric equations of the tangent line at the point
to the curve of intersection of the surface

and the plane .

51–54 Find the local maximum and minimum values and saddle
points of the function. If you have three-dimensional graphing
software, graph the function with a domain and viewpoint that
reveal all the important aspects of the function.

51.

52.

53.

54.

55–56 Find the absolute maximum and minimum values of on
the set .

55. ;  is the closed triangular
region in the -plane with vertices , , and 

56. ;  is the disk 

; 57. Use a graph or level curves or both to estimate the local 
maximum and minimum values and saddle points of

. Then use calculus to find 
these values precisely.

; 58. Use a graphing calculator or computer (or Newton’s method 
or a computer algebra system) to find the critical points of

correct to three 
decimal places. Then classify the critical points and find 
the highest point on the graph.

59–62 Use Lagrange multipliers to find the maximum and mini-
mum values of subject to the given constraint(s).

59. ;  

��2, 2, 4�
z � 2x 2 � y 2 z � 4

f �x, y� � x 2 � xy � y 2 � 9x � 6y � 10

f �x, y� � x 3 � 6xy � 8y 3

f �x, y� � 3xy � x 2 y � xy 2

f �x, y� � �x 2 � y�e y�2

f
D

f �x, y� � 4xy 2 � x 2 y 2 � xy 3 D
xy �0, 0� �0, 6� �6, 0�

f �x, y� � e�x2�y2

�x 2 � 2y 2 � D x 2 � y 2 � 4

f �x, y� � x 3 � 3x � y 4 � 2y 2

f �x, y� � 12 � 10y � 2x 2 � 8xy � y 4

f

x 2 � y 2 � 1f �x, y� � x 2 y

60. ;  

61. ;  

62. ;
,

63. Find the points on the surface that are closest to 
the origin.

64. A package in the shape of a rectangular box can be mailed by
the US Postal Service if the sum of its length and girth (the
perimeter of a cross-section perpendicular to the length) is at
most 108 in. Find the dimensions of the package with largest
volume that can be mailed.

65. A pentagon is formed by placing an isosceles triangle on a 
rectangle, as shown in the figure. If the pentagon has fixed 
perimeter , find the lengths of the sides of the pentagon that
maximize the area of the pentagon.

66. A particle of mass moves on the surface . Let
and be the - and -coordinates of the 

particle at time .
(a) Find the velocity vector and the kinetic energy

of the particle.
(b) Determine the acceleration vector .
(c) Let and , . Find 

the velocity vector, the kinetic energy, and the accelera-
tion vector.

P

=

=

¨

m z � f �x, y�
x � x�t� y � y�t� x y

t
v

K � 1
2 m 	 v 	2

a
z � x 2 � y 2 x�t� � t cos t y�t� � t sin t

1

x 2 �
1

y 2 � 1f �x, y� �
1

x
�

1

y

x 2 � y 2 � z 2 � 3f �x, y, z� � xyz

f �x, y, z� � x 2 � 2y 2 � 3z2

x � y � 2z � 2x � y � z � 1

xy 2z3 � 2
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1. A rectangle with length and width is cut into four smaller rectangles by two lines paral-
lel to the sides. Find the maximum and minimum values of the sum of the squares of the
areas of the smaller rectangles.

2. Marine biologists have determined that when a shark detects the presence of blood in the
water, it will swim in the direction in which the concentration of the blood increases most
rapidly. Based on certain tests, the concentration of blood (in parts per million) at a point

on the surface of seawater is approximated by

where and are measured in meters in a rectangular coordinate system with the blood
source at the origin.
(a) Identify the level curves of the concentration function and sketch several members of this

family together with a path that a shark will follow to the source.
(b) Suppose a shark is at the point when it first detects the presence of blood in 

the water. Find an equation of the shark’s path by setting up and solving a differential
equation.

3. A long piece of galvanized sheet metal with width is to be bent into a symmetric form with
three straight sides to make a rain gutter. A cross-section is shown in the figure.
(a) Determine the dimensions that allow the maximum possible flow; that is, find the dimen-

sions that give the maximum possible cross-sectional area.
(b) Would it be better to bend the metal into a gutter with a semicircular cross-section?

4. For what values of the number is the function

continuous on ?

5. Suppose is a differentiable function of one variable. Show that all tangent planes to the
surface intersect in a common point.

6. (a) Newton’s method for approximating a root of an equation (see Section 4.8)
can be adapted to approximating a solution of a system of equations and

. The surfaces and intersect in a curve that intersects
the -plane at the point , which is the solution of the system. If an initial approxi-
mation is close to this point, then the tangent planes to the surfaces at
intersect in a straight line that intersects the -plane in a point , which should be
closer to . (Compare with Figure 2 in Section 3.8.) Show that

where , , and their partial derivatives are evaluated at . If we continue this pro-
cedure, we obtain successive approximations .

L W

P�x, y�

C�x, y� � e��x2�2y2 ��104

x y

�x0, y0 �

w

¨¨
x x

w-2x

r

f �x, y, z� � 

0

�x � y � z�r

x 2 � y 2 � z 2 if

if

�x, y, z� � �0, 0, 0�

�x, y, z� � �0, 0, 0�

� 3

f
z � x f �y�x�

f �x� � 0
f �x, y� � 0

t�x, y� � 0 z � f �x, y� z � t�x, y�
xy �r, s�

�x1, y1� �x1, y1�
xy �x2, y2 �

�r, s�

x2 � x1 �
fty � fy t

fx ty � fy tx
and y2 � y1 �

fx t � ftx

fx ty � fy tx

f t �x1, y1�
�xn, yn �

Problems Plus

995
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(b) It was Thomas Simpson (1710–1761) who formulated Newton’s method as we know it
today and who extended it to functions of two variables as in part (a). (See the biography
of Simpson on page 537.) The example that he gave to illustrate the method was to solve
the system of equations

In other words, he found the points of intersection of the curves in the figure. Use the
method of part (a) to find the coordinates of the points of intersection correct to six deci-
mal places.

7. If the ellipse is to enclose the circle , what values of and
minimize the area of the ellipse?

8. Among all planes that are tangent to the surface , find the ones that are farthest
from the origin.

x x � y y � 1000 x y � y x � 100

y

4

2

0 2 4 x

xx+yy=1000

xy+yx=100x

x 2�a 2 � y 2�b 2 � 1 x 2 � y 2 � 2y a b

xy 2z 2 � 1
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Multiple Integrals15

In this chapter we extend the idea of a definite integral to double and triple integrals of functions of two
or three variables. These ideas are then used to compute volumes, masses, and centroids of more general
regions than we were able to consider in Chapters 5 and 8. We also use double integrals to calcu late
probabilities when two random variables are involved.

We will see that polar coordinates are useful in computing double integrals over some types of regions.
In a similar way, we will introduce two new coordinate systems in three-dimensional space––cylindrical
coordinates and spherical coordinates––that greatly simplify the computation of triple integrals over
certain commonly occurring solid regions.

997

FPO 
New Art to

come

© S.R. Lee Photo Traveller / Shutterstock

Geologists study how mountain ranges were formed
and estimate the work required to lift them from sea
level. In Section 15.8 you are asked to use a triple
integral to compute the work done in the formation 
of Mount Fuji in Japan.
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998 CHAPTER 15 MULTIPLE INTEGRALS

In much the same way that our attempt to solve the area problem led to the definition of a
definite integral, we now seek to find the volume of a solid and in the process we arrive at
the definition of a double integral.

Review of the Definite Integral
First let’s recall the basic facts concerning definite integrals of functions of a single vari-
able. If is defined for , we start by dividing the interval into n sub-
intervals of equal width and we choose sample points in these
subintervals. Then we form the Riemann sum

and take the limit of such sums as to obtain the definite integral of from to :

In the special case where , the Riemann sum can be interpreted as the sum of the
areas of the approximating rectangles in Figure 1, and represents the area under
the curve from to .

Volumes and Double Integrals
In a similar manner we consider a function of two variables defined on a closed rectangle

and we first suppose that . The graph of f is a surface with equation .
Let S be the solid that lies above R and under the graph of f, that is,

(See Figure 2.) Our goal is to find the volume of S.
The first step is to divide the rectangle into subrectangles. We accomplish this by

dividing the interval into m subintervals of equal width
and dividing into n subintervals of equal width . By draw-
ing lines parallel to the coordinate axes through the endpoints of these subintervals, as in 

f �x� a � x � b �a, b�
�xi�1, xi � �x � �b � a��n xi*

1 �
n

i�1
f �xi*� �x

n l � f a b

2 y
b

a
f �x� dx � lim

n l �
�
n
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f �x� � 0
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y � f �x� a b

FIGURE 1
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15.1 Double Integrals over Rectangles
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SECTION 15.1 DOUBLE INTEGRALS OVER RECTANGLES 999

Figure 3, we form the subrectangles

each with area .

If we choose a sample point in each , then we can approximate the part of
S that lies above each by a thin rectangular box (or “column”) with base and height

as shown in Figure 4. (Compare with Figure 1.) The volume of this box is the
height of the box times the area of the base rectangle:

If we follow this procedure for all the rectangles and add the volumes of the corresponding
boxes, we get an approximation to the total volume of S:

(See Figure 5.) This double sum means that for each subrectangle we evaluate at the cho-
sen point and multiply by the area of the subrectangle, and then we add the results.

�A � �x �y

FIGURE 3
Dividing R into subrectangles
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1000 CHAPTER 15 MULTIPLE INTEGRALS

Our intuition tells us that the approximation given in becomes better as and
become larger and so we would expect that

We use the expression in Equation 4 to define the volume of the solid that lies under the
graph of and above the rectangle . (It can be shown that this definition is consistent with
our formula for volume in Section 5.2.)

Limits of the type that appear in Equation 4 occur frequently, not just in finding vol-
umes but in a variety of other situations as well—as we will see in Section 15.5—even
when is not a positive function. So we make the following definition.

Definition The double integral of over the rectangle is

if this limit exists.

The precise meaning of the limit in Definition 5 is that for every number there is
an integer such that

for all integers and greater than and for any choice of sample points in 
A function is called integrable if the limit in Definition 5 exists. It is shown in courses

on advanced calculus that all continuous functions are integrable. In fact, the double inte-
gral of exists provided that is “not too discontinuous.” In particular, if is bounded
[that is, there is a constant such that for all in ], and is con-
tinuous there, except on a finite number of smooth curves, then is integrable over .

The sample point can be chosen to be any point in the subrectangle but if
we choose it to be the upper right-hand corner of [namely , see Fig  ure 3], then
the expression for the double integral looks simpler:

By comparing Definitions 4 and 5, we see that a volume can be written as a double
integral:

If , then the volume of the solid that lies above the rectangle and
below the surface is

m n
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The meaning of the double limit in Equation 4 is
that we can make the double sum as close as we
like to the number [for any choice of 
in ] by taking and sufficiently large.Rij nm

�xij*, yij*�V

Notice the similarity between Definition 5 
and the definition of a single integral in 
Equation 2.

Although we have defined the double integral by
dividing into equal-sized subrectangles, we
could have used subrectangles of unequal
size. But then we would have to ensure that all
of their dimensions approach in the limiting
process.
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SECTION 15.1 DOUBLE INTEGRALS OVER RECTANGLES 1001

The sum in Definition 5,

is called a double Riemann sum and is used as an approximation to the value of the 
double integral. [Notice how similar it is to the Riemann sum in for a function of a 
single variable.] If happens to be a positive function, then the double Riemann sum 
represents the sum of volumes of columns, as in Figure 5, and is an approximation to the
volume under the graph of .

Estimate the volume of the solid that lies above the square
and below the elliptic paraboloid . Divide into

four equal squares and choose the sample point to be the upper right corner of each
square . Sketch the solid and the approximating rectangular boxes.

SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of
and the area of each square is . Approximating the

volume by the Riemann sum with , we have

This is the volume of the approximating rectangular boxes shown in Figure 7.

We get better approximations to the volume in Example 1 if we increase the number of
squares. Figure 8 shows how the columns start to look more like the actual solid and the
corresponding approximations become more accurate when we use 16, 64, and 256
squares. In the next section we will be able to show that the exact volume is 48.

If , evaluate the integral
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1002 CHAPTER 15 MULTIPLE INTEGRALS

SOLUTION It would be very difficult to evaluate this integral directly from Definition 5
but, because , we can compute the integral by interpreting it as a volume. If

, then and , so the given double integral represents the
volume of the solid S that lies below the circular cylinder and above the 
rectangle R. (See Figure 9.) The volume of S is the area of a semicircle with radius 1 times
the length of the cylinder. Thus

The Midpoint Rule
The methods that we used for approximating single integrals (the Midpoint Rule, the
Trapezoidal Rule, Simpson’s Rule) all have counterparts for double integrals. Here we
consider only the Midpoint Rule for double integrals. This means that we use a double Rie-
mann sum to approximate the double integral, where the sample point in is
chosen to be the center of . In other words, is the midpoint of and
is the midpoint of .

Midpoint Rule for Double Integrals

where is the midpoint of and is the midpoint of .

Use the Midpoint Rule with to estimate the value of the 
integral , where , .

SOLUTION In using the Midpoint Rule with , we evaluate at
the centers of the four subrectangles shown in Figure 10. So , , , and

. The area of each subrectangle is . Thus

Thus we have

NOTE In the next section we will develop an efficient method for computing double
integrals and then we will see that the exact value of the double integral in Example 3 is

. (Remember that the interpretation of a double integral as a volume is valid only when
the integrand is a positive function. The integrand in Example 3 is not a positive func-
tion, so its integral is not a volume. In Examples 2 and 3 in Section 15.2 we will discuss
how to interpret integrals of functions that are not always positive in terms of volumes.) If
we keep dividing each subrectangle in Figure 10 into four smaller ones with similar shape,
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SECTION 15.1 DOUBLE INTEGRALS OVER RECTANGLES 1003

we get the Midpoint Rule approximations displayed in the chart in the margin. Notice how
these approximations approach the exact value of the double integral, .

Average Value
Recall from Section 5.5 that the average value of a function of one variable defined on
an interval is

In a similar fashion we define the average value of a function of two variables defined
on a rectangle R to be

where is the area of R.
If , the equation

says that the box with base and height has the same volume as the solid that lies
under the graph of . [If describes a mountainous region and you chop off the
tops of the mountains at height , then you can use them to fill in the valleys so that the
region becomes completely flat. See Figure 11.]

The contour map in Figure 12 shows the snowfall, in inches, that fell on the
state of Colorado on December 20 and 21, 2006. (The state is in the shape of a rectangle
that measures 388 mi west to east and 276 mi south to north.) Use the contour map to
estimate the average snowfall for the entire state of Colorado on those days.

SOLUTION Let’s place the origin at the southwest corner of the state. Then
, and is the snowfall, in inches, at a location x miles to the east and 
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0 � x � 388,
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subrectangles approximation

1 �11.5000
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1004 CHAPTER 15 MULTIPLE INTEGRALS

y miles to the north of the origin. If R is the rectangle that represents Colorado, then the
average snowfall for the state on December 20–21 was

where . To estimate the value of this double integral, let’s use the Mid-
point Rule with . In other words, we divide R into 16 subrectangles of equal
size, as in Figure 13. The area of each subrectangle is

Using the contour map to estimate the value of at the center of each subrect angle,
we get

Therefore

On December 20–21, 2006, Colorado received an average of approximately inches of
snow.
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SECTION 15.1 DOUBLE INTEGRALS OVER RECTANGLES 1005

1. (a) Estimate the volume of the solid that lies below the surface
and above the rectangle

, 

Use a Riemann sum with , , and take the 
sample point to be the upper right corner of each square.

(b) Use the Midpoint Rule to estimate the volume of the solid
in part (a).

2. If , use a Riemann sum with ,
to estimate the value of . Take the 

sample points to be (a) the lower right corners and (b) the
upper left corners of the rectangles.

3. (a) Use a Riemann sum with to estimate the value
of , where . Take the sample
points to be upper right corners.

(b) Use the Midpoint Rule to estimate the integral in part (a).

4. (a) Estimate the volume of the solid that lies below the surface
and above the rectangle

. Use a Riemann sum with
and choose the sample points to be lower left corners.

(b) Use the Midpoint Rule to estimate the volume in part (a).

5. A table of values is given for a function defined on
.

(a) Estimate using the Midpoint Rule with
.

z � xy

R � ��x, y� 	 0 � x � 6 0 � y � 4


m � 3 n � 2

R � �0, 4� � ��1, 2� m � 2
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xx

R
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R � �1, 2� � �0, 3� m � n � 2

f �x, y�
R � �0, 4� � �2, 4�

xxR f �x, y� dA
m � n � 2

(b) Estimate the double integral with by choosing
the sample points to be the points closest to the origin.

6. A 20-ft-by-30-ft swimming pool is filled with water. The depth
is measured at 5-ft intervals, starting at one corner of the pool,
and the values are recorded in the table. Estimate the volume of
water in the pool.

7. Let be the volume of the solid that lies under the graph of
and above the rectangle given by

, . We use the lines and to 
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15.1 Exercises

1. Homework Hints available at stewartcalculus.com

Properties of Double Integrals
We list here three properties of double integrals that can be proved in the same manner as
in Section 4.2. We assume that all of the integrals exist. Properties 7 and 8 are referred to
as the linearity of the integral.

where c is a constant

If for all in , then

7 yy
R

� f �x, y� � t�x, y�� dA � yy
R

f �x, y� dA � yy
R

t�x, y� dA

8 yy
R

c f �x, y� dA � c yy
R

f �x, y� dA

f �x, y� � t�x, y� �x, y� R

9 yy
R

f �x, y� dA � yy
R

t�x, y� dA

Double integrals behave this way because the
double sums that define them behave this way.
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1006 CHAPTER 15 MULTIPLE INTEGRALS

divide into subrectangles. Let and be the Riemann sums
computed using lower left corners and upper right corners,
respectively. Without calculating the numbers , , and ,
arrange them in increasing order and explain your reasoning.

8. The figure shows level curves of a function in the square
. Use the Midpoint Rule with 

to estimate . How could you improve your
estimate?

9. A contour map is shown for a function on the square
.

(a) Use the Midpoint Rule with to estimate the
value of .

(b) Estimate the average value of .

10. The contour map shows the temperature, in degrees Fahrenheit,
at 4:00 PM on February 26, 2007, in Colorado. (The state mea-
sures 388 mi west to east and 276 mi south to north.) Use 
the Midpoint Rule with to estimate the average
temperature in Colorado at that time.

R L U

V L U

f
R � �0, 2� � �0, 2� m � n � 2

xxR f �x, y� dA

y

0 1 2 x

5 6 7

1

2

1

2

3

4

f
R � �0, 4� � �0, 4�

m � n � 2
xx

R
f �x, y� dA

f

0

2

4

2 4

10

10

10 20

20

30

300 0

y

x

m � n � 4

11–13 Evaluate the double integral by first identifying it as the 
volume of a solid.

11.

12.

13.

14. The integral , where , 
represents the volume of a solid. Sketch the solid.

15. Use a programmable calculator or computer (or the sum 
command on a CAS) to estimate

where . Use the Midpoint Rule with the 
following numbers of squares of equal size: 1, 4, 16, 64, 256,
and 1024.

16. Repeat Exercise 15 for the integral .

17. If is a constant function, , and 
, show that

18. Use the result of Exercise 17 to show that

where .

yy
R

s1 � xe�y dA

R � �0, 1� � �0, 1�

xxR sin(x � sy ) dA

f f �x, y� � k
R � �a, b� � �c, d�

yy
R

k dA � k�b � a��d � c�

0 � yy
R

sin �x cos �y dA �
1

32

R � [0, 14] � [ 1
4, 12]

xx
R

3 dA, R � ��x, y� � �2 � x � 2, 1 � y � 6�

xxR �5 � x� dA, R � ��x, y� � 0 � x � 5, 0 � y � 3�

xx
R �4 � 2y� dA, R � �0, 1� � �0, 1�

R � �0, 4� � �0, 2�xxR s9 � y 2 dA

16

16

20

28

20
24

24

28

24

32

28

32

3236
40

44

44

44
40
36
32

48

48
5256

52
56

44

Recall that it is usually difficult to evaluate single integrals directly from the definition of
an integral, but the Fundamental Theorem of Calculus provides a much easier method. The
evaluation of double integrals from first principles is even more difficult, but in this sec- 

15.2 Iterated Integrals
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SECTION 15.2 ITERATED INTEGRALS 1007

tion we see how to express a double integral as an iterated integral, which can then be eval-
uated by calculating two single integrals.

Suppose that is a function of two variables that is integrable on the rectangle
. We use the notation to mean that is held fixed and

is integrated with respect to from to . This procedure is called par-
tial integration with respect to . (Notice its similarity to partial differentiation.) Now

is a number that depends on the value of , so it defines a function of :

If we now integrate the function with respect to from to , we get

The integral on the right side of Equation 1 is called an iterated integral. Usually the
brackets are omitted. Thus

means that we first integrate with respect to from to and then with respect to from
to .
Similarly, the iterated integral

means that we first integrate with respect to (holding fixed) from to and
then we integrate the resulting function of with respect to from to Notice
that in both Equations 2 and 3 we work from the inside out.

Evaluate the iterated integrals.

(a) (b)

SOLUTION
(a) Regarding as a constant, we obtain

Thus the function in the preceding discussion is given by in this example.
We now integrate this function of from 0 to 3:

f
xx

d
c f �x, y� dyR � �a, b� � �c, d �

y � dy � cyf �x, y�
y

xxx
d
c f �x, y� dy

A�x� � y
d

c
f �x, y� dy

x � bx � axA

y
b

a
A�x� dx � y

b

a
	y

d

c
f �x, y� dy
 dx1

y
b

a
y

d

c
f �x, y� dy dx � y

b

a
	y

d

c
f �x, y� dy
 dx2

a
xdcy

b

y
d

c
y

b

a
f �x, y� dx dy � y

d

c
	y

b

a
f �x, y� dx
 dy3

x � bx � ayx
y � d.y � cyy

EXAMPLE 1

y
2

1
y

3

0
x 2y dx dyy

3

0
y

2

1
x 2y dy dx

x

� x 2� 22

2 � � x 2� 12

2 � � 3
2 x 2

y
2

1
x 2y dy � 	x 2 y 2

2 
y�1

y�2

A�x� � 3
2 x 2A

x

y
3

0
y

2

1
x 2 y dy dx � y

3

0
	y

2

1
x 2y dy
 dx

� y
3

0

3
2 x 2 dx �

x 3

2 
0

3

�
27

2
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1008 CHAPTER 15 MULTIPLE INTEGRALS

(b) Here we first integrate with respect to :

Notice that in Example 1 we obtained the same answer whether we integrated with
respect to or first. In general, it turns out (see Theorem 4) that the two iterated integrals
in Equations 2 and 3 are always equal; that is, the order of integration does not matter.
(This is similar to Clairaut’s Theorem on the equality of the mixed partial derivatives.)

The following theorem gives a practical method for evaluating a double integral by
expressing it as an iterated integral (in either order).

Fubini’s Theorem If is continuous on the rectangle 
, , then

More generally, this is true if we assume that is bounded on , is discontin-
uous only on a finite number of smooth curves, and the iterated integrals exist.

The proof of Fubini’s Theorem is too difficult to include in this book, but we can at least
give an intuitive indication of why it is true for the case where . Recall that if

is positive, then we can interpret the double integral as the volume of
the solid that lies above and under the surface . But we have another for-
mula that we used for volume in Chapter 5, namely,

where is the area of a cross-section of in the plane through perpendicular to the 
-axis. From Figure 1 you can see that is the area under the curve whose equation

is , where is held constant and . Therefore

and we have

A similar argument, using cross-sections perpendicular to the -axis as in Figure 2, shows
that

x

y
2

1
y

3

0
x 2y dx dy � y

2

1
	y

3

0
x 2y dx
 dy � y

2

1
	 x 3

3
 y


x�0

x�3

dy

� y
2

1
9y dy � 9 

y 2

2 
1

2

�
27

2

xy

f4
c � y � d �R � ��x, y� � a � x � b

yy
R

f �x, y� dA � y
b

a
y

d

c
f �x, y� dy dx � y

d

c
y

b

a
f �x, y� dx dy

fRf

f
f �x, y� � 0

VxxR
f �x, y� dA

z � f �x, y�RS

V � y
b

a
A�x� dx

xSA�x�
CA�x�x

c � y � dxz � f �x, y�

A�x� � y
d

c
f �x, y� dy

yy
R

f �x, y� dA � V � y
b

a
A�x� dx � y

b

a
y

d

c
f �x, y� dy dx

y

yy
R

f �x, y� dA � y
d

c
y

b

a
f �x, y� dx dy

Theorem 4 is named after the Italian mathema-
tician Guido Fubini (1879–1943), who proved a
very general version of this theorem in 1907. But
the version for continuous functions was known
to the French mathematician Augustin-Louis
Cauchy almost a century earlier.

FIGURE 1
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C 

Visual 15.2 illustrates Fubini’s 
Theorem by showing an animation of 
Figures 1 and 2.
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FIGURE 2
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SECTION 15.2 ITERATED INTEGRALS 1009

Evaluate the double integral , where
, . (Compare with Example 3 in Section 15.1.)

SOLUTION 1 Fubini’s Theorem gives

SOLUTION 2 Again applying Fubini’s Theorem, but this time integrating with respect to
first, we have

Evaluate , where .

SOLUTION 1 If we first integrate with respect to , we get

SOLUTION 2 If we reverse the order of integration, we get

To evaluate the inner integral, we use integration by parts with

and so

xxR
�x � 3y 2 � dAEXAMPLE 2v

1 � y � 2�R � ��x, y� � 0 � x � 2

� y
2

0

 [xy � y 3] y�1
y�2 dxyy

R

�x � 3y 2 � dA � y
2

0
y

2

1
�x � 3y 2 � dy dx

� y
2

0
�x � 7� dx �

x 2

2
� 7x


0

2

� �12

x

yy
R

�x � 3y 2� dA � y
2

1
y

2

0
�x � 3y 2� dx dy

� y
2

1
	 x 2

2
� 3xy 2


x�0

x�2

dy

� y
2

1
�2 � 6y 2 � dy � 2y � 2y 3]1

2
� �12

R � �1, 2� � �0, ��xxR y sin�xy� dAEXAMPLE 3v

x

� y
�

0
[�cos�xy�]x�1

x�2
dyyy

R

y sin�xy� dA � y
�

0
y

2

1
y sin�xy� dx dy

� y
�

0
��cos 2y � cos y� dy

� �
1
2 sin 2y � sin y]0

�

� 0

yy
R

y sin�xy� dA � y
2

1
y

�

0
y sin�xy� dy dx

dv � sin�xy� dyu � y

v � �
cos�xy�

x
du � dy

y
�

0
y sin�xy� dy � �

y cos�xy�
x 


y�0

y��

�
1

x y
�

0
cos�xy� dy

� �
� cos �x

x
�

1

x 2 [sin�xy�]y�0
y��

� �
� cos �x

x
�

sin �x

x 2

Notice the negative answer in Example 2; 
nothing is wrong with that. The function is 
not a positive function, so its integral doesn’t
represent a volume. From Figure 3 we see that 

is always negative on , so the value of the
integral is the negative of the volume that lies
above the graph of and below .Rf

Rf

f

FIGURE 3
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z
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_8 z=x-3¥

For a function that takes on both positive and
negative values, is a difference 
of volumes: , where is the volume
above and below the graph of , and is the
volume below and above the graph. The fact
that the integral in Example 3 is means that
these two volumes and are equal. (See
Figure 4.)

V2V1

0
R

V2fR
V1V1 � V2

xx
R f �x, y� dA

f

FIGURE 4
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1010 CHAPTER 15 MULTIPLE INTEGRALS

If we now integrate the first term by parts with and , we get
, , and

Therefore

and so

Find the volume of the solid that is bounded by the elliptic paraboloid
, the planes and , and the three coordinate planes.

SOLUTION We first observe that is the solid that lies under the surface
and above the square . (See Figure 5.) This solid was considered in
Example 1 in Section 15.1, but we are now in a position to evaluate the double integral
using Fubini’s Theorem. Therefore

In the special case where can be factored as the product of a function of only
and a function of only, the double integral of can be written in a particularly simple
form. To be specific, suppose that and . Then 
Fubini’s Theorem gives

In the inner integral, is a constant, so is a constant and we can write

since is a constant. Therefore, in this case, the double integral of can be writ-
ten as the product of two single integrals:

y ��
� cos �x

x � dx � �
sin �x

x
� y

sin �x

x 2 dx

y ��
� cos �x

x
�

sin �x

x 2 � dx � �
sin �x

x

dv � � cos �x dxu � �1x
v � sin �xdu � dxx 2

y
2

1
y

�

0
y sin�xy� dy dx � 	�

sin �x

x 

1

2

� �
sin 2�

2
� sin � � 0

S
x 2 � 2y 2 � z � 16 x � 2 y � 2

S z � 16 � x 2 � 2y 2

R � �0, 2� � �0, 2�

V � yy
R

�16 � x 2 � 2y 2 � dA � y
2

0
y

2

0
�16 � x 2 � 2y 2 � dx dy

� y
2

0
[16x �

1
3 x 3 � 2y 2x]x�0

x�2
dy

� y
2

0
( 88

3 � 4y 2 ) dy � [ 88
3 y �

4
3 y3 ]0

2
� 48

f �x, y� x
y f

f �x, y� � t�x�h�y� R � �a, b� � �c, d �

yy
R

f �x, y� dA � y
d

c
y

b

a
t�x�h�y� dx dy � y

d

c
	y

b

a
t�x�h�y� dx
 dy

y h�y�

y
d

c
	y

b

a
t�x�h�y� dx
 dy � y

d

c
	h�y��y

b

a
t�x� dx�
 dy � y

b

a
t�x� dx y

d

c
h�y� dy

x
b
a t�x� dx f

5 yy
R

t�x� h�y� dA � y
b

a
t�x� dx y

d

c
h�y� dy where R � �a, b� � �c, d �

v EXAMPLE 4

In Example 2, Solutions 1 and 2 are equally
straightforward, but in Example 3 the first solu-
tion is much easier than the second one. There-
fore, when we evaluate double integrals, it’s
wise to choose the order of integration that
gives simpler integrals.

FIGURE 5
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SECTION 15.2 ITERATED INTEGRALS 1011

1–2 Find and .

1. 2.

3–14 Calculate the iterated integral.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15–22 Calculate the double integral.

15. ,  

16. ,  

17. ,  

x
5
0 f �x, y� dx x

1
0 f �x, y� dy

f �x, y� � 12x 2 y3 f �x, y� � y � xe y

y
4

1
y

2

0
�6x 2y � 2x� dy dx y

1

0
y

2

1
�4x 3 � 9x 2 y2� dy dx

y
2

0
y

4

0
y 3e 2x dy dx y

�2

�6
y

5

�1
cos y dx dy

y
3

�3
y

�2

0
�y � y 2 cos x� dx dy y

3

1
y

5

1

ln y

xy
dy dx

y
4

1
y

2

1
� x

y
�

y

x� dy dx y
1

0
y

3

0
e x�3y dx dy

y
1

0
y

1

0
v�u � v2�4 du dv y

1

0
y

1

0
xysx 2 � y 2 dy dx

y
2

0
y

�

0
r sin2� d� dr y

1

0
y

1

0
ss � t ds dt

yy
R

sin�x � y� dA R � ��x, y� � 0 � x � �2, 0 � y � �2�

yy
R

�y � xy�2� dA R � ��x, y� � 0 � x � 2, 1 � y � 2�

yy
R

xy 2

x 2 � 1
 dA R � ��x, y� � 0 � x � 1, �3 � y � 3�

18. ,  

19. ,  

20. ,  

21. ,  

22. ,  

23–24 Sketch the solid whose volume is given by the iterated 
integral.

23.

24.

25. Find the volume of the solid that lies under the plane
 and above the rectangle

.

26. Find the volume of the solid that lies under the hyperbolic
paraboloid and above the rectangle

.

yy
R

1 � x 2

1 � y 2 dA R � ��x, y� � 0 � x � 1, 0 � y � 1�

yy
R

x sin�x � y� dA R � �0, �6� � �0, �3�

yy
R

x

1 � xy
dA R � �0, 1� � �0, 1�

yy
R

ye�xy dA R � �0, 2� � �0, 3�

yy
R

1

1 � x � y
dA R � �1, 3� � �1, 2�

y
1

0
y

1

0
�4 � x � 2y� dx dy

y
1

0
y

1

0
�2 � x 2 � y 2 � dy dx

4x � 6y � 2z � 15 � 0
R � ��x, y� � �1 � x � 2, �1 � y � 1�

z � 3y 2 � x 2 � 2
R � ��1, 1� � �1, 2�

15.2 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

If , then, by Equation 5,

yy
R

sin x cos y dA � y
�2

0
sin x dx y

�2

0
cos y dy

� [�cos x]0

�2 [sin y]0

�2
� 1 � 1 � 1

FIGURE 6

y

x

z

0

R � �0, �2� � �0, �2�EXAMPLE 5

The function in 
Example 5 is positive on , so the integral repre-
sents the volume of the solid that lies above 
and below the graph of shown in Figure 6.f

R
R

f �x, y� � sin x cos y
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1012 CHAPTER 15 MULTIPLE INTEGRALS

27. Find the volume of the solid lying under the elliptic 
paraboloid and above the rectangle

.

28. Find the volume of the solid enclosed by the surface
and the planes , , , 

and .

29. Find the volume of the solid enclosed by the surface
and the planes , , , , 

and .

30. Find the volume of the solid in the first octant bounded by 
the cylinder and the plane .

31. Find the volume of the solid enclosed by the paraboloid
and the planes , ,

, , and .

; 32. Graph the solid that lies between the surface
and the plane and is bounded

by the planes , , , and . Then find its
volume.

33. Use a computer algebra system to find the exact value of the
integral , where . Then use 
the CAS to draw the solid whose volume is given by the 
integral.

34. Graph the solid that lies between the surfaces
and for ,

. Use a computer algebra system to approximate the
volume of this solid correct to four decimal places.

x 24 � y 29 � z � 1
R � ��1, 1� � ��2, 2�

z � 1 � e x sin y x � 	1 y � 0 y � �
z � 0

z � x sec2y z � 0 x � 0 x � 2 y � 0
y � �4

z � 16 � x 2 y � 5

z � 2 � x 2 � �y � 2�2 z � 1 x � 1
x � �1 y � 0 y � 4

z � 2xy�x 2 � 1� z � x � 2y
x � 0 x � 2 y � 0 y � 4

CAS

R � �0, 1� � �0, 1�xx
R x 5y 3e x y dA

CAS

� x � � 1z � 2 � x 2 � y 2z � e�x2

cos �x 2 � y 2 �
� y � � 1

35–36 Find the average value of over the given rectangle.

35. ,  has vertices , , , 

36. ,  

37–38 Use symmetry to evaluate the double integral.

37. ,  

38. ,  

39. Use your CAS to compute the iterated integrals 

Do the answers contradict Fubini’s Theorem? Explain what 
is happening.

40. (a) In what way are the theorems of Fubini and Clairaut 
similar?

(b) If is continuous on and 

for , , show that .

f

f �x, y� � x 2 y R ��1, 0� ��1, 5� �1, 5� �1, 0�

f �x, y� � e y
sx � e y R � �0, 4� � �0, 1�

yy
R

xy

1 � x 4 dA R � ��x, y� � �1 � x � 1, 0 � y � 1�

yy
R

�1 � x 2 sin y � y 2 sin x� dA R � ���, �� � ���, ��

CAS

y
1

0
y

1

0

x � y

�x � y�3 dy dx and y
1

0
y

1

0

x � y

�x � y�3 dx dy

f �x, y� �a, b� � �c, d �

t�x, y� � y
x

a
y

y

c
f �s, t� dt ds

a 
 x 
 b c 
 y 
 d txy � tyx � f �x, y�

For single integrals, the region over which we integrate is always an interval. But for 
double integrals, we want to be able to integrate a function not just over rectangles but
also over regions of more general shape, such as the one illustrated in Figure 1. We sup-
pose that is a bounded region, which means that can be enclosed in a rectangular
region as in Figure 2. Then we define a new function with domain by

f
D

D D
R F R

1 F�x, y� � �0

f �x, y� if

if

�x, y� is in D

�x, y� is in R but not in D

0

y

x

D

y

0 x

D

R

FIGURE 2FIGURE 1

15.3 Double Integrals over General Regions
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SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS 1013

If F is integrable over R, then we define the double integral of over D by

Definition 2 makes sense because R is a rectangle and so has been previ-
ously defined in Section 15.1. The procedure that we have used is reasonable because the
values of are 0 when lies outside and so they contribute nothing to the inte-
gral. This means that it doesn’t matter what rectangle we use as long as it contains .

In the case where , we can still interpret as the volume of the
solid that lies above and under the surface (the graph of ). You can see that
this is reasonable by comparing the graphs of and in Figures 3 and 4 and remember-
ing that is the volume under the graph of .

Figure 4 also shows that is likely to have discontinuities at the boundary points 
of Nonetheless, if is continuous on and the boundary curve of is “well behaved” 
(in a sense outside the scope of this book), then it can be shown that exists
and therefore exists. In particular, this is the case for the following two types
of regions.

A plane region is said to be of type I if it lies between the graphs of two continuous
functions of , that is,

where and are continuous on . Some examples of type I regions are shown in
Figure 5.

In order to evaluate when is a region of type I, we choose a rectangle
that contains , as in Figure 6, and we let be the function given by

Equation 1; that is, agrees with on and is outside . Then, by Fubini’s Theorem,

Observe that if or because then lies outside .
Therefore

because when . Thus we have the following formula
that enables us to evaluate the double integral as an iterated integral.

f

2 yy
D

f �x, y� dA � yy
R

F�x, y� dA where F is given by Equation 1

xxR F�x, y� dA

F�x, y� �x, y� D
R D

f �x, y� � 0 xx
D f �x, y� dA

D z � f �x, y� f
f F

xx
R F�x, y� dA F

F
D. f D D

xxR F�x, y� dA
xxD f �x, y� dA

D
x

D � ��x, y� � a � x � b, t1�x� � y � t2�x��

t1 t2 �a, b�

  FIGURE 5 Some type I regions

0

y

xba

D

y=g™(x)

y=g¡(x)

0

y

xba

D

y=g™(x)

y=g¡(x)

0

y

xba

D

y=g™(x)

y=g¡(x)

xx
D f �x, y� dA D

R � �a, b� � �c, d � D F
F f D F 0 D

yy
D

f �x, y� dA � yy
R

F�x, y� dA � y
b

a
y

d

c
F�x, y� dy dx

D�x, y�y � t2�x�y 
 t1�x�F�x, y� � 0

y
d

c
F�x, y� dy � y

t2�x�

t1�x�
F�x, y� dy � y

t2�x�

t1�x�
f �x, y� dy

t1�x� � y � t2�x�F�x, y� � f �x, y�

y 

0 

z 

x 

D 

graph of f 

FIGURE 3

FIGURE 4

y

0

z

x

D

graph of F

FIGURE 6

d

0 x

y

bxa

c
y=g¡(x)

D

y=g™(x)
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1014 CHAPTER 15 MULTIPLE INTEGRALS

If is continuous on a type I region D such that

then

The integral on the right side of is an iterated integral that is similar to the ones we
considered in the preceding section, except that in the inner integral we regard as being
constant not only in but also in the limits of integration, and 

We also consider plane regions of type II, which can be expressed as 

where and are continuous. Two such regions are illustrated in Figure 7.
Using the same methods that were used in establishing , we can show that

where D is a type II region given by Equation 4.

Evaluate , where is the region bounded by the 
parabolas and .

SOLUTION The parabolas intersect when , that is, , so . We
note that the region , sketched in Figure 8, is a type I region but not a type II region and
we can write

Since the lower boundary is and the upper boundary is , Equation 3
gives

3 f

D � ��x, y� � a � x � b, t1�x� � y � t2�x��

yy
D

f �x, y� dA � y
b

a
y

t2�x�

t1�x�
f �x, y� dy dx

x
f �x, y� t1�x� t2�x�.

3

4 D � ��x, y� � c � y � d, h1�y� � x � h2�y��

h1 h2

5 yy
D

f �x, y� dA � y
d

c
y

h2� y�

h1� y�
f �x, y� dx dy

3

xx
D

�x � 2y� dA D
y � 2x 2 y � 1 � x 2

2x 2 � 1 � x 2 x 2 � 1 x � 	1
D

D � ��x, y� � �1 � x � 1, 2x 2 � y � 1 � x 2�

y � 2x 2 y � 1 � x 2

yy
D

�x � 2y� dA � y
1

�1
y

1�x2

2x2
�x � 2y� dy dx

� y
1

�1
[xy � y 2]y�2x2

y�1�x2

dx

v EXAMPLE 1

� y
1

�1
�x�1 � x 2 � � �1 � x 2 �2 � x�2x 2 � � �2x 2 �2 � dx

� y
1

�1
��3x 4 � x 3 � 2x 2 � x � 1� dx

� �3 
x 5

5
�

x 4

4
� 2 

x 3

3
�

x 2

2
� x


�1

1

�
32

15

FIGURE 7
Some type II regions
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x=h™(y)
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c

D
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D
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FIGURE 8
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SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS 1015

NOTE When we set up a double integral as in Example 1, it is essential to draw a 
diagram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of 
integration for the inner integral can be read from the diagram as follows: The arrow 
starts at the lower boundary , which gives the lower limit in the integral, and 
the arrow ends at the upper boundary , which gives the upper limit of integration.
For a type II region the arrow is drawn horizontally from the left boundary to the right
boundary.

Find the volume of the solid that lies under the paraboloid and
above the region in the -plane bounded by the line and the parabola .

SOLUTION 1 From Figure 9 we see that is a type I region and

Therefore the volume under and above is

SOLUTION 2 From Figure 10 we see that can also be written as a type II region:

Therefore another expression for is

y � t1�x�
y � t2�x�

z � x 2 � y 2EXAMPLE 2
y � x 2y � 2xxyD

D

D � ��x, y� � 0 � x � 2, x 2 � y � 2x�

Dz � x 2 � y 2

V � yy
D

�x 2 � y 2 � dA � y
2

0
y

2x

x2
�x 2 � y 2� dy dx

� y
2

0
	x 2 y �

y 3

3 
y�x2

y�2x

dx

� y
2

0
��

x 6

3
� x 4 �

14x 3

3 � dx

D

D � ��x, y� � 0 � y � 4, 1
2

 y � x � sy �

V

V � yy
D

�x 2 � y 2 � dA � y
4

0
y

sy

1
2 y

�x 2 � y 2� dx dy

� y
4

0
	 x 3

3
� y 2x


x� 1
2 y

x�sy

dy � y
4

0
� y 32

3
� y 52 �

y 3

24
�

y 3

2 � dy

� 2
15 y 52 �

2
7 y 72 �

13
96 y 4 ]0

4
� 216

35

� y
2

0
	x 2�2x� �

�2x�3

3
� x 2x 2 �

�x 2�3

3 
 dx

� �
x 7

21
�

x 5

5
�

7x 4

6 

0

2

�
216

35FIGURE 10
D as a type II region

FIGURE 9
D as a type I region

y

0 x1 2

(2, 4)

D

y=≈

y=2x

x=œ„y

1
2

x=   y

y

4

0 x

D

(2, 4)

FIGURE 11

yx

z

z=≈+¥

y=2x

y=≈

Figure 11 shows the solid whose volume 
is calculated in Example 2. It lies above the 

-plane, below the paraboloid ,
and between the plane and the 
parabolic cylinder .

xy z � x 2 � y 2

y � 2x
y � x 2
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1016 CHAPTER 15 MULTIPLE INTEGRALS

Evaluate where is the region bounded by the line
and the parabola .

SOLUTION The region is shown in Figure 12. Again is both type I and type II, but the
description of as a type I region is more complicated because the lower boundary con-
sists of two parts. Therefore we prefer to express as a type II region:

Then gives

If we had expressed as a type I region using Figure 12(a), then we would have
obtained

but this would have involved more work than the other method.

Find the volume of the tetrahedron bounded by the planes ,
, , and .

SOLUTION In a question such as this, it’s wise to draw two diagrams: one of the three-
dimensional solid and another of the plane region over which it lies. Figure 13 shows
the tetrahedron bounded by the coordinate planes , , the vertical plane

, and the plane . Since the plane intersects the 
-plane (whose equation is ) in the line , we see that lies above the

triangular region in the -plane bounded by the lines , , and .
(See Figure 14.)

The plane can be written as , so the required volume
lies under the graph of the function and above

v EXAMPLE 3 xxD
xy dA, D y � x � 1

y 2 � 2x � 6

DD
D

D

D � �(x, y) � �2 � y � 4, 1
2

 y2 � 3 � x � y � 1�

FIGURE 12

(5, 4)

0

y

x_3

y=x-1

(_1, _2)
y=_œ„„„„„2x+6

(a) D as a type I region (b) D as a type II region
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5
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D

xy dA � y
4

�2
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1
2 y2�3

xy dx dy � y
4

�2
� x 2

2
 y�

x�1
2 y2�3

x�y�1
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� 1
2 y

4

�2
y[�y � 1�2 � ( 1

2 y2 � 3)2 ] dy

� 1
2 y

4

�2
	�

y 5

4
� 4y 3 � 2y 2 � 8y
 dy

�
1

2 ��
y 6

24
� y 4 � 2 

y 3

3
� 4y 2�

�2

4

� 36

D

yy
D

xy dA � y
�1

�3
y

s2x�6

�s2x�6
xy dy dx � y

5

�1
y

s2x�6

x�1
xy dy dx

x � 2y � z � 2EXAMPLE 4
z � 0x � 0x � 2y

D
z � 0x � 0T

x � 2y � z � 2x � 2y � z � 2x � 2y
Tx � 2y � 2z � 0xy

x � 0x � 2y � 2x � 2yxyD

z � 2 � x � 2yx � 2y � z � 2
z � 2 � x � 2y

D � ��x, y� � 0 � x � 1, x�2 � y � 1 � x�2�FIGURE 14

FIGURE 13
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D

y

0

1
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SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS 1017

Therefore

Evaluate the iterated integral .

SOLUTION If we try to evaluate the integral as it stands, we are faced with the task of first
evaluating . But it’s impossible to do so in finite terms since is
not an elementary function. (See the end of Section 7.5.) So we must change the order 
of integration. This is accomplished by first expressing the given iterated integral as a
double integral. Using backward, we have

where

We sketch this region in Figure 15. Then from Figure 16 we see that an alternative
description of is

This enables us to use to express the double integral as an iterated integral in the
reverse order:

Properties of Double Integrals

We assume that all of the following integrals exist. The first three properties of double
integrals over a region follow immediately from Definition 2 in this section and Prop-
erties 7, 8, and 9 in Section 15.1.

V � yy
D

�2 � x � 2y� dA

� y
1

0
y

1�x�2

x�2
�2 � x � 2y� dy dx

� y
1

0
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0
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2
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x

2
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� x �
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x 2
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0
�x 2 � 2x � 1� dx �

x 3

3
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0
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�
1
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x
1
0 x

1
x sin�y 2� dy dxEXAMPLE 5v

x sin�y 2 � dyx sin�y 2 � dy
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1

0
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1
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sin�y 2 � dy dx � yy

D

sin�y 2 � dA
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D
D

D � ��x, y� � 0 � y � 1, 0 � x � y�
5
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1

0
y

y

0
sin�y 2� dx dy � y

1

0
[x sin�y 2 �]x�0
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dy

� y
1

0
y sin�y 2 � dy � �

1
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1
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D
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D
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0
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1

x
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D
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yy
D
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D
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1 x0
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FIGURE 16
D as a type II region

FIGURE 15
D as a type I region
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1018 CHAPTER 15 MULTIPLE INTEGRALS

If for all in , then 

The next property of double integrals is similar to the property of single integrals given
by the equation .

If , where and don’t overlap except perhaps on their boundaries
(see Figure 17), then

Property 9 can be used to evaluate double integrals over regions that are neither type I
nor type II but can be expressed as a union of regions of type I or type II. Figure 18 illus-
trates this procedure. (See Exercises 55 and 56.)

The next property of integrals says that if we integrate the constant function 
over a region , we get the area of :

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is and whose
height is 1 has volume , but we know that we can also write its volume
as .

Finally, we can combine Properties 7, 8, and 10 to prove the following property. (See
Exercise 61.)

If for all in , then

D�x, y�f �x, y� � t�x, y�

yy
D

f �x, y� dA � yy
D

t�x, y� dA8
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yy
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D1
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D2
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D

FIGURE 18
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FIGURE 19
Cylinder with base D and height 1 
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SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS 1019

1–6 Evaluate the iterated integral.

1. 2.

3. 4.

5. 6.

7–10 Evaluate the double integral.

7.

8.

9.

10.

11. Draw an example of a region that is
(a) type I but not type II
(b) type II but not type I

12. Draw an example of a region that is
(a) both type I and type II
(b) neither type I nor type II

13–14 Express as a region of type I and also as a region of 
type II. Then evaluate the double integral in two ways.

13. is enclosed by the lines 

y
1

0
y

2

2x
�x � y� dy dxy

4

0
y

sy

0
xy 2 dx dy

y
2

0
y

2y

y
xy dx dyy

1

0
y

x

x 2
�1 � 2y� dy dx

y
1

0
y

s 2

0
cos�s 3� dt ds

yy
D

y 2 dA, D � ��x, y� � �1 � y � 1, �y � 2 � x � y�

yy
D

y

x 5 � 1
 dA, D � ��x, y� � 0 � x � 1, 0 � y � x 2�

yy
D

x dA, D � ��x, y� � 0 � x � �, 0 � y � sin x�

yy
D

x 3 dA, D � ��x, y� � 1 � x � e, 0 � y � ln x�

D

y � x, y � 0, x � 1yy
D

x dA, D

y
1

0
y

e

0
s1 � ev dw dv

v

14. ,  is enclosed by the curves 

15–16 Set up iterated integrals for both orders of integration. Then
evaluate the double integral using the easier order and explain why
it’s easier.

15. ,  is bounded by 

16. ,  is bounded by 

17–22 Evaluate the double integral.

17. ,  is bounded by , , 

18. , is bounded by , , 

19. ,  

is the triangular region with vertices (0, 1), (1, 2), 

20.

21.

is bounded by the circle with center the origin and radius 2

22. is the triangular region with vertices ,

, and 

yy
D

y dA D y � x � 2, x � y 2

yy
D

y 2e xy dA D y � x, y � 4, x � 0

yy
D

x cos y dA D y � 0 y � x 2 x � 1

yy
D

�x 2 � 2y� dA D y � x y � x 3 x � 0

y � x 2, y � 3xDyy
D

xy dA

yy
D

y 2 dA

D �4, 1�

yy
D

xy 2 dA, D is enclosed by x � 0 and x � s1 � y 2 

yy
D

�2x � y� dA,

D

yy
D

2xy dA, D �0, 0�

�1, 2� �0, 3�

15.3 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

Use Property 11 to estimate the integral , where is the disk
with center the origin and radius 2.

SOLUTION Since and , we have
and therefore

Thus, using , , and in Property 11, we obtain

xxD
e sin x cos y dA D

�1 � sin x � 1 �1 � cos y � 1 �1 � sin x cos y � 1

e�1 � e sin x cos y � e 1 � e

m � e�1 � 1�e M � e A�D� � � �2�2

4�

e
� yy

D

e sin x cos y dA � 4�e

EXAMPLE 6
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1020 CHAPTER 15 MULTIPLE INTEGRALS

23–32 Find the volume of the given solid.

23. Under the plane and above the region
bounded by and 

24. Under the surface and above the region
enclosed by and 

25. Under the surface and above the triangle with
vertices , , and 

26. Enclosed by the paraboloid and the planes
, , , 

27. Bounded by the coordinate planes and the plane

28. Bounded by the planes , , , and 

29. Enclosed by the cylinders , and the planes 
, 

30. Bounded by the cylinder and the planes
, in the first octant

31. Bounded by the cylinder and the planes ,
, in the first octant

32. Bounded by the cylinders and 

; 33. Use a graphing calculator or computer to estimate the 
-coordinates of the points of intersection of the curves

and . If is the region bounded by
these curves, estimate .

; 34. Find the approximate volume of the solid in the first octant 
that is bounded by the planes , , and and
the cylinder . (Use a graphing device to estimate
the points of intersection.)

35–36 Find the volume of the solid by subtracting two volumes.

35. The solid enclosed by the parabolic cylinders ,
and the planes ,

36. The solid enclosed by the parabolic cylinder and the
planes , 

37–38 Sketch the solid whose volume is given by the iterated 
integral.

37. 38.

39–42 Use a computer algebra system to find the exact volume
of the solid.

39. Under the surface and above the region
bounded by the curves and for 

x � 2y � z � 1
x � y � 1 x 2 � y � 1

x � y 2 x � 4

z � xy
�1, 1� �4, 1� �1, 2�

z � x 2 � 3y 2

x � 0 y � 1 y � x z � 0

3x � 2y � z � 6

z � x y � x x � y � 2 z � 0

z � x 2 y � x 2

z � 0 y � 4

y 2 � z2 � 4 x � 2y,
x � 0 z � 0

x 2 � y 2 � 1 y � z
x � 0 z � 0

x 2 � y 2 � r 2 y 2 � z2 � r 2

x
y � x 4 y � 3x � x 2 D

xx
D x dA

y � x z � 0 z � x
y � cos x

y � 1 � x 2

y � x 2 � 1 x � y � z � 2
2x � 2y � z � 10 � 0

y � x 2

z � 3y z � 2 � y

y
1

0
y

1�x

0
�1 � x � y� dy dx y

1

0
y

1�x 2

0
�1 � x� dy dx

z � 1 � x 2y2

CAS

z � x 3y 4 � xy 2

y � x 3 � x y � x 2 � x x � 0

40. Between the paraboloids and
and inside the cylinder 

41. Enclosed by and 

42. Enclosed by and 

43–48 Sketch the region of integration and change the order of
integration.

43. 44.

45. 46.

47. 48.

49–54 Evaluate the integral by reversing the order of integration.

49. 50.

51. 52.

53.

54.

55–56 Express as a union of regions of type I or type II and
evaluate the integral.

55. 56.

57–58 Use Property 11 to estimate the value of the integral.

57. ,  is the quarter-circle with center the 

origin and radius in the first quadrant

58. ,  is the triangle enclosed by the lines 

, , and 

z � 1 � x 2 � y 2 z � 0

z � x 2 � y 2 z � 2y

y
1

0
y

y

0
f �x, y� dx dy y

2

0
y

4

x 2
f �x, y� dy dx

y
��2

0
y

cos x

0
f �x, y� dy dx y

2

�2
y

s4�y 2

0
f �x, y� dx dy

y
2

1
y

ln
 
x

0
f �x, y� dy dx y

1

0
y

��4

arctan x
f �x, y� dy dx

y
1

0
y

3

3y
e x2 

dx dy y
s�

0
y

s�

y
cos�x 2� dx dy

y
4

0
y

2

sx

1

y3 � 1
 dy dx y

1

0
y

1

x
e x�y dy dx

y
1

0
y

��2

arcsin y
cos x s1 � cos2x dx dy

y
8

0
y

2

sy3
ex4

dx dy

D

yy
D

x 2 dA yy
D

y dA

0

1

_1

_1 1

D
(1, 1)

x

y

0

_1

1

_1

x=y-Á

y=(x+1)@

y

x

yy
Q

e��x2�y2�2

dA Q

1
2

yy
T

sin4�x � y� dA T

y � 0 y � 2x x � 1

z � 2x 2 � y 2

x 2 � y 2 � 1z � 8 � x 2 � 2y 2

97817_15_ch15_p1016-1025.qk_97817_15_ch15_p1016-1025  11/8/10  3:35 PM  Page 1020

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES 1021

59–60 Find the average value of over the region .

59. ,  is the triangle with vertices , 
and 

60. ,  is enclosed by the curves , 
, and 

61. Prove Property 11.

62. In evaluating a double integral over a region , a sum of 
iterated integrals was obtained as follows:

Sketch the region and express the double integral as an 
iterated integral with reversed order of integration.

63–67 Use geometry or symmetry, or both, to evaluate the 
double integral.

63. ,  

f �x, y� � xy D �0, 0�, �1, 0�
�1, 3�

f �x, y� � x sin y D y � 0
y � x 2 x � 1

D

yy
D

f �x, y� dA � y
1

0
y

2y

0
f �x, y� dx dy � y

3

1
y

3�y

0
f �x, y� dx dy

D

yy
D

�x � 2� dA D � ��x, y� � 0 � y � s9 � x 2 �

Df 64. ,  

is the disk with center the origin and radius 

65. ,  

is the rectangle 

66. ,  

67. ,  

68. Graph the solid bounded by the plane and 
the paraboloid and find its exact volume.
(Use your CAS to do the graphing, to find the equations of 
the boundary curves of the region of integration, and to eval-
uate the double integral.)

yy
D

sR 2 � x 2 � y 2 dA

D R

yy
D

�2x � 3y� dA

D 0 � x � a, 0 � y � b

yy
D

�2 � x 2y 3 � y 2 sin x� dA

D � ��x, y� � � x � � � y � � 1�

yy
D

(ax 3 � by 3 � sa 2 � x 2 ) dA

D � ��a, a � ��b, b

CAS x � y � z � 1
z � 4 � x 2 � y 2

Suppose that we want to evaluate a double integral , where is one of the
regions shown in Figure 1. In either case the description of in terms of rectangular coor-
dinates is rather complicated, but is easily described using polar coordinates.

Recall from Figure 2 that the polar coordinates of a point are related to the rect-
angular coordinates by the equations

(See Section 10.3.)
The regions in Figure 1 are special cases of a polar rectangle

xx
R

f �x, y� dA R
R

R

FIGURE 1

x0

y

R

≈+¥=1

(a) R=s(r, ¨) | 0¯r¯1, 0¯¨¯2πd

x0

y

R

≈+¥=4

≈+¥=1

(b) R=s(r, ¨)  | 1¯r¯2, 0¯¨¯πd

�r, ��
�x, y�

r 2 � x 2 � y 2 x � r cos � y � r sin �

R � ��r, �� � a � r � b, 	 � � � 
�

15.4 Double Integrals in Polar Coordinates

O

y

x

¨

x

y
r

P(r, ¨)=P(x, y)

FIGURE 2
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1022 CHAPTER 15 MULTIPLE INTEGRALS

which is shown in Figure 3. In order to compute the double integral , where
is a polar rectangle, we divide the interval into subintervals of equal width

and we divide the interval into subintervals of equal
width . Then the circles and the rays divide the polar rect-
angle R into the small polar rectangles shown in Figure 4.

The “center” of the polar subrectangle

has polar coordinates

We compute the area of using the fact that the area of a sector of a circle with radius
and central angle is . Subtracting the areas of two such sectors, each of which has cen-
tral angle , we find that the area of is

Although we have defined the double integral in terms of ordinary rect-
angles, it can be shown that, for continuous functions , we always obtain the same 
answer using polar rectangles. The rectangular coordinates of the center of are

, so a typical Riemann sum is

If we write , then the Riemann sum in Equation 1 can be writ-
ten as

�r � �b � a��m �	, 
 n ��j�1, �j 
�� � �
 � 	��n r � ri � � �j

Rij

r=ri-1

FIGURE 3 Polar rectangle FIGURE 4 Dividing R into polar subrectangles

O

∫
å

r=a ¨=å

¨=∫
r=b

R

Î¨

¨=¨j

(ri
*, ¨j

*)

r=ri

Rij

O

¨=¨j-1

Rij � ��r, �� � ri�1 � r � ri, � j�1 � � � � j�

xxR f �x, y� dA R
�a, b m �ri�1, ri

ri* � 1
2 �ri�1 � ri � �j* � 1

2 ��j�1 � �j�

Rij r
� 1

2 r 2�
�� � �j � �j�1 Rij

�Ai � 1
2 ri

2 �� �
1
2 ri�1

2 �� � 1
2 �ri

2 � ri�1
2 � ��

� 1
2 �ri � ri�1 ��ri � ri�1 � �� � ri* �r ��

xx
R

f �x, y� dA
f

Rij

�ri* cos �j*, ri* sin � j*�

1 �
m

i�1
�
n

j�1
f �ri* cos � j*, ri* sin � j*� �Ai � �

m

i�1
�
n

j�1
f �ri* cos �j*, ri* sin �j*� ri* �r ��

t�r, �� � r f �r cos �, r sin ��

�
m

i�1
�
n

j�1
t�ri*, �j*� �r ��
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SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES 1023

which is a Riemann sum for the double integral

Therefore we have

Change to Polar Coordinates in a Double Integral If is continuous on a polar
rectangle given by , , where , then

The formula in says that we convert from rectangular to polar coordinates in a 
double integral by writing and , using the appropriate limits of inte- 

| gration for and , and replacing by . Be careful not to forget the additional 
factor on the right side of Formula 2. A classical method for remembering this is shown
in Figure 5, where the “infinitesimal” polar rectangle can be thought of as an ordinary rect-
angle with dimensions and and therefore has “area” 

Evaluate , where is the region in the upper half-plane
bounded by the circles and .

SOLUTION The region can be described as

It is the half-ring shown in Figure 1(b), and in polar coordinates it is given by ,
. Therefore, by Formula 2,

yy
R

f �x, y� dA � lim
m, nl �

�
m

i�1
�
n

j�1
f �ri* cos � j*, ri* sin � j*� �Ai

� y



	
y

b

a
f �r cos �, r sin �� r dr d�

2 f
R 0 � a � r � b 	 � � � 
 0 � 
 � 	 � 2�

yy
R

f �x, y� dA � y



	
y

b

a
f �r cos �, r sin �� r dr d�

x � r cos � y � r sin �
r � dA r dr d�

y



	
y

b

a
t�r, �� dr d�

� lim
m, nl �

�
m

i�1
�
n

j�1
t�ri*, �j*� �r �� � y




	
y

b

a
t�r, � � dr d�

2

r d� dr dA � r dr d�.

xx
R �3x � 4y 2 � dA R

x 2 � y 2 � 1 x 2 � y 2 � 4

R

R � ��x, y� � y � 0, 1 � x 2 � y 2 � 4�
1 � r � 2

0 � � � �

yy
R

�3x � 4y 2 � dA � y
�

0
y

2

1
�3r cos � � 4r 2 sin2�� r dr d�

� y
�

0
y

2

1
�3r 2 cos � � 4r 3 sin2�� dr d�

� y
�

0
[r 3 cos � � r 4 sin2�]r�1

r�2
d� � y

�

0
�7 cos � � 15 sin2�� d�

� y
�

0
[7 cos � �

15
2 �1 � cos 2��] d�

EXAMPLE 1

r

� 7 sin � �
15�

2
�

15

4
 sin 2��

0

�

�
15�

2

Here we use the trigonometric identity

See Section 7.2 for advice on integrating
trigonometric functions.

sin2� � 1
2�1 � cos 2��

O

d¨

r d¨

dr

dA

r

FIGURE 5
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1024 CHAPTER 15 MULTIPLE INTEGRALS

Find the volume of the solid bounded by the plane and the parabo-
loid .

SOLUTION If we put in the equation of the paraboloid, we get . This
means that the plane intersects the paraboloid in the circle , so the solid 
lies under the paraboloid and above the circular disk given by [see Fig-
ures 6 and 1(a)]. In polar coordinates is given by , . Since

, the volume is

If we had used rectangular coordinates instead of polar coordinates, then we would have
obtained

which is not easy to evaluate because it involves finding .

What we have done so far can be extended to the more complicated type of region 
shown in Figure 7. It’s similar to the type II rectangular regions considered in Section 15.3.
In fact, by combining Formula 2 in this section with Formula 15.3.5, we obtain the follow-
ing formula.

If is continuous on a polar region of the form

then

In particular, taking , , and in this formula, we see
that the area of the region bounded by , , and is

and this agrees with Formula 10.4.3.

Use a double integral to find the area enclosed by one loop of the four-
leaved rose .

SOLUTION From the sketch of the curve in Figure 8, we see that a loop is given by the
region

z � 0
z � 1 � x 2 � y 2

z � 0 x 2 � y 2 � 1
x 2 � y 2 � 1

D x 2 � y 2 � 1
D 0 � r � 1 0 � � � 2�

1 � x 2 � y 2 � 1 � r 2

V � yy
D

�1 � x 2 � y 2� dA � y
2�

0
y

1

0
�1 � r 2 � r dr d�

� y
2�

0
d� y

1

0
�r � r 3 � dr � 2�� r 2

2
�

r 4

4 �0

1

�
�

2

V � yy
D

�1 � x 2 � y 2 � dA � y
1

�1
y

s1�x2

�s1�x2
�1 � x 2 � y 2� dy dx

x �1 � x 2 �3�2 dx

EXAMPLE 2v

3 f

D � ��r, �� � 	 � � � 
, h1��� � r � h2����

yy
D

f �x, y� dA � y



	
y

h2���

h1���
f �r cos �, r sin �� r dr d�

f �x, y� � 1 h1��� � 0 h2��� � h���
D � � 	 � � 
 r � h���

A�D� � yy
D

1 dA � y



	
y

h���

0
r dr d�

� y



	
� r 2

2 �0

h���

d� � y



	

1
2 �h���2 d�

r � cos 2�

D � {�r, �� � ���4 � � � ��4, 0 � r � cos 2�}

v EXAMPLE 3

FIGURE 6

0 

D 
y 

(0, 0, 1) 

x 

z 

O

∫
å

r=h¡(¨)

¨=å

¨=∫
r=h™(¨)

D

FIGURE 7
D=s(r, ¨) | å¯¨¯∫, h¡(¨)¯r¯h™(¨)d

FIGURE 8

¨=
π
4

¨=_π
4
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SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES 1025

So the area is

Find the volume of the solid that lies under the paraboloid ,
above the -plane, and inside the cylinder .

SOLUTION The solid lies above the disk whose boundary circle has equation
or, after completing the square,

(See Figures 9 and 10.)

In polar coordinates we have and , so the boundary circle
becomes , or . Thus the disk is given by

and, by Formula 3, we have

A�D� � yy
D

dA � y
��4

���4
y

cos
 
2�

0
r dr d�

� y
��4

���4
[ 1

2 r 2]0
cos 2� d� � 1

2 y
��4

���4
cos2 2� d�

� 1
4 y

��4

���4
�1 � cos 4�� d� � 1

4 [� �
1
4 sin 4�]���4

��4
�

�

8

z � x 2 � y 2

xy x 2 � y 2 � 2x

D
x 2 � y 2 � 2x

�x � 1�2 � y 2 � 1

x 2 � y 2 � r 2 x � r cos �
r 2 � 2r cos � r � 2 cos � D

D � ��r, �� � ���2 � � � ��2, 0 � r � 2 cos � �

v EXAMPLE 4

V � yy
D

�x 2 � y 2� dA � y
��2

���2
y

2
 
cos �

0
r 2 r dr d� � y

��2

���2
� r 4

4 �0

2 cos �

d�

� 4 y
��2

���2
cos4� d� � 8 y

��2

0
cos4� d� � 8 y

��2

0
	 1 � cos 2�

2 
2

d�

� 2 y
��2

0
[1 � 2 cos 2� �

1
2 �1 � cos 4��] d�

� 2[3
2 � � sin 2� �

1
8 sin 4�]0

��2
� 2	3

2
	�

2 
 �
3�

2

FIGURE 9

0

y

x
1 2

D

(x-1)@+¥=1

 (or  r=2 cos ¨)

FIGURE 10

y

x

z
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1026 CHAPTER 15 MULTIPLE INTEGRALS

1–4 A region is shown. Decide whether to use polar coordinates
or rectangular coordinates and write as an iterated
integral, where  is an arbitrary continuous function on .

1. 2.

3. 4.

5 –6 Sketch the region whose area is given by the integral and eval-
uate the integral.

5. 6.

7–14 Evaluate the given integral by changing to polar coordinates.

7. , where is the top half of the disk with center the
origin and radius 5

8. , where is the region in the first quadrant
enclosed by the circle and the lines and

9. , where is the region in the first quadrant
between the circles with center the origin and radii 1 and 3

10. , where is the region that lies between the 

circles and with 

11. , where D is the region bounded by the
semicircle and the y-axis

12. , where is the disk with center the 
origin and radius 2

13. ,
where 

R
xx

R f �x, y� dA
f R

0 4

4
y

x
0

y

x_1 1

1 y=1-≈

0

y

x_1 1

1

0

y

x

6

3

y
3��4

��4
y

2

1
r dr d� y

�

��2
y

2 sin �

0
r dr d�

xx
D

x 2y dA D

xx
R

�2x � y� dA R
x 2 � y 2 � 4 x � 0
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x 2 � y 2 dA R

x 2 � y 2 � a2 x 2 � y 2 � b2 0 � a � b

xxD e�x2�y2
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x � s4 � y 2 

Dxx
D

cos sx 2 � y 2 dA

xx
R arctan� y�x� dA

R � ��x, y� � 1 � x 2 � y 2 � 4, 0 � y � x�

14. , where is the region in the first quadrant that lies
between the circles and 

15–18 Use a double integral to find the area of the region.

15. One loop of the rose 

16. The region enclosed by both of the cardioids
and 

17. The region inside the circle and outside the
circle 

18. The region inside the cardioid and outside the
circle 

19–27 Use polar coordinates to find the volume of the given solid.

19. Under the cone and above the disk 

20. Below the paraboloid and above the 
-plane

21. Enclosed by the hyperboloid and the 
plane 

22. Inside the sphere and outside the 
cylinder 

23. A sphere of radius 

24. Bounded by the paraboloid and the 
plane in the first octant

25. Above the cone and below the sphere

26. Bounded by the paraboloids and

27. Inside both the cylinder and the ellipsoid

28. (a) A cylindrical drill with radius is used to bore a hole
through the center of a sphere of radius . Find the volume
of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height of
the ring. Notice that the volume depends only on , not 
on or .

29–32 Evaluate the iterated integral by converting to polar 
coordinates.

29. 30.

31. 32.

DxxD
x dA

x 2 � y 2 � 2xx 2 � y 2 � 4

r � cos 3�

r � 1 � cos �
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r � 1 � cos �
r � 3 cos �

x 2 � y 2 � 4z � sx 2 � y 2 

z � 18 � 2x 2 � 2y 2

xy

�x 2 � y 2 � z2 � 1
z � 2

x 2 � y 2 � z 2 � 16
x 2 � y 2 � 4

a

z � 1 � 2x 2 � 2y 2

z � 7

z � sx 2 � y 2 

x 2 � y 2 � z2 � 1

z � 3x 2 � 3y 2

z � 4 � x 2 � y 2

x 2 � y 2 � 4
4x 2 � 4y 2 � z2 � 64

r1

r2

h
h

r2r1

y
a

0
y

0

�sa 2 �y 2 
x 2 y dx dyy

3

�3
y

s9�x 2

0
sin�x 2 � y2� dy dx

y
2

0
y

s2x�x 2

0
sx 2 � y 2 dy dxy
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0
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s2�y 2 

y
�x � y� dx dy

15.4 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS 1027

33–34 Express the double integral in terms of a single integral with
respect to . Then use your calculator to evaluate the integral cor-
rect to four decimal places.

33. , where is the disk with center the origin and
radius 1

34. , where is the portion of the disk
that lies in the first quadrant

35. A swimming pool is circular with a 40-ft diameter. The depth is
constant along east-west lines and increases linearly from 2 ft
at the south end to 7 ft at the north end. Find the volume of
water in the pool.

36. An agricultural sprinkler distributes water in a circular pattern
of radius 100 ft. It supplies water to a depth of feet per hour
at a distance of feet from the sprinkler.
(a) If , what is the total amount of water supplied

per hour to the region inside the circle of radius centered
at the sprinkler?

(b) Determine an expression for the average amount of water
per hour per square foot supplied to the region inside the
circle of radius .

37. Find the average value of the function
on the annular region , where .

38. Let be the disk with center the origin and radius . What is
the average distance from points in to the origin?

39. Use polar coordinates to combine the sum

into one double integral. Then evaluate the double integral.

r

DxxD
e �x2 �y2�2

dA

Dxx
D

xys1 � x 2 � y 2 dA
x 2 � y 2 � 1

e�r

r
0 � R � 100

R

R

f �x, y� � 1�sx 2 � y2 

0 � a � ba 2 � x 2 � y2 � b2

aD
D

y
1

1�s2
y

x

s1�x 2
xy dy dx � y

s2

1
y

x

0
xy dy dx � y

2

s2
y

s4�x 2

0
xy dy dx

40. (a) We define the improper integral (over the entire plane 

where is the disk with radius and center the origin. 
Show that

(b) An equivalent definition of the improper integral in part (a)
is

where is the square with vertices . Use this to
show that

(c) Deduce that

(d) By making the change of variable , show that

(This is a fundamental result for probability and statistics.)

41. Use the result of Exercise 40 part (c) to evaluate the following
integrals.

(a) (b)

y
�

��
y

�

��
e��x2�y2 � dA � �

yy
� 2

e��x2�y2 � dA � lim
a l �

yy
Sa

e��x2�y2 � dA

Sa �	a, 	a�

y
�

��
e�x2

dx y
�

��
e�y2

dy � �

y
�

��
e�x2

dx � s�

t � s2 x

y
�

��
e�x2�2 dx � s2�

y
�

0
x 2e�x2

dx y
�

0
sx e�x dx

� y
�

��
y

�

��
e��x2�y2 � dy dxI � yy

� 2

e��x2�y2 � dA

� lim
a l �

yy
Da

e��x2�y2 � dA

aDa

�2�

We have already seen one application of double integrals: computing volumes. Another
geometric application is finding areas of surfaces and this will be done in the next section.
In this section we explore physical applications such as computing mass, electric charge,
center of mass, and moment of inertia. We will see that these physical ideas are also impor-
tant when applied to probability density functions of two random variables.

Density and Mass
In Section 8.3 we were able to use single integrals to compute moments and the center of
mass of a thin plate or lamina with constant density. But now, equipped with the double
integral, we can consider a lamina with variable density. Suppose the lamina occupies a
region of the -plane and its density (in units of mass per unit area) at a point in

is given by , where is a continuous function on . This means thatD
�x, y�xyD

D

�x, y�


�x, y� � lim 
�m

�A

15.5 Applications of Double Integrals
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1028 CHAPTER 15 MULTIPLE INTEGRALS

where and are the mass and area of a small rectangle that contains and the limit
is taken as the dimensions of the rectangle approach 0. (See Figure 1.)

To find the total mass of the lamina we divide a rectangle containing into sub-
rectangles of the same size (as in Figure 2) and consider to be 0 outside . If we
choose a point in , then the mass of the part of the lamina that occupies is
approximately , where is the area of . If we add all such masses, we get
an approximation to the total mass:

If we now increase the number of subrectangles, we obtain the total mass of the lamina
as the limiting value of the approximations:

Physicists also consider other types of density that can be treated in the same manner. For
example, if an electric charge is distributed over a region and the charge density (in units
of charge per unit area) is given by at a point in , then the total charge is
given by

Charge is distributed over the triangular region in Figure 3 so that the
charge density at is , measured in coulombs per square meter ( ).
Find the total charge.

SOLUTION From Equation 2 and Figure 3 we have

Thus the total charge is C.

Moments and Centers of Mass
In Section 8.3 we found the center of mass of a lamina with constant density; here we con-
sider a lamina with variable density. Suppose the lamina occupies a region and has den-
sity function . Recall from Chapter 8 that we defined the moment of a particle about
an axis as the product of its mass and its directed distance from the axis. We divide into
small rectangles as in Figure 2. Then the mass of is approximately , so we
can approximate the moment of with respect to the -axis by

If we now add these quantities and take the limit as the number of subrectangles be comes 
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�xij*, yij*� �A �A Rij

m � 	
k

i�1
	

l

j�1

�xij*, yij*� �A

m

1 m � lim
k, l l �

	
k

i�1
	

l

j�1

�xij*, yij*� �A � yy

D


�x, y� dA

D
� �x, y� �x, y� D Q

2 Q � yy
D

� �x, y� dA

D
�x, y� ��x, y� � xy C�m2

Q � yy
D

��x, y� dA � y
1

0
y

1

1�x
xy dy dx

� y
1

0

x

y 2

2 �y�1�x

y�1

 dx � y
1

0

x

2
 �12 � �1 � x�2  dx

� 1
2 y

1

0
�2x 2 � x 3 � dx �

1

2
 
 2x 3

3
�

x 4

4 �0

1

�
5

24

5
24

EXAMPLE 1

�x, y��A�m

DRm
D
�x, y�Rij

D

�x, y�

D
Rij 
�xij*, yij*� �A

Rij x

�
�xij*, yij*� �A yij*

FIGURE 2

Rij
y

0 x

(xij, yij)* *

FIGURE 3

1

y

0 x

(1, 1)
y=1

y=1-x

D

FIGURE 1

0 x

y

D

(x, y)

97817_15_ch15_p1026-1035.qk_97817_15_ch15_p1026-1035  11/8/10  3:35 PM  Page 1028

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS 1029

large, we obtain the moment of the entire lamina about the x-axis:

Similarly, the moment about the y-axis is 

As before, we define the center of mass so that and . The physi-
cal significance is that the lamina behaves as if its entire mass is concentrated at its center
of mass. Thus the lamina balances horizontally when supported at its center of mass (see
Figure 4).

The coordinates of the center of mass of a lamina occupying the 
region D and having density function are

where the mass is given by

Find the mass and center of mass of a triangular lamina with vertices
, , and if the density function is .

SOLUTION The triangle is shown in Figure 5. (Note that the equation of the upper bound-
ary is .) The mass of the lamina is

Then the formulas in give
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1030 CHAPTER 15 MULTIPLE INTEGRALS

The center of mass is at the point .

The density at any point on a semicircular lamina is proportional to the
distance from the center of the circle. Find the center of mass of the lamina.

SOLUTION Let’s place the lamina as the upper half of the circle . (See Fig-
 ure 6.) Then the distance from a point to the center of the circle (the origin) is

. Therefore the density function is

where is some constant. Both the density function and the shape of the lamina suggest
that we convert to polar coordinates. Then and the region is given by

, . Thus the mass of the lamina is

Both the lamina and the density function are symmetric with respect to the -axis, so the
center of mass must lie on the -axis, that is, . The -coordinate is given by

Therefore the center of mass is located at the point .

Moment of Inertia
The moment of inertia (also called the second moment) of a particle of mass about an
axis is defined to be , where is the distance from the particle to the axis. We extend this
concept to a lamina with density function and occupying a region by proceeding
as we did for ordinary moments. We divide into small rect angles, approximate the
moment of inertia of each subrectangle about the -axis, and take the limit of the sum 
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Compare the location of the center of mass in
Example 3 with Example 4 in Section 8.3,
where we found that the center of mass of 
a lamina with the same shape but uniform
density is located at the point .�0, 4a��3���
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SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS 1031

as the number of subrectangles becomes large. The result is the moment of inertia of the
lamina about the x-axis:

Similarly, the moment of inertia about the y-axis is

It is also of interest to consider the moment of inertia about the origin, also called the
polar moment of inertia:

Note that .

Find the moments of inertia , , and of a homogeneous disk with
density , center the origin, and radius . 

SOLUTION The boundary of is the circle and in polar coordinates is
described by , . Let’s compute first:

Instead of computing and directly, we use the facts that and
(from the symmetry of the problem). Thus

In Example 4 notice that the mass of the disk is

so the moment of inertia of the disk about the origin (like a wheel about its axle) can be writ-
ten as

Thus if we increase the mass or the radius of the disk, we thereby increase the moment of
inertia. In general, the moment of inertia plays much the same role in rotational motion 
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1032 CHAPTER 15 MULTIPLE INTEGRALS

that mass plays in linear motion. The moment of inertia of a wheel is what makes it diffi-
cult to start or stop the rotation of the wheel, just as the mass of a car is what makes it dif-
ficult to start or stop the motion of the car.

The radius of gyration of a lamina about an axis is the number such that

where is the mass of the lamina and is the moment of inertia about the given axis.
Equation 9 says that if the mass of the lamina were concentrated at a distance from the
axis, then the moment of inertia of this “point mass” would be the same as the moment of
inertia of the lamina.

In particular, the radius of gyration with respect to the -axis and the radius of gyra-
tion with respect to the -axis are given by the equations

Thus is the point at which the mass of the lamina can be concentrated without chang-
ing the moments of inertia with respect to the coordinate axes. (Note the analogy with the
center of mass.)

Find the radius of gyration about the -axis of the disk in Example 4.

SOLUTION As noted, the mass of the disk is , so from Equations 10 we have

Therefore the radius of gyration about the -axis is , which is half the radius of
the disk.

Probability
In Section 8.5 we considered the probability density function of a continuous random vari-
able X. This means that for all x, , and the probability that X lies
between a and b is found by integrating f from a to b:

Now we consider a pair of continuous random variables X and Y, such as the lifetimes
of two components of a machine or the height and weight of an adult female chosen at ran-
dom. The joint density function of X and Y is a function f of two variables such that the
probability that lies in a region D is

In particular, if the region is a rectangle, the probability that X lies between a and b and 
Y lies between c and d is

(See Figure 7.)
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SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS 1033

Because probabilities aren’t negative and are measured on a scale from 0 to 1, the joint
density function has the following properties:

As in Exercise 40 in Section 15.4, the double integral over is an improper integral defined
as the limit of double integrals over expanding circles or squares, and we can write

If the joint density function for X and Y is given by

find the value of the constant C. Then find .

SOLUTION We find the value of C by ensuring that the double integral of f is equal 
to 1. Because outside the rectangle , we have

Therefore and so .
Now we can compute the probability that X is at most 7 and Y is at least 2:

FIGURE 7
The probability that X lies between a and b

and Y lies between c and d is the volume that
lies above the rectangle D=[a, b]x[c, d ] and

below the graph of the joint density function.

c 

D 

z=f(x, y) 

d 

y x 

z 

a 

b 

yy
�2

f �x, y� dA � 1f �x, y� � 0

�2

yy
�2

f �x, y� dA � y
�

��
y

�

��
f �x, y� dx dy � 1

EXAMPLE 6

f �x, y� � �0

C�x � 2y�
otherwise

if 0 � x � 10, 0 � y � 10

P�X � 7, Y � 2�

�0, 10 � �0, 10f �x, y� � 0

y
�

��
y

�

��
f �x, y� dy dx � y

10

0
y

10

0
C�x � 2y� dy dx � C y

10

0
[xy � y 2]y�0

y�10 dx

� C y
10

0
�10x � 100� dx � 1500C

C � 1
15001500C � 1

P�X � 7, Y � 2� � y
7

��
y

�

2
f �x, y� dy dx � y

7

0
y

10

2

1
1500 �x � 2y� dy dx

� 1
1500 y

7

0
[xy � y 2]y�2

y�10 dx � 1
1500 y

7

0
�8x � 96� dx

� 868
1500 � 0.5787
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1034 CHAPTER 15 MULTIPLE INTEGRALS

Suppose X is a random variable with probability density function and Y is a random
variable with density function . Then X and Y are called independent random vari-
ables if their joint density function is the product of their individual density functions:

In Section 8.5 we modeled waiting times by using exponential density functions

where is the mean waiting time. In the next example we consider a situation with two inde-
pendent waiting times.

The manager of a movie theater determines that the average time movie-
goers wait in line to buy a ticket for this week’s film is 10 minutes and the average time
they wait to buy popcorn is 5 minutes. Assuming that the waiting times are independent,
find the probability that a moviegoer waits a total of less than 20 minutes before taking
his or her seat.

SOLUTION Assuming that both the waiting time X for the ticket purchase and the waiting
time Y in the refreshment line are modeled by exponential probability density functions,
we can write the individual density functions as

Since X and Y are independent, the joint density function is the product:

We are asked for the probability that :

where D is the triangular region shown in Figure 8. Thus

This means that about 75% of the moviegoers wait less than 20 minutes before taking
their seats.

f1�x�
f2�y�

f �x, y� � f1�x� f2�y�

f �t� � �0

��1e�t��

if t � 0

if t � 0

�

EXAMPLE 7

f2�y� � �0
1
5 e�y�5

if y � 0

if y � 0
f1�x� � �0

1
10 e�x�10

if x � 0

if x � 0

f �x, y� � f1�x� f2�y� � � 1
50 e�x�10e�y�5

0

if x � 0, y � 0

otherwise

X � Y � 20

P�X � Y � 20� � P(�X, Y � � D)

P�X � Y � 20� � yy
D

f �x, y� dA � y
20

0
y

20�x

0

1
50 e�x�10e�y�5 dy dx

� 1
50 y

20

0
[e�x�10��5�e�y�5]y�0

y�20�x
dx

� 1
10 y

20

0
e�x�10�1 � e �x�20��5 � dx

� 1
10 y

20

0
�e�x�10 � e�4e x�10 � dx

� 1 � e�4 � 2e�2 � 0.7476

FIGURE 8
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SECTION 15.5 APPLICATIONS OF DOUBLE INTEGRALS 1035

Expected Values
Recall from Section 8.5 that if X is a random variable with probability density function
then its mean is

Now if X and Y are random variables with joint density function f, we define the X-mean
and Y-mean, also called the expected values of X and Y, to be

Notice how closely the expressions for and in resemble the moments and
of a lamina with density function in Equations 3 and 4. In fact, we can think of probabil-
ity as being like continuously distributed mass. We calculate probability the way we calcu-
late mass—by integrating a density function. And because the total “probability mass” is 1,
the expressions for and in show that we can think of the expected values of X and Y,

and , as the coordinates of the “center of mass” of the probability distribution.
In the next example we deal with normal distributions. As in Section 8.5, a single ran-

dom variable is normally distributed if its probability density function is of the form

where is the mean and is the standard deviation.

A factory produces (cylindrically shaped) roller bearings that are sold as
having diameter 4.0 cm and length 6.0 cm. In fact, the diameters X are normally distrib-
uted with mean 4.0 cm and standard deviation 0.01 cm while the lengths Y are normally
distributed with mean 6.0 cm and standard deviation 0.01 cm. Assuming that X and Y are
independent, write the joint density function and graph it. Find the probability that a bear-
ing randomly chosen from the production line has either length or diameter that differs
from the mean by more than 0.02 cm.

SOLUTION We are given that X and Y are normally distributed with ,
and . So the individual density functions for X and Y are

Since X and Y are independent, the joint density function is the product:

A graph of this function is shown in Figure 9.

f,

� � y
�

��
x f �x� dx

11 �1 � yy
�2

x f �x, y� dA �2 � yy
�2

yf �x, y� dA

�1 �2 Mx My




x y
�1 �2

f �x� �
1

�s2�
e��x���2��2�2�

� �

5

11

�1 � 4.0 �2 � 6.0,
�1 � �2 � 0.01

f1�x� �
1

0.01s2�
e��x�4�2�0.0002 f2�y� �

1

0.01s2�
e�� y�6�2�0.0002

f �x, y� � f1�x� f2�y�

�
1

0.0002�
e��x�4�2�0.0002e��y�6�2�0.0002

�
5000

�
e�5000��x�4�2�� y�6�2

EXAMPLE 8

FIGURE 9
Graph of the bivariate normal joint
density function in Example 8
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1036 CHAPTER 15 MULTIPLE INTEGRALS

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1. Electric charge is distributed over the rectangle ,
so that the charge density at is

(measured in coulombs per square meter).
Find the total charge on the rectangle.

2. Electric charge is distributed over the disk so 
that the charge density at is
(measured in coulombs per square meter). Find the total charge
on the disk.

3–10 Find the mass and center of mass of the lamina that occupies
the region and has the given density function .

3. ; 

4. ; 

5. is the triangular region with vertices , , ;

6. is the triangular region enclosed by the lines , ,
and ; 

7. is bounded by and ; 

8. is bounded by and ; 

9. ; 

10. is bounded by the parabolas and ;

11. A lamina occupies the part of the disk in the first
quadrant. Find its center of mass if the density at any point is
proportional to its distance from the -axis.

12. Find the center of mass of the lamina in Exercise 11 if the 
density at any point is proportional to the square of its 
distance from the origin.

0 � x � 5
2 � y � 5 �x, y�
� �x, y� � 2x � 4y

x 2 � y 2 � 1
�x, y� � �x, y� � sx 2 � y 2 

D �

D � ��x, y� � 1 � x � 3, 1 � y � 4� ��x, y� � ky 2

D � ��x, y� � 0 � x � a, 0 � y � b� ��x, y� � 1 � x 2 � y 2

D �0, 0� �2, 1� �0, 3�
��x, y� � x � y

D x � 0 y � x
2x � y � 6 ��x, y� � x 2

D y � 1 � x 2 y � 0 ��x, y� � ky

D y � x 2 ��x, y� � kx

D � ��x, y� � 0 � y � sin��x�L�, 0 � x � L� ��x, y� � y

D y � x 2 x � y 2

��x, y� � sx

x 2 � y 2 � 1

x

y � x � 2

13. The boundary of a lamina consists of the semicircles
and together with the portions 

of the -axis that join them. Find the center of mass of the lam-
ina if the density at any point is proportional to its distance
from the origin.

14. Find the center of mass of the lamina in Exercise 13 if the den-
sity at any point is inversely proportional to its distance from
the origin.

15. Find the center of mass of a lamina in the shape of an isos-
celes right triangle with equal sides of length if the density at
any point is proportional to the square of the distance from the
vertex opposite the hypotenuse.

16. A lamina occupies the region inside the circle
but outside the circle . Find the center of mass 
if the density at any point is inversely proportional to its
distance from the origin.

17. Find the moments of inertia , , for the lamina of 
Exercise 7.

18. Find the moments of inertia , , for the lamina of 
Exercise 12.

19. Find the moments of inertia , , for the lamina of 
Exercise 15.

20. Consider a square fan blade with sides of length 2 and the
lower left corner placed at the origin. If the density of the blade
is , is it more difficult to rotate the blade
about the -axis or the -axis?

21–24 A lamina with constant density occupies the
given region. Find the moments of inertia and and the radii of
gyration and .

21. The rectangle 

22. The triangle with vertices , , and 

x

a

x 2 � y 2 � 2y
x 2 � y 2 � 1

Ix Iy I0

Ix Iy I0

Ix Iy I0

��x, y� � 1 � 0.1x
x y

��x, y� � �
Ix Iy

x y

0 � x � b, 0 � y � h

�0, 0� �b, 0� �0, h�

y � s4 � x 2 y � s1 � x 2 

15.5 Exercises

Let’s first calculate the probability that both X and Y differ from their means by less
than 0.02 cm. Using a calculator or computer to estimate the integral, we have

Then the probability that either X or Y differs from its mean by more than 0.02 cm is
approximately

P�3.98 � X � 4.02, 5.98 � Y � 6.02� � y
4.02

3.98
y

6.02

5.98
f �x, y� dy dx

�
5000

�
y

4.02

3.98
y

6.02

5.98
e�5000��x�4�2�� y�6�2	 dy dx


 0.91

1 � 0.91 � 0.09
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SECTION 15.6 SURFACE AREA 1037

23. The part of the disk in the first quadrant

24. The region under the curve from to 

25–26 Use a computer algebra system to find the mass, center 
of mass, and moments of inertia of the lamina that occupies the
region and has the given density function.

25. is enclosed by the right loop of the four-leaved rose
;  

26. ;  

27. The joint density function for a pair of random variables
and is

(a) Find the value of the constant .
(b) Find .
(c) Find .

28. (a) Verify that

is a joint density function.
(b) If and are random variables whose joint density

function is the function in part (a), find

(i) (ii)
(c) Find the expected values of and .

29. Suppose and are random variables with joint density 
function

(a) Verify that is indeed a joint density function.
(b) Find the following probabilities.

(i) (ii)
(c) Find the expected values of and .

30. (a) A lamp has two bulbs of a type with an average lifetime
of 1000 hours. Assuming that we can model the proba-
bility of failure of these bulbs by an exponential density
function with mean , find the probability that
both of the lamp’s bulbs fail within 1000 hours.

x 2 � y 2 � a2

x � �x � 0y � sin x

CAS

D

X
Y

f �x, y� � �Cx�1 � y�
0

if 0 � x � 1, 0 � y � 2

otherwise

C
P�X � 1, Y � 1�
P�X � Y � 1�

f �x, y� � �4xy

0

if 0 � x � 1, 0 � y � 1

otherwise

YX
f

P(X 	
1
2 , Y �

1
2 )P(X 	

1
2 )

YX

YX

f �x, y� � �0.1e��0.5x�0.2y�

0

if x 	 0, y 	 0

otherwise

f

P�X � 2, Y � 4�P�Y 	 1�
YX


 � 1000

D
r � cos 2� ��x, y� � x 2 � y 2

D � ��x, y� � 0 � y � xe�x, 0 � x � 2 � ��x, y� � x 2y 2

(b) Another lamp has just one bulb of the same type as in
part (a). If one bulb burns out and is replaced by a bulb 
of the same type, find the probability that the two bulbs
fail within a total of 1000 hours.

31. Suppose that and are independent random variables,
where is normally distributed with mean 45 and standard
deviation 0.5 and is normally distributed with mean 20
and standard deviation 0.1.
(a) Find .
(b) Find .

32. Xavier and Yolanda both have classes that end at noon and
they agree to meet every day after class. They arrive at the
coffee shop independently. Xavier’s arrival time is and
Yolanda’s arrival time is , where and are measured in
minutes after noon. The individual density functions are

(Xavier arrives sometime after noon and is more likely 
to arrive promptly than late. Yolanda always arrives by 
12:10 PM and is more likely to arrive late than promptly.)
After Yolanda arrives, she’ll wait for up to half an hour for
Xavier, but he won’t wait for her. Find the probability that
they meet.

33. When studying the spread of an epidemic, we assume that
the probability that an infected individual will spread the
disease to an uninfected individual is a function of the dis-
tance between them. Consider a circular city of radius
10 miles in which the population is uniformly distributed.
For an uninfected individual at a fixed point ,
assume that the probability function is given by

where denotes the distance between points and .
(a) Suppose the exposure of a person to the disease is the 

sum of the probabilities of catching the disease from all
members of the population. Assume that the infected 
people are uniformly distributed throughout the city,
with infected individuals per square mile. Find a 
double integral that represents the exposure of a person
residing at .

(b) Evaluate the integral for the case in which is the center 
of the city and for the case in which is located on the
edge of the city. Where would you prefer to live?

X
Y X Y

f1�x� � �e�x

0

if x 	 0

if x � 0
f2�y� � � 1

50 y

0

if 0 � y � 10

otherwise

A�x0, y0 �

f �P� � 1
20 �20 � d�P, A�	

d�P, A� P A

k

A
A

A

YXCAS

X
Y

P�40 � X � 50, 20 � Y � 25�
P(4�X � 45�2 � 100�Y � 20�2 � 2)

In this section we apply double integrals to the problem of computing the area of a surface.
In Section 8.2 we found the area of a very special type of surface––a surface of revolu-
tion––by the methods of single-variable calculus. Here we compute the area of a surface
with equation , the graph of a function of two variables.

Let be a surface with equation , where has continuous partial derivatives.
For simplicity in deriving the surface area formula, we assume that and the

z � f �x, y�
fz � f �x, y�S

f �x, y� 	 0

15.6 Surface Area

In Section 16.6 we will deal with areas of more
general surfaces, called parametric surfaces, and
so this section need not be covered if that later
section will be covered.
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1038 CHAPTER 15 MULTIPLE INTEGRALS

domain of is a rectangle. We divide into small rectangles with area . 
If is the corner of closest to the origin, let , be the point on
directly above it (see Figure 1). The tangent plane to at is an approximation to near

. So the area of the part of this tangent plane (a parallelogram) that lies directly above
is an approximation to the area of the part of that lies directly above . Thus the

sum is an approximation to the total area of , and this approximation appears to
improve as the number of rectangles increases. Therefore we define the surface area of
to be

To find a formula that is more convenient than Equation 1 for computational purposes,
we let and be the vectors that start at and lie along the sides of the parallelogram 
with area . (See Figure 2.) Then . Recall from Section 14.3 that
and are the slopes of the tangent lines through in the directions of and .
Therefore

and

Thus

From Definition 1 we then have

and by the definition of a double integral we get the following formula.

The area of the surface with equation , where and
are continuous, is

D f D Rij �A � �x �y
�xi, yj � Rij Pij�xi, yj f �xi, yj�� S

S Pij S
Pij �Tij

Rij �Sij S Rij

�� �Tij S
S

A�S� � lim
m, n l 


m

i�1

n

j�1
�Tij

a b Pij

�Tij �Tij � � a � b � fx�xi, yj�
fy�xi, yj� Pij a b

a � �x i � fx�xi, yj� �x k

b � �y j � fy�xi, yj � �y k

a � b � � i
�x

0

j
0

�y

k
fx�xi, yj� �x

fy�xi, yj� �y �
� �fx�xi, yj� �x �y i � fy�xi, yj� �x �y j � �x �y k

� ��fx�xi, yj� i � fy�xi, yj�j � k	 �A

�Tij � � a � b � � s� fx�xi, yj �	2 � � fy�xi, yj�	2 � 1 �A

A�S� � lim
m, nl 


m

i�1

n

j�1
�Tij

� lim
m, nl 


m

i�1

n

j�1
s� fx�xi, yj�	2 � � fy�xi, yj�	2 � 1 �A

z � f �x, y�, �x, y� � D fx fy

A�S � � yy
D

s� fx�x, y�	2 � � fy�x, y�	2 � 1 dA

1

2

y

0

z

x

ÎTij

Pij

Îy

Îx

b
a

FIGURE 1 

FIGURE 2 
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x
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ÎSij

ÎTijPij

Îy

Îx

D
ÎARij

(xi, yj)
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SECTION 15.6 SURFACE AREA 1039

We will verify in Section 16.6 that this formula is consistent with our previous formula
for the area of a surface of revolution. If we use the alternative notation for partial deriva-
tives, we can rewrite Formula 2 as follows:

Notice the similarity between the surface area formula in Equation 3 and the arc length
formula from Section 8.1:

Find the surface area of the part of the surface that lies above
the triangular region in the -plane with vertices , , and .

SOLUTION The region is shown in Figure 3 and is described by

Using Formula 2 with , we get

Figure 4 shows the portion of the surface whose area we have just computed.

Find the area of the part of the paraboloid that lies under the
plane .

SOLUTION The plane intersects the paraboloid in the circle , . There-
fore the given surface lies above the disk with center the origin and radius 3. (See
Figure 5.) Using Formula 3, we have

Converting to polar coordinates, we obtain

z � x 2 � 2y
T xy �0, 0� �1, 0� �1, 1�

T

T � ��x, y� � 0 � x � 1, 0 � y � x�

f �x, y� � x 2 � 2y

A � yy
T

s�2x�2 � �2�2 � 1 dA � y
1

0
y

x

0
s4x 2 � 5 dy dx

� y
1

0
xs4x 2 � 5 dx � 1

8 � 2
3�4x 2 � 5�3�2]0

1
� 1

12 (27 � 5s5)

z � x 2 � y 2

z � 9

x 2 � y 2 � 9 z � 9
D

� yy
D

s1 � 4�x 2 � y 2� dA

A � y
2�

0
y

3

0
s1 � 4r 2 r dr d� � y

2�

0
d� y

3

0

1
8 s1 � 4r 2 �8r� dr

� 2� ( 1
8 ) 2

3�1 � 4r 2 �3�2]0
3

�
�

6
 (37s37 � 1)

EXAMPLE 2

EXAMPLE 1

3

L � y
b

a
�1 � � dy

dx�2
 dx

A�s� � yy
D

�1 � � �z

�x�2

� � �z

�y�2
 dA

A � yy
D

�1 � � �z

�x�2

� � �z

�y�2
 dA � yy

D

s1 � �2x�2 � �2y�2  dA

x

y=x

T
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1040 CHAPTER 15 MULTIPLE INTEGRALS

1–12 Find the area of the surface.

1. The part of the plane that lies above the 
rectangle 

2. The part of the plane that lies inside the
cylinder 

3. The part of the plane that lies in the 
first octant

4. The part of the surface that lies above
the triangle with vertices , , and 

5. The part of the cylinder that lies above the rect-
angle with vertices , , , and 

6. The part of the paraboloid that lies above 
the -plane

7. The part of the hyperbolic paraboloid that lies
between the cylinders and 

8. The surface , , 

9. The part of the surface that lies within the cylinder

10. The part of the sphere that lies above the
plane 

11. The part of the sphere that lies within the
cylinder and above the -plane

12. The part of the sphere that lies inside the
paraboloid 

13–14 Find the area of the surface correct to four decimal places
by expressing the area in terms of a single integral and using
your calculator to estimate the integral.

13. The part of the surface that lies above the disk

14. The part of the surface that lies inside the
cylinder 

15. (a) Use the Midpoint Rule for double integrals (see Sec -
tion 15.1) with four squares to estimate the surface area 
of the portion of the paraboloid that lies
above the square .

(b) Use a computer algebra system to approximate the sur-
face area in part (a) to four decimal places. Compare
with the answer to part (a).

z � 2 � 3x � 4y
�0, 5	 � �1, 4	

2x � 5y � z � 10
x 2 � y 2 � 9

3x � 2y � z � 6

z � 1 � 3x � 2y 2

�0, 0� �0, 1� �2, 1�

y 2 � z2 � 9
�0, 0� �4, 0� �0, 2� �4, 2�

z � 4 � x 2 � y 2

xy

z � y 2 � x 2

x 2 � y 2 � 1 x 2 � y 2 � 4

z � 2
3 �x 3�2 � y 3�2 � 0 � x � 1 0 � y � 1

z � xy
x 2 � y 2 � 1

x 2 � y 2 � z2 � 4
z � 1

x 2 � y 2 � z2 � a 2

x 2 � y 2 � ax xy

x 2 � y 2 � z2 � 4z
z � x 2 � y 2

z � e�x2�y2

x 2 � y 2 � 4

z � cos�x 2 � y 2�
x 2 � y 2 � 1

z � x 2 � y 2

�0, 1	 � �0, 1	
CAS

16. (a) Use the Midpoint Rule for double integrals with
to estimate the area of the surface

, , .
(b) Use a computer algebra system to approximate the sur-

face area in part (a) to four decimal places. Compare
with the answer to part (a).

17. Find the exact area of the surface ,
, .

18. Find the exact area of the surface

Illustrate by graphing the surface.

19. Find, to four decimal places, the area of the part of the sur-
face that lies above the disk .

20. Find, to four decimal places, the area of the part of the 
surface that lies above the square

. Illustrate by graphing this part of the
surface.

21. Show that the area of the part of the plane
that projects onto a region in the -plane with area
is .

22. If you attempt to use Formula 2 to find the area of the top
half of the sphere , you have a slight
problem because the double integral is improper. In fact, the
integrand has an infinite discontinuity at every point of the
boundary circle . However, the integral can 
be computed as the limit of the integral over the disk

as . Use this method to show that the
area of a sphere of radius is .

23. Find the area of the finite part of the paraboloid
cut off by the plane . [Hint: Project the surface onto
the -plane.]

24. The figure shows the surface created when the cylinder
intersects the cylinder . Find the 

area of this surface.

z � 1 � 2x � 3y � 4y 2

1 � x � 4 0 � y � 1

z � 1 � x � y � x 2 �2 � x � 1 �1 � y � 1

z � 1 � x 2 y 2 x 2 � y 2 � 1

z � �1 � x 2 ���1 � y 2 �
� x � � � y � � 1

z � ax � by � c
D xy A�D�

sa 2 � b 2 � 1 A�D�

x 2 � y 2 � z2 � a 2

x 2 � y 2 � a 2

x 2 � y 2 � t 2 t l a �

a 4�a 2

y � x 2 � z 2

y � 25
xz

y 2 � z 2 � 1 x 2 � z 2 � 1

z 

y 
x 

CAS

CAS

CAS

CAS

m � n � 2
z � xy � x 2 � y 2 0 � x � 2 0 � y � 2

CAS

15.6 Exercises

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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SECTION 15.7 TRIPLE INTEGRALS 1041

Just as we defined single integrals for functions of one variable and double integrals for
functions of two variables, so we can define triple integrals for functions of three variables.
Let’s first deal with the simplest case where is defined on a rectangular box:

The first step is to divide B into sub-boxes. We do this by dividing the interval into
l subintervals of equal width , dividing into m subintervals of width ,
and dividing into n subintervals of width . The planes through the endpoints of
these subintervals parallel to the coordinate planes divide the box into sub-boxes

which are shown in Figure 1. Each sub-box has volume .
Then we form the triple Riemann sum

where the sample point is in . By analogy with the definition of a double
integral (15.1.5), we define the triple integral as the limit of the triple Riemann sums in .

Definition The triple integral of over the box is

if this limit exists.

Again, the triple integral always exists if is continuous. We can choose the sample
point to be any point in the sub-box, but if we choose it to be the point we get a
simpler-looking expression for the triple integral:

Just as for double integrals, the practical method for evaluating triple integrals is to
express them as iterated integrals as follows.

Fubini’s Theorem for Triple Integrals If is continuous on the rectangular box
, then

The iterated integral on the right side of Fubini’s Theorem means that we integrate first
with respect to (keeping and fixed), then we integrate with respect to (keeping
fixed), and finally we integrate with respect to . There are five other possible orders in 

f

1 B � ��x, y, z� � a � x � b, c � y � d, r � z � s�
�a, b	

�xi�1, xi	 �x �c, d 	 �y
�r, s	 �z

B lmn

Bi jk � �xi�1, xi	 � �yj�1, yj	 � �zk�1, zk 	

�V � �x �y �z

2 
l

i�1

m

j�1

n

k�1
f �xij k* , yijk* , zijk* � �V

�xi jk* , yi jk* , zi jk* � Bi jk

2

3 f B

yyy
B

f �x, y, z� dV � lim
l, m, n l 


l

i�1

m

j�1

n

k�1
f �xi jk* , yi jk* , zi jk* � �V

f
�xi, yj, zk�

yyy
B

f �x, y, z� dV � lim
l, m, n l 


l

i�1

m

j�1

n

k�1
f �xi, yj, zk� �V

4 f
B � �a, b	 � �c, d 	 � �r, s	

yyy
B

f �x, y, z� dV � y
s

r
y

d

c
y

b

a
f �x, y, z� dx dy dz

zyzyx
z

15.7 Triple Integrals
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1042 CHAPTER 15 MULTIPLE INTEGRALS

which we can integrate, all of which give the same value. For instance, if we integrate with
respect to , then , and then , we have

Evaluate the triple integral , where is the rectangular box
given by

SOLUTION We could use any of the six possible orders of integration. If we choose to 
integrate with respect to , then , and then , we obtain

Now we define the triple integral over a general bounded region E in three-
dimensional space (a solid) by much the same procedure that we used for double integrals
(15.3.2). We enclose in a box of the type given by Equation 1. Then we define so
that it agrees with on but is 0 for points in that are outside . By definition,

This integral exists if is continuous and the boundary of is “reasonably smooth.” The
triple integral has essentially the same properties as the double integral (Properties 6–9 in
Section 15.3).

We restrict our attention to continuous functions and to certain simple types of regions.
A solid region is said to be of type 1 if it lies between the graphs of two continuous func-
tions of and , that is,

where is the projection of onto the -plane as shown in Figure 2. Notice that the
upper boundary of the solid is the surface with equation , while the lower
boundary is the surface .

By the same sort of argument that led to (15.3.3), it can be shown that if is a type 1
region given by Equation 5, then

The meaning of the inner integral on the right side of Equation 6 is that and are held
fixed, and therefore and are regarded as constants, while is inte-
grated with respect to .

yyy
B

f �x, y, z� dV � y
b

a
y

s

r
y

d

c
f �x, y, z� dy dz dx

v EXAMPLE 1 xxx
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xyz2 dV � y
3

0
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0
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�1
� x 2yz2

2 �
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0
� y 2z2

4 �
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4
 dz �
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�
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4

E B F
f E B E

yyy
E

f �x, y, z� dV � yyy
B

F�x, y, z� dV

f E

f
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x y

5 E � ��x, y, z� � �x, y� � D, u1�x, y� � z � u2�x, y��

D E xy
E z � u2�x, y�

z � u1�x, y�
E

6 yyy
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f �x, y, z� dV � yy
D

�y
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x y

xzy
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FIGURE 2
A type 1 solid region 
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SECTION 15.7 TRIPLE INTEGRALS 1043

In particular, if the projection of onto the -plane is a type I plane region (as in
Figure 3), then

and Equation 6 becomes

If, on the other hand, is a type II plane region (as in Figure 4), then

and Equation 6 becomes

Evaluate , where is the solid tetrahedron bounded by the four
planes , , , and .

SOLUTION When we set up a triple integral it’s wise to draw two diagrams: one of 
the solid region (see Figure 5) and one of its projection onto the -plane (see 
Fig ure 6). The lower boundary of the tetrahedron is the plane and the upper bound-
ary is the plane (or ), so we use and

in Formula 7. Notice that the planes and
intersect in the line (or ) in the -plane. So the projection of is
the triangular region shown in Figure 6, and we have

This description of as a type 1 region enables us to evaluate the integral as follows:

A solid region is of type 2 if it is of the form

E � ��x, y, z� � a � x � b, t1�x� � y � t2�x�, u1�x, y� � z � u2�x, y��

7 yyy
E

f �x, y, z� dV � y
b

a
y

t2�x�

t1�x�
y

u2�x, y�

u1�x, y�
f �x, y, z� dz dy dx

D

E � ��x, y, z� � c � y � d, h1�y� � x � h2�y�, u1�x, y� � z � u2�x, y��

8 yyy
E

f �x, y, z� dV � y
d

c
y

h2� y�

h1� y�
y

u2�x, y�

u1�x, y�
f �x, y, z� dz dx dy

EXAMPLE 2 xxxE z dV E
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E D xy
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x � y � z � 1 z � 1 � x � y u1�x, y� � 0
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x � y � 1 y � 1 � x xy E

9 E � ��x, y, z� � 0 � x � 1, 0 � y � 1 � x, 0 � z � 1 � x � y�

E
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1
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FIGURE 3
A type 1 solid region where the  
projection D is a type I plane region 
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1044 CHAPTER 15 MULTIPLE INTEGRALS

where, this time, is the projection of onto the -plane (see Figure 7). The back sur-
face is , the front surface is , and we have

Finally, a type 3 region is of the form

where is the projection of onto the -plane, is the left surface, and
is the right surface (see Figure 8). For this type of region we have

In each of Equations 10 and 11 there may be two possible expressions for the integral
depending on whether is a type I or type II plane region (and corresponding to Equa-
 tions 7 and 8).

Evaluate , where is the region bounded by the parabo-
loid and the plane .

SOLUTION The solid is shown in Figure 9. If we regard it as a type 1 region, then we
need to consider its projection onto the -plane, which is the parabolic region in
Figure 10. (The trace of in the plane is the parabola .)

From we obtain , so the lower boundary surface of is
and the upper surface is . Therefore the description of as

a type 1 region is

and so we obtain

10 yyy
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f �x, y, z� dV � yy
D
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u2� y, z�
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f �x, y, z� dx� dA
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FIGURE 10
Projection onto xy-plane
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A type 2 region

FIGURE 8
A type 3 region 

z 

y=u™(x, z) 

y=u¡(x, z) 

x 

0 

y 

D 
E 

Visual 15.7 illustrates how solid regions
(including the one in Figure 9) project onto 
coordinate planes.
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SECTION 15.7 TRIPLE INTEGRALS 1045

Although this expression is correct, it is extremely difficult to evaluate. So let’s
instead consider as a type 3 region. As such, its projection onto the -plane is the
disk shown in Figure 11.

Then the left boundary of is the paraboloid and the right boundary is
the plane , so taking and in Equation 11, we have

Although this integral could be written as

it’s easier to convert to polar coordinates in the -plane: , . This
gives

Express the iterated integral as a triple integral and
then rewrite it as an iterated integral in a different order, integrating first with respect to ,
then , and then .

SOLUTION We can write

where . This description of enables
us to write projections onto the three coordinate planes as follows:

on the -plane:

on the -plane:

on the -plane:

From the resulting sketches of the projections in Figure 12 we sketch the solid in Fig-
ure 13. We see that it is the solid enclosed by the planes , , and the
parabolic cylinder or .

If we integrate first with respect to , then , and then , we use an alternate descrip-
tion of :

Thus
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Projection onto xz-plane
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| The most difficult step in evaluating a triple
integral is setting up an expression for the region
of integration (such as Equation 9 in Example 2).
Remem   ber that the limits of integra tion in the
inner integral contain at most two variables, the
limits of integration in the middle integral con-
tain at most one variable, and the limits of inte-
gration in the outer integral must be constants.
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1046 CHAPTER 15 MULTIPLE INTEGRALS

Applications of Triple Integrals
Recall that if , then the single integral represents the area under the
curve from to , and if , then the double integral rep-
resents the volume under the surface and above . The corresponding inter-
pretation of a triple integral , where , is not very useful
because it would be the “hypervolume” of a four-dimensional object and, of course, that
is very difficult to visualize. (Remember that is just the domain of the function ; the
graph of lies in four-dimensional space.) Nonetheless, the triple integral
can be interpreted in different ways in different physical situations, depending on the phys-
ical interpretations of , , , and .

Let’s begin with the special case where for all points in . Then the triple
integral does represent the volume of :

For example, you can see this in the case of a type 1 region by putting in
Formula 6:

and from Section 15.3 we know this represents the volume that lies between the surfaces
and .

Use a triple integral to find the volume of the tetrahedron bounded by the
planes , , , and .

SOLUTION The tetrahedron and its projection onto the -plane are shown in Fig-
 ures 14 and 15. The lower boundary of is the plane and the upper boundary is the
plane , that is, .

Therefore we have

by the same calculation as in Example 4 in Section 15.3.
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f �x, y, z� � 1 E

E

12 V�E� � yyy
E

dV

f �x, y, z� � 1

yyy
E

1 dV � yy
D

�y
u2�x, y�

u1�x, y�
dz� dA � yy

D

�u2�x, y� � u1�x, y�� dA

z � u1�x, y� z � u2�x, y�

EXAMPLE 5 T
x � 2y � z � 2 x � 2y x � 0 z � 0

T D xy
T z � 0

x � 2y � z � 2 z � 2 � x � 2y

FIGURE 14

(or y=1- x/2)  

FIGURE 15

 y=x/2
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2

D

y

0

1

x1

x+2y=2

(0, 1, 0)

(0, 0, 2)

y

x

0

z

x+2y+z=2x=2y

”1,    , 0’1
2

T

V�T� � yyy
T

dV � y
1

0
y

1�x�2

x�2
y

2�x�2y

0
dz dy dx

� y
1

0
y

1�x�2

x�2
�2 � x � 2y� dy dx � 1
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SECTION 15.7 TRIPLE INTEGRALS 1047

(Notice that it is not necessary to use triple integrals to compute volumes. They 
simply give an alternative method for setting up the calculation.)

All the applications of double integrals in Section 15.5 can be immediately ex tended to
triple integrals. For example, if the density function of a solid object that occupies the
region is , in units of mass per unit volume, at any given point , then its
mass is

and its moments about the three coordinate planes are

The center of mass is located at the point , where

If the density is constant, the center of mass of the solid is called the centroid of . The
moments of inertia about the three coordinate axes are

As in Section 15.5, the total electric charge on a solid object occupying a region and
having charge density is

If we have three continuous random variables X, Y, and Z, their joint density function
is a function of three variables such that the probability that lies in E is

In particular,

The joint density function satisfies

�x, y, z���x, y, z�E

m � yyy
E

��x, y, z� dV13

Mxz � yyy
E

y ��x, y, z� dVMyz � yyy
E

x ��x, y, z� dV14

Mx y � yyy
E

z ��x, y, z� dV

�x, y, z �

z �
Mxy

m
y �

Mxz

m
x �

Myz

m
15

E

Iy � yyy
E

�x 2 � z2 � ��x, y, z� dVIx � yyy
E

�y 2 � z2� ��x, y, z� dV16

Iz � yyy
E

�x 2 � y 2� ��x, y, z� dV

�X, Y, Z�

P(�X, Y, Z� � E) � yyy
E

f �x, y, z� dV

P�a � X � b, c � Y � d, r � Z � s� � y
b

a
y

d

c
y

s

r
f �x, y, z� dz dy dx

y
�

��
y

�

��
y

�

��
f �x, y, z� dz dy dx � 1f �x, y, z� � 0

E
��x, y, z�

Q � yyy
E

��x, y, z� dV
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1048 CHAPTER 15 MULTIPLE INTEGRALS

Find the center of mass of a solid of constant density that is bounded by
the parabolic cylinder and the planes , , and .

SOLUTION The solid and its projection onto the -plane are shown in Figure 16. The
lower and upper surfaces of are the planes and , so we describe as a
type 1 region:

Then, if the density is , the mass is

Because of the symmetry of and about the -plane, we can immediately say that
and therefore . The other moments are

Therefore the center of mass is

x � y2 x � z z � 0 x � 1

E xy
E z � 0 z � x E

E � 	�x, y, z� 
 �1 � y � 1, y2 � x � 1, 0 � z � x�

��x, y, z� � �

m � yyy
E

� dV � y
1

�1
y

1

y2
y

x

0
� dz dx dy

� � y
1

�1
y

1

y2
x dx dy � � y

1

�1
� x 2

2 �x�y2

x�1

dy

�
�

2
 y

1

�1
�1 � y 4 � dy � � y

1

0
�1 � y 4� dy

� ��y �
y 5

5 �0

1

�
4�

5

E � xz
Mxz � 0 y � 0

Myz � yyy
E

x� dV � y
1

�1
y

1

y2 y
x

0
x� dz dx dy

� � y
1

�1
y

1

y2
x 2 dx dy � � y

1

�1
� x 3

3 �x�y2

x�1

dy

�
2�

3
 y

1

0
�1 � y 6� dy �

2�

3
 �y �

y 7

7 �0

1

�
4�

7

Mxy � yyy
E

z� dV � y
1

�1
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y2 y
x

0
z� dz dx dy

� � y
1
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1
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SECTION 15.7 TRIPLE INTEGRALS 1049

1. Evaluate the integral in Example 1, integrating first with
respect to , then , and then .

2. Evaluate the integral , where

using three different orders of integration.

3–8 Evaluate the iterated integral.

3. 4.

5. 6.

7.

8.

9–18 Evaluate the triple integral.

9. , where

10. , where

11. , where

12. , where lies below the plane and above the
triangular region with vertices , , and 

13. , where lies under the plane 
and above the region in the -plane bounded by the curves

, , and 

14. , where is bounded by the parabolic cylinders
and and the planes and 

15. , where is the solid tetrahedron with vertices
, , , and 

16. , where is the solid tetrahedron with vertices
, , , and 

17. , where is bounded by the paraboloid 
and the plane 

18. , where is bounded by the cylinder 
and the planes , , and in the first octant

y z x

xxx
E �xy � z 2� dV

E � 	�x, y, z� 
 0 � x � 2, 0 � y � 1, 0 � z � 3�

y
2

0
y

z 2

0
y

y�z

0
�2x � y� dx dy dz y

1

0
y

2x

x
y

y

0
2xyz dz dy dx

y
2

1
y

2z

0
y

ln x

0
xe�y dy dx dz y

1

0
y

1

0
y

s1�z 2

0

z

y � 1
 dx dz dy

y
	�2

0
y

y

0
y

x

0
cos�x � y � z� dz dx dy

y
s	

0
y

x

0
y

xz

0
x 2 sin y dy dz dx

xxxE
y dV

E � {�x, y, z� 
 0 � x � 3, 0 � y � x, x � y � z � x � y}

xxxE e z�y dV

E � 	�x, y, z� 
 0 � y � 1, y � x � 1, 0 � z � xy�
xxx

E

z

x 2 � z 2 dV

E � 	�x, y, z� 
 1 � y � 4, y � z � 4, 0 � x � z�
xxxE

sin y dV E z � x
�0, 0, 0� �	, 0, 0� �0, 	, 0�

xxxE
6xy dV E z � 1 � x � y

xy
y � sx y � 0 x � 1

xxxE
xy dV E

y � x 2 x � y 2 z � 0 z � x � y

xxx
T x 2 dV T

�0, 0, 0� �1, 0, 0� �0, 1, 0� �0, 0, 1�

xxx
T xyz dV T

�0, 0, 0� �1, 0, 0� �1, 1, 0� �1, 0, 1�

xxxE x dV E
x � 4y2 � 4z2 x � 4

xxxE z dV E y 2 � z2 � 9
x � 0 y � 3x z � 0

19–22 Use a triple integral to find the volume of the given solid.

19. The tetrahedron enclosed by the coordinate planes and the
plane 

20. The solid enclosed by the paraboloids and

21. The solid enclosed by the cylinder and the planes
and 

22. The solid enclosed by the cylinder and the
planes and 

23. (a) Express the volume of the wedge in the first octant that is
cut from the cylinder by the planes
and as a triple integral.

(b) Use either the Table of Integrals (on Reference Pages
6–10) or a computer algebra system to find the exact
value of the triple integral in part (a).

24. (a) In the Midpoint Rule for triple integrals we use a triple
Riemann sum to approximate a triple integral over a box

, where is evaluated at the center 
of the box . Use the Midpoint Rule to estimate 

, where is the cube defined by
, , . Divide into eight

cubes of equal size.
(b) Use a computer algebra system to approximate the inte-

gral in part (a) correct to the nearest integer. Compare
with the answer to part (a).

25–26 Use the Midpoint Rule for triple integrals (Exer cise 24) to
estimate the value of the integral. Divide into eight sub-boxes
of equal size.

25. , where

26. , where

27–28 Sketch the solid whose volume is given by the iterated 
integral.

27. 28.

29–32 Express the integral as an iterated integral
in six different ways, where is the solid bounded by the given
surfaces.

29. ,  

2x � y � z � 4

y � x 2 � z 2

y � 8 � x 2 � z 2

y � x 2

z � 0 y � z � 1

x 2 � z 2 � 4
y � �1 y � z � 4

y 2 � z2 � 1 y � x
x � 1

CAS

B f �x, y, z� �xi, yj, zk �
Bijk

xxxB sx 2 � y 2 � z 2  dV B
0 � x � 4 0 � y � 4 0 � z � 4 B

CAS

B

xxxB cos�xyz� dV

B � 	�x, y, z� 
 0 � x � 1, 0 � y � 1, 0 � z � 1�

xxxB sx e xyz dV
B � 	�x, y, z� 
 0 � x � 4, 0 � y � 1, 0 � z � 2�

y
1

0
y

1�x

0
y

2�2z

0
 dy dz dx y

2

0
y

2�y

0
y

4�y 2

0
 dx dz dy

xxxE f �x, y, z� dV
E

y � 0y � 4 � x 2 � 4z2

15.7 Exercises

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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1050 CHAPTER 15 MULTIPLE INTEGRALS

30. ,  ,  

31. ,  ,  

32. ,  ,  ,  

33. The figure shows the region of integration for the integral

Rewrite this integral as an equivalent iterated integral in the
five other orders.

34. The figure shows the region of integration for the integral

Rewrite this integral as an equivalent iterated integral in the
five other orders.

35–36 Write five other iterated integrals that are equal to the given
iterated integral.

35.

36.

37–38 Evaluate the triple integral using only geometric interpreta-
tion and symmetry.

37. , where is the cylindrical region

, 

x � 2x � �2y 2 � z2 � 9

y � 2z � 4z � 0y � x 2

x � y � 2z � 2z � 0y � 2x � 2

y
1

0
y

1

sx
y

1�y

0
f �x, y, z� dz dy dx

0 

z 

1 

x 

1 y 

z=1-y 

y=œ„x

y
1

0
y

1�x2

0
y

1�x

0
f �x, y, z� dy dz dx

1 

1 

1 

z=1-≈ 

y=1-x 

0 

y 

x 

z 

y
1

0
y

1

y
y

y

0
f �x, y, z� dz dx dy

y
1

0
y

1

y
y

z

0
f �x, y, z� dx dz dy

Cxxx
C

�4 � 5x 2yz 2� dV

�2 � z � 2x 2 � y 2 � 4

38. , where is the unit ball

39–42 Find the mass and center of mass of the solid with the
given density function .

39. is the solid of Exercise 13;  

40. is bounded by the parabolic cylinder and the
planes , , and ;  

41. is the cube given by , , ;

42. is the tetrahedron bounded by the planes , , 
, ;  

43–46 Assume that the solid has constant density .

43. Find the moments of inertia for a cube with side length if 
one vertex is located at the origin and three edges lie along
the coordinate axes.

44. Find the moments of inertia for a rectangular brick with
dimensions , , and and mass if the center of the brick
is situated at the origin and the edges are parallel to the coor-
dinate axes.

45. Find the moment of inertia about the -axis of the solid 
cylinder , .

46. Find the moment of inertia about the -axis of the solid cone
.

47–48 Set up, but do not evaluate, integral expressions for 
(a) the mass, (b) the center of mass, and (c) the moment of 
inertia about the -axis.

47. The solid of Exercise 21;  

48. The hemisphere , ; 

49. Let be the solid in the first octant bounded by the cylinder
and the planes , , and with the

density function . Use a com-
puter algebra system to find the exact values of the 
following quantities for .
(a) The mass
(b) The center of mass
(c) The moment of inertia about the -axis

50. If is the solid of Exercise 18 with density function
, find the following quantities, correct 

to three decimal places.
(a) The mass
(b) The center of mass
(c) The moment of inertia about the -axis

BxxxB
�z 3 � sin y � 3� dV

x 2 � y 2 � z 2 � 1

E
�

� �x, y, z� � 2E

z � 1 � y 2E
� �x, y, z� � 4z � 0x � 0x � z � 1

0 � z � a0 � y � a0 � x � aE
� �x, y, z� � x 2 � y 2 � z2

y � 0x � 0E
� �x, y, z� � yx � y � z � 1z � 0

k

L

Mcba

z
0 � z � hx 2 � y 2 � a 2

z
sx 2 � y 2 � z � h

z

� �x, y, z� � sx 2 � y 2 

z � 0x 2 � y 2 � z2 � 1
� �x, y, z� � sx 2 � y 2 � z 2 

ECAS

z � 0x � 0y � zx 2 � y 2 � 1
� �x, y, z� � 1 � x � y � z

E

z

ECAS

� �x, y, z� � x 2 � y 2

z
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SECTION 15.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES 1051

51. The joint density function for random variables , , and is
if , and

otherwise.
(a) Find the value of the constant .
(b) Find .
(c) Find .

52. Suppose , , and are random variables with joint density
function if , , ,
and otherwise.
(a) Find the value of the constant .
(b) Find .
(c) Find .

53–54 The average value of a function over a solid
region is defined to be 

ZYX
0 � x � 2, 0 � y � 2, 0 � z � 2f �x, y, z� � Cxyz

f �x, y, z� � 0
C

P�X � 1, Y � 1, Z � 1�
P�X � Y � Z � 1�

ZYX
z � 0y � 0x � 0f �x, y, z� � Ce��0.5x�0.2y�0.1z�

f �x, y, z� � 0
C

P�X � 1, Y � 1�
P�X � 1, Y � 1, Z � 1�

E
f �x, y, z�

fave �
1

V�E� yyy
E

f �x, y, z� dV

where is the volume of . For instance, if is a density 
function, then is the average density of .

53. Find the average value of the function over 
the cube with side length that lies in the first octant with one
vertex at the origin and edges parallel to the coordinate axes.

54. Find the average value of the function
over the region enclosed by the paraboloid 
and the plane .

55. (a) Find the region for which the triple integral 

is a maximum.
(b) Use a computer algebra system to calculate the exact 

maximum value of the triple integral in part (a).

V�E � E �
�ave E

f �x, y, z� � xyz
L

f �x, y, z� � x 2z � y 2z
z � 1 � x 2 � y 2

z � 0

E

yyy
E

�1 � x 2 � 2y 2 � 3z 2� dV

CAS

D I S C O V E R Y  P R O J E C T VOLUMES OF HYPERSPHERES

In this project we find formulas for the volume enclosed by a hypersphere in -dimensional space.

1. Use a double integral and trigonometric substitution, together with Formula 64 in the Table
of Integrals, to find the area of a circle with radius .

2. Use a triple integral and trigonometric substitution to find the volume of a sphere with 
radius .

3. Use a quadruple integral to find the hypervolume enclosed by the hypersphere
in . (Use only trigonometric substitution and the reduction 

formulas for or .)

4. Use an -tuple integral to find the volume enclosed by a hypersphere of radius in 
-dimensional space .  [Hint: The formulas are different for even and odd.]

n

r

r

x 2 � y 2 � z 2 � w 2 � r 2 �4

x sinnx dx x cosnx dx

n r
n �n n n

In plane geometry the polar coordinate system is used to give a convenient description of
certain curves and regions. (See Section 10.3.) Figure 1 enables us to recall the connection
between polar and Cartesian coordinates. If the point has Cartesian coordinates and
polar coordinates , then, from the figure,

In three dimensions there is a coordinate system, called cylindrical coordinates, that is
similar to polar coordinates and gives convenient descriptions of some commonly occur-
ring surfaces and solids. As we will see, some triple integrals are much easier to evaluate
in cylindrical coordinates.

�x, y�P
�r, 
�

y � r sin 
x � r cos 


tan 
 �
y

x
r 2 � x 2 � y 2

15.8 Triple Integrals in Cylindrical Coordinates

O

y

x

¨

x

y
r

P(r, ̈ )=P(x, y)

FIGURE 1 
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1052 CHAPTER 15 MULTIPLE INTEGRALS

Cylindrical Coordinates
In the cylindrical coordinate system, a point in three-dimensional space is represented
by the ordered triple , where and are polar coordinates of the projection of onto
the -plane and is the directed distance from the -plane to . (See Figure 2.)

To convert from cylindrical to rectangular coordinates, we use the equations

whereas to convert from rectangular to cylindrical coordinates, we use

(a) Plot the point with cylindrical coordinates and find its rectangular 
coordinates.
(b) Find cylindrical coordinates of the point with rectangular coordinates .

SOLUTION
(a) The point with cylindrical coordinates is plotted in Figure 3. From
Equations 1, its rectangular coordinates are

Thus the point is in rectangular coordinates.

(b) From Equations 2 we have

so    

Therefore one set of cylindrical coordinates is . Another is
. As with polar coordinates, there are infinitely many choices.

Cylindrical coordinates are useful in problems that involve symmetry about an axis, and
the -axis is chosen to coincide with this axis of symmetry. For instance, the axis of the cir-
cular cylinder with Cartesian equation is the -axis. In cylindrical coordinates
this cylinder has the very simple equation . (See Figure 4.) This is the reason for the
name “cylindrical” coordinates.

P
�r, 
, z� r 
 P

xy z xy P

1 x � r cos 
 y � r sin 
 z � z

2 r 2 � x 2 � y 2 tan 
 �
y

x
z � z

EXAMPLE 1
�2, 2	�3, 1�

�3, �3, �7�

�2, 2	�3, 1�

x � 2 cos 
2	

3
� 2��

1

2 � �1

y � 2 sin 
2	

3
� 2�s3

2  � s3

z � 1

(�1, s3 , 1)

r � s32 � ��3�2 � 3s2

tan 
 �
�3

3
� �1 
 �

7	

4
� 2n	

z � �7

(3s2 , 7	�4, �7)
(3s2 , �	�4, �7)

z
zx 2 � y 2 � c 2

r � c

O

r

z

¨

(r, ̈ , 0)

P(r, ̈ , z)

FIGURE 2
The cylindrical coordinates of a point
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y

FIGURE 4
r=c, a cylinder
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FIGURE 3
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SECTION 15.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES 1053

Describe the surface whose equation in cylindrical coordinates is .

SOLUTION The equation says that the -value, or height, of each point on the surface is
the same as r, the distance from the point to the -axis. Because doesn’t appear, it can
vary. So any horizontal trace in the plane is a circle of radius k. These
traces suggest that the surface is a cone. This prediction can be confirmed by converting
the equation into rectangular coordinates. From the first equation in we have

We recognize the equation (by comparison with Table 1 in Section 12.6) as
being a circular cone whose axis is the -axis (see Figure 5).

Evaluating Triple Integrals with Cylindrical Coordinates
Suppose that is a type 1 region whose projection onto the -plane is conveniently
described in polar coordinates (see Figure 6). In particular, suppose that is continuous
and

where is given in polar coordinates by

We know from Equation 15.7.6 that

But we also know how to evaluate double integrals in polar coordinates. In fact, combin-
ing Equation 3 with Equation 15.4.3, we obtain

EXAMPLE 2 z � r

z
z 


z � k �k � 0�

2

z2 � r 2 � x 2 � y 2

z2 � x 2 � y 2

z

E D xy
f

E � 	�x, y, z� 
 �x, y� � D, u1�x, y� � z � u2�x, y��

D

D � 	�r, 
� 
 � � 
 � , h1�
� � r � h2�
��

FIGURE 6
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1054 CHAPTER 15 MULTIPLE INTEGRALS

Formula 4 is the formula for triple integration in cylindrical coordinates. It says that
we convert a triple integral from rectangular to cylindrical coordinates by writing

, , leaving as it is, using the appropriate limits of integration for , 
, and , and replacing by . (Figure 7 shows how to remember this.) It is 

worthwhile to use this formula when is a solid region easily described in cylindrical 
coordinates, and especially when the function involves the expression .

A solid lies within the cylinder , below the plane ,
and above the paraboloid . (See Figure 8.) The density at any point is
proportional to its distance from the axis of the cylinder. Find the mass of .

SOLUTION In cylindrical coordinates the cylinder is and the paraboloid is
, so we can write

Since the density at is proportional to the distance from the -axis, the density
function is

where is the proportionality constant. Therefore, from Formula 15.7.13, the mass of
is

Evaluate .

SOLUTION This iterated integral is a triple integral over the solid region 

and the projection of onto the -plane is the disk . The lower sur face of
is the cone and its upper surface is the plane . (See Fig ure 9.)

This region has a much simpler description in cylindrical coordinates:

Therefore we have

x � r cos 
 y � r sin 
 z z
r 
 dV r dz dr d


E
f �x, y, z� x 2 � y2

v EXAMPLE 3 E x 2 � y 2 � 1 z � 4
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E
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, z� 
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SECTION 15.8 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES 1055

1–2 Plot the point whose cylindrical coordinates are given. Then
find the rectangular coordinates of the point.

1. (a) (b)

2. (a) (b)

3–4 Change from rectangular to cylindrical coordinates.

3. (a) (b)

4. (a) (b)

5–6 Describe in words the surface whose equation is given.

5. 6.

7–8 Identify the surface whose equation is given.

7. 8.

9–10 Write the equations in cylindrical coordinates.

9. (a) (b)

10. (a) (b)

11–12 Sketch the solid described by the given inequalities.

11. ,  ,  

12. ,  

13. A cylindrical shell is 20 cm long, with inner radius 6 cm and
outer radius 7 cm. Write inequalities that describe the shell 
in an appropriate coordinate system. Explain how you have
positioned the coordinate system with respect to the shell.

; 14. Use a graphing device to draw the solid enclosed by the 
paraboloids and .

15–16 Sketch the solid whose volume is given by the integral 
and evaluate the integral.

15. 16.

17–28 Use cylindrical coordinates.

17. Evaluate , where is the region that lies
inside the cylinder and between the planes

and .

�4, 	�3, �2� �2, �	�2, 1�

(s2 , 3	�4, 2) �1, 1, 1�

��1, 1, 1� (�2, 2s3 , 3)

(2s3, 2, �1) �4, �3, 2�


 � 	�4 r � 5

z � 4 � r 2 2r 2 � z2 � 1

x 2 � x � y 2 � z 2 � 1 z � x 2 � y 2

3x � 2y � z � 6 �x 2 � y 2 � z2 � 1

0 � r � 2 �	�2 � 
 � 	�2 0 � z � 1

0 � 
 � 	�2 r � z � 2

z � x 2 � y 2 z � 5 � x 2 � y 2

y
	�2

�	�2
y

2

0
y

r2

0
r dz dr d
 y

2

0
y

2	

0
y

r

0
r dz d
 dr

xxx
E sx 2 � y 2 dV E

x 2 � y 2 � 16
z � �5 z � 4

18. Evaluate , where is enclosed by the paraboloid

and the plane .

19. Evaluate , where is the solid in the first
octant that lies under the paraboloid .

20. Evaluate , where is enclosed by the planes 

and and by the cylinders and
.

21. Evaluate , where is the solid that lies within the 

cylinder , above the plane , and below the
cone .

22. Find the volume of the solid that lies within both the cylinder
and the sphere .

23. Find the volume of the solid that is enclosed by the cone
and the sphere .

24. Find the volume of the solid that lies between the paraboloid
and the sphere .

25. (a) Find the volume of the region bounded by the parabo-
loids and .

(b) Find the centroid of (the center of mass in the case
where the density is constant).

26. (a) Find the volume of the solid that the cylinder
cuts out of the sphere of radius centered at the origin.

; (b) Illustrate the solid of part (a) by graphing the sphere and
the cylinder on the same screen.

27. Find the mass and center of mass of the solid bounded by
the paraboloid and the plane if

has constant density .

28. Find the mass of a ball given by if the
density at any point is proportional to its distance from the 
-axis.

29–30 Evaluate the integral by changing to cylindrical coordinates.

29.

30.

xxx
E �x � y � z� dV E

z � 4 � x 2 � y 2

xxx
E x dV E z � 0

z � x � y � 5 x 2 � y 2 � 4
x 2 � y 2 � 9

xxxE x 2 dV E

x 2 � y 2 � 1 z � 0
z2 � 4x 2 � 4y 2

x 2 � y 2 � 1 x 2 � y 2 � z2 � 4

z � sx 2 � y 2 x 2 � y 2 � z 2 � 2

z � x 2 � y 2 x 2 � y 2 � z 2 � 2

E
z � x 2 � y 2 z � 36 � 3x 2 � 3y 2

E

r � a cos 

a

S
z � 4x 2 � 4y 2 z � a �a � 0�

S K

B x 2 � y 2 � z2 � a 2

z

y
2

�2
y

s4�y 2

�s4�y 2 
y

2

sx 2�y 2 
xz dz dx dy

y
3

�3
y

s9�x 2 

0
y

9�x 2�y 2

0
sx2 � y2 dz dy dx

ExxxE
z dV

z � 4z � x 2 � y 2

15.8 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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1056 CHAPTER 15 MULTIPLE INTEGRALS

31. When studying the formation of mountain ranges, geolo gists
estimate the amount of work required to lift a moun tain
from sea level. Consider a mountain that is essentially in the
shape of a right circular cone. Suppose that the weight den-
sity of the material in the vicinity of a point is and
the height is .
(a) Find a definite integral that represents the total work

done in forming the mountain.
(b) Assume that Mount Fuji in Japan is in the shape of a

right circular cone with radius 62,000 ft, height
12,400 ft, and density a constant 200 lb�ft . How much
work was done in forming Mount Fuji if the land was 
initially at sea level?

t�P�P
h�P�

3

L A B O R AT O R Y  P R O J E C T THE INTERSECTION OF THREE CYLINDERS

The figure shows the solid enclosed by three circular cylinders with the same diameter that inter-
sect at right angles. In this project we compute its volume and determine how its shape changes if
the cylinders have different diameters.

1. Sketch carefully the solid enclosed by the three cylinders , , and
. Indicate the positions of the coordinate axes and label the faces with the

equations of the corresponding cylinders.

2. Find the volume of the solid in Problem 1.

3. Use a computer algebra system to draw the edges of the solid.

4. What happens to the solid in Problem 1 if the radius of the first cylinder is different 
from 1? Illustrate with a hand-drawn sketch or a computer graph.

5. If the first cylinder is , where , set up, but do not evaluate, a double
integral for the volume of the solid. What if ?

x 2 � y 2 � 1 x 2 � z 2 � 1
y 2 � z 2 � 1

CAS

x 2 � y 2 � a 2 a � 1
a � 1

Computer algebra system requiredCAS
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES 1057

15.9 Triple Integrals in Spherical Coordinates

Another useful coordinate system in three dimensions is the spherical coordinate system.
It simplifies the evaluation of triple integrals over regions bounded by spheres or cones.

Spherical Coordinates
The spherical coordinates of a point in space are shown in Figure 1, where

is the distance from the origin to , is the same angle as in cylindrical coordi-
nates, and is the angle between the positive -axis and the line segment . Note that

The spherical coordinate system is especially useful in problems where there is symmetry
about a point, and the origin is placed at this point. For example, the sphere with center the
origin and radius has the simple equation (see Figure 2); this is the reason for 
the name “spherical” coordinates. The graph of the equation is a vertical half-plane
(see Figure 3), and the equation represents a half-cone with the axis as its axis (see
Figure 4).

The relationship between rectangular and spherical coordinates can be seen from Fig-
 ure 5. From triangles and we have

But and , so to convert from spherical to rectangular coordinates, we
use the equations

Also, the distance formula shows that

We use this equation in converting from rectangular to spherical coordinates.

��, �, �� P
� � � OP � P �

� z OP

� � 0 0 	 � 	 


c � � c
� � c

� � c z-

FIGURE 2  ∏= c , a sphere FIGURE 3  ¨=c, a half-plane FIGURE 4  ̇ =c, a half-cone

0 

c 

0 
0 

c 

0<c<π/2

0 
c 

π/2<c<π

z 

x 

y 

z 

x 

y 

z 

y 

x 

z 

y 

x 

OPQ OPP�

z � � cos � r � � sin �

x � r cos � y � r sin �

1 x � � sin � cos � y � � sin � sin � z � � cos �

2 �2 � x 2 � y 2 � z2

FIGURE 1
The spherical coordinates of a point
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The point is given in spherical coordinates. Plot the point
and find its rectangular coordinates.

SOLUTION We plot the point in Figure 6. From Equations 1 we have

Thus the point is in rectangular coordinates.

The point is given in rectangular coordinates. Find spheri-
cal coordinates for this point.

SOLUTION From Equation 2 we have

and so Equations 1 give

(Note that because .) Therefore spherical coordinates of the
given point are .

Evaluating Triple Integrals with Spherical Coordinates
In the spherical coordinate system the counterpart of a rectangular box is a spherical
wedge

where and , and . Although we defined triple integrals by
dividing solids into small boxes, it can be shown that dividing a solid into small spherical
wedges always gives the same result. So we divide into smaller spherical wedges by
means of equally spaced spheres , half-planes , and half-cones . Fig-
ure 7 shows that is approximately a rectangular box with dimensions , (arc of
a circle with radius angle ), and (arc of a circle with radius
angle ). So an approximation to the volume of is given by

In fact, it can be shown, with the aid of the Mean Value Theorem (Exercise 47), that the vol-
ume of is given exactly by

EXAMPLE 1v �2, 
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�3�
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FIGURE 6
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES 1059

where is some point in . Let be the rectangular coordinates of
this point. Then

But this sum is a Riemann sum for the function

Consequently, we have arrived at the following formula for triple integration in spheri-
cal coordinates.

where is a spherical wedge given by

Formula 3 says that we convert a triple integral from rectangular coordinates to spher i-
cal coordinates by writing

using the appropriate limits of integration, and replacing by . This is
illustrated in Figure 8.

This formula can be extended to include more general spherical regions such as

In this case the formula is the same as in except that the limits of integration for are
and .

Usually, spherical coordinates are used in triple integrals when surfaces such as cones and
spheres form the boundary of the region of integration.
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1060 CHAPTER 15 MULTIPLE INTEGRALS

Evaluate where is the unit ball:

SOLUTION Since the boundary of is a sphere, we use spherical coordinates:

In addition, spherical coordinates are appropriate because

Thus gives

NOTE It would have been extremely awkward to evaluate the integral in Example 3 with-
out spherical coordinates. In rectangular coordinates the iterated integral would have been

Use spherical coordinates to find the volume of the solid that lies above
the cone and below the sphere . (See Figure 9.)

SOLUTION Notice that the sphere passes through the origin and has center . We
write the equation of the sphere in spherical coordinates as

The equation of the cone can be written as

This gives , or . Therefore the description of the solid in 
spherical coordinates is

BxxxB
e �x2�y2�z2�3�2

dV,EXAMPLE 3v

B � 	�x, y, z� � x 2 � y 2 � z2 	 1

B

B � 	��, �, �� � 0 	 � 	 1, 0 	 � 	 2
, 0 	 � 	 



x 2 � y 2 � z2 � �2

3

yyy
B

e �x 2�y 2�z 2�3�2

dV � y



0
y

2


0
y

1

0
e�� 2�3�2

�2 sin � d� d� d�

� y



0
sin � d� y

2


0
d� y

1

0
�2e �3

d�

� [�cos �]0

 �2
� [ 1

3e
�3 ]0

1
� 4

3
 �e � 1�

e �x2�y2�z2�3�2

dz dy dxy
1

�1
y

s1�x 2 

�s1�x 2 y
s1�x2�y2 

�s1�x2�y2

EXAMPLE 4v
x 2 � y 2 � z2 � zz � sx 2 � y 2 

FIGURE 9

(0, 0, 1)

≈+¥+z@=z

z=œ„„„„„≈+¥
π

4

y

x

z

(0, 0, 12 )

� � cos �or�2 � � cos �

� cos � � s�2 sin2� cos2� � �2 sin 2� sin 2� � � sin �

E� � 
�4sin � � cos �

E � 	��, �, �� � 0 	 � 	 2
, 0 	 � 	 
�4, 0 	 � 	 cos �
FIGURE 10

Figure 10 gives another look (this time drawn
by Maple) at the solid of Example 4.
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SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES 1061

1–2 Plot the point whose spherical coordinates are given. Then find
the rectangular coordinates of the point.

1. (a) (b)

2. (a) (b)

3–4 Change from rectangular to spherical coordinates.

3. (a) (b)

4. (a) (b)

5–6 Describe in words the surface whose equation is given.

5. 6.

7–8 Identify the surface whose equation is given.

7. 8.

�6, 
�3, 
�6� �3, 
�2, 3
�4�

�2, 
�2, 
�2� �4, �
�4, 
�3�

�0, �2, 0� (�1, 1, �s2 )

(1, 0, s3 ) (s3 , �1, 2s3 )

� � 
�3 � � 3

� � sin � sin � � 2 �sin2� sin2� � cos2�� � 9

9–10 Write the equation in spherical coordinates.

9. (a) (b)

10. (a) (b)

11–14 Sketch the solid described by the given inequalities.

11. ,  ,  

12. ,  ,  

13. ,  

14. ,  

15. A solid lies above the cone and below the
sphere . Write a description of the solid in
terms of inequalities involving spherical coordinates.

16. (a) Find inequalities that describe a hollow ball with diameter
30 cm and thickness 0.5 cm. Explain how you have
positioned the coordinate system that you have chosen.

x 2 � 2x � y 2 � z 2 � 0 x � 2y � 3z � 1

2 	 � 	 4 0 	 � 	 
�3 0 	 � 	 


1 	 � 	 2 0 	 � 	 
�2 
�2 	 � 	 3
�2

� 	 1 3
�4 	 � 	 


� 	 2 � 	 csc �

z � sx 2 � y 2 

x 2 � y 2 � z2 � z

x 2 � z2 � 9z2 � x 2 � y 2

15.9 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

Figure 11 shows how E is swept out if we integrate first with respect to , then , and
then . The volume of E is

� �
�

V�E� � yyy
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dV � y
2


0
y


�4

0
y

cos
 
�

0
�2 sin � d� d� d�

� y
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0
d� y


�4

0
sin � �3

3 �
��0

��cos �

d�

�
2


3
 y


�4

0
sin � cos3� d� �

2


3
 �

cos4�

4 �
0


�4

�



8

FIGURE 11
¨ varies from 0 to 2π.

z

yx

z

yx

∏ varies from 0 to cos ˙

while ˙ and ̈   are constant.

z

yx

˙ varies from 0 to π/4

 while ¨ is constant.

Visual 15.9 shows an animation of 
Figure 11.
TEC
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1062 CHAPTER 15 MULTIPLE INTEGRALS

(b) Suppose the ball is cut in half. Write inequalities that
describe one of the halves.

17–18 Sketch the solid whose volume is given by the integral 
and evaluate the integral.

17.

18.

19–20 Set up the triple integral of an arbitrary continuous function
in cylindrical or spherical coordinates over the solid

shown.

19. 20.

21–34 Use spherical coordinates.

21. Evaluate , where is the ball with 
center the origin and radius 5.

22. Evaluate , where is the solid

hemisphere , .

23. Evaluate , where lies between the spheres

and .

24. Evaluate , where is the solid hemisphere

, .

25. Evaluate , where is the portion of the unit

ball that lies in the first octant.

26. Evaluate , where lies between the spheres 
and and above the cone .

27. Find the volume of the part of the ball that lies between
the cones and .

28. Find the average distance from a point in a ball of radius to
its center.

29. (a) Find the volume of the solid that lies above the cone
and below the sphere .

(b) Find the centroid of the solid in part (a).

30. Find the volume of the solid that lies within the sphere
, above the -plane, and below the cone

.

31. (a) Find the centroid of the solid in Example 4.
(b) Find the moment of inertia about the -axis for this solid.

y

�6

0
y


�2

0
y

3

0
�2 sin � d� d� d�

y
2


0
y





�2
y

2

1
�2 sin � d� d� d�

f �x, y, z�

z 

x 
y 

3 

2 

z 

x y 2 
1 

xxxB �x 2 � y 2 � z2 �2 dV B

xxxH �9 � x 2 � y 2 � dV H

x 2 � y 2 � z2 	 9 z � 0

Exxx
E

�x 2 � y 2� dV

x 2 � y 2 � z 2 � 9x 2 � y 2 � z 2 � 4

Exxx
E

y 2 dV

y � 0x 2 � y 2 � z2 	 9

Exxx
E

xex2�y2� z2 

dV

x 2 � y 2 � z 2 	 1

ExxxE xyz dV
� � 
�3� � 4� � 2

� 	 a
� � 
�3� � 
�6

a

� � 4 cos �� � 
�3

xyx 2 � y 2 � z 2 � 4
z � sx 2 � y 2 

z

32. Let be a solid hemisphere of radius whose density at any
point is proportional to its distance from the center of the base.
(a) Find the mass of .
(b) Find the center of mass of .
(c) Find the moment of inertia of about its axis.

33. (a) Find the centroid of a solid homogeneous hemisphere of
radius .

(b) Find the moment of inertia of the solid in part (a) about a
diameter of its base.

34. Find the mass and center of mass of a solid hemisphere of
radius if the density at any point is proportional to its 
distance from the base.

35–38 Use cylindrical or spherical coordinates, whichever seems
more appropriate.

35. Find the volume and centroid of the solid that lies 
above the cone and below the sphere

.

36. Find the volume of the smaller wedge cut from a sphere of
radius by two planes that intersect along a diameter at an
angle of .

37. Evaluate , where lies above the paraboloid 
and below the plane . Use either the

Table of Integrals (on Reference Pages 6–10) or a computer
algebra system to evaluate the integral.

38. (a) Find the volume enclosed by the torus .
(b) Use a computer to draw the torus.

39–41 Evaluate the integral by changing to spherical coordinates.

39.

40.

41.

42. A model for the density of the earth’s atmosphere near its
surface is

where (the distance from the center of the earth) is mea-
sured in meters and is measured in kilograms per cubic
meter. If we take the surface of the earth to be a sphere with
radius 6370 km, then this model is a reasonable one for

. Use this model to estimate
the mass of the atmosphere between the ground and an altitude
of 5 km.

; 43. Use a graphing device to draw a silo consisting of a cylinder
with radius 3 and height 10 surmounted by a hemisphere.

H
H

H

a

a

E
z � sx 2 � y 2 

x 2 � y 2 � z2 � 1

a

�6

ExxxE z dVCAS

z � 2yz � x 2 � y 2

CAS � � sin �

y
1

0
y

s1�x 2 

0
y

s2�x 2�y 2 

sx 2�y 2 
xy dz dy dx

y
a

�a
y

sa 2�y 2 

�sa 2�y 2 y
sa 2�x 2�y 2 

�sa 2�x 2�y 2 
�x 2z � y 2z � z3� dz dx dy

y
2

�2
y

s4�x 2 

�s4�x 2 y
2�s4�x 2�y 2 

2�s4�x 2�y 2 
�x 2 � y 2 � z 2�3�2 dz dy dx

�

� � 619.09 � 0.000097�

�
�

6.370 � 106 	 � 	 6.375 � 106

aH
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APPLIED PROJECT ROLLER DERBY 1063

44. The latitude and longitude of a point in the Northern
Hemisphere are related to spherical coordinates , , as
follows. We take the origin to be the center of the earth and
the positive -axis to pass through the North Pole. The posi-
tive -axis passes through the point where the prime merid-
ian (the meridian through Greenwich, England) intersects
the equator. Then the latitude of is and the
longitude is . Find the great-circle distance
from Los Angeles (lat. N, long. W) to Mon-
tréal (lat. N, long. W). Take the radius of the
earth to be 3960 mi. (A great circle is the circle of intersec-
tion of a sphere and a plane through the center of the sphere.)

45. The surfaces have been used as
models for tumors. The “bumpy sphere” with and

is shown. Use a computer algebra system to find the
volume it encloses.

P
���

z
x

 � 90� � ��P
� � 360� � ��

118.25�34.06�
73.60�45.50�

� � 1 �
1
5 sin m� sin n�CAS

m � 6
n � 5

46. Show that

(The improper triple integral is defined as the limit of a 
triple integral over a solid sphere as the radius of the sphere
increases indefinitely.)

47. (a) Use cylindrical coordinates to show that the volume of 
the solid bounded above by the sphere and
below by the cone (or ), where

, is

(b) Deduce that the volume of the spherical wedge given by
, , is

(c) Use the Mean Value Theorem to show that the volume in
part (b) can be written as

where lies between and , lies between and 
, , , and .

�1 	 � 	 � 2 �1 	 � 	 � 2 �1 	 � 	 � 2

�V �
� 2

3 � �1
3

3
 �cos �1 � cos � 2 ��� 2 � �1 �

�V � �� 2 sin �
�

�� �� ��

�� �1 � 2 �
�

�1

� 2 �� � � 2 � �1 �� � �2 � �1 �� � � 2 � �1

y
�

��
y

�

��
y

�

��
sx 2 � y 2 � z2 e��x2�y 2�z2� dx dy dz � 2


r 2 � z2 � a 2

z � r cot � 0 � � � 0

0 � � 0 � 
�2

V �
2
a 3

3
 �1 � cos� 0 �

A P P L I E D  P R O J E C T ROLLER DERBY

Suppose that a solid ball (a marble), a hollow ball (a squash ball), a solid cylinder (a steel bar), and
a hollow cylinder (a lead pipe) roll down a slope. Which of these objects reaches the bottom first?
(Make a guess before proceeding.)

To answer this question, we consider a ball or cylinder with mass , radius , and moment of
inertia (about the axis of rotation). If the vertical drop is , then the potential energy at the top
is . Suppose the object reaches the bottom with velocity and angular velocity , so .
The kinetic energy at the bottom consists of two parts: from translation (moving down the
slope) and from rotation. If we assume that energy loss from rolling friction is negligible,
then conservation of energy gives

1. Show that

2. If is the vertical distance traveled at time then the same reasoning as used in 
Problem 1 shows that at any time . Use this result to show that 
satisfies the differential equation

where is the angle of inclination of the plane.

m r
I h

mth v � v � �r
1
2 mv2

1
2 I�2

mth � 1
2 mv2 �

1
2 I�2

v2 �
2th

1 � I*
where I* �

I

mr 2

y�t� t,
v2 � 2ty��1 � I*� t y

dy

dt
� � 2t

1 � I*
�sin �sy



å

h
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1064 CHAPTER 15 MULTIPLE INTEGRALS

In one-dimensional calculus we often use a change of variable (a substitution) to simplify
an integral. By reversing the roles of and , we can write the Substitution Rule (4.5.5) as

where and , . Another way of writing Formula 1 is as follows:

A change of variables can also be useful in double integrals. We have already seen one
example of this: conversion to polar coordinates. The new variables and are related to
the old variables and by the equations

and the change of variables formula (15.4.2) can be written as

where is the region in the -plane that corresponds to the region in the -plane.
More generally, we consider a change of variables that is given by a transformation

from the -plane to the -plane:

where and are related to and by the equations

or, as we sometimes write,

We usually assume that is a C transformation, which means that and have contin-
uous first-order partial derivatives.

ux

y
b

a
f �x� dx � y

d

c
f �t�u�� t��u� du1

b � t�d �a � t�c�x � t�u�

y
b

a
f �x� dx � y

d

c
f �x�u��

dx

du
du2

�r
yx

y � r sin �x � r cos �

yy
R

f �x, y� dA � yy
S

f �r cos �, r sin �� r dr d�

xyRr�S
T

xyuv

T�u, v� � �x, y�

vuyx

y � h�u, v�x � t�u, v�3

y � y�u, v�x � x�u, v�

ht
1T

15.10 Change of Variables in Multiple Integrals

3. By solving the differential equation in Problem 2, show that the total travel time is

This shows that the object with the smallest value of wins the race.

4. Show that for a solid cylinder and for a hollow cylinder.

5. Calculate for a partly hollow ball with inner radius and outer radius . Express your
answer in terms of . What happens as and as ?

6. Show that for a solid ball and for a hollow ball. Thus the objects finish in the
following order: solid ball, solid cylinder, hollow ball, hollow cylinder.

I*

I* � 1
2 I* � 1

I* a r
b � a�r a l 0 a l r

I* � 2
5 I* � 2

3

T � �2h�1 � I*�
t sin2
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SECTION 15.10 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS 1065

A transformation is really just a function whose domain and range are both subsets
of . If , then the point is called the image of the point .
If no two points have the same image, is called one-to-one. Figure 1 shows the effect of
a transformation on a region in the -plane. transforms into a region in the 

-plane called the image of S, consisting of the images of all points in .

If is a one-to-one transformation, then it has an inverse transformation from the
-plane to the -plane and it may be possible to solve Equations 3 for and in terms

of and :

A transformation is defined by the equations

Find the image of the square .

SOLUTION The transformation maps the boundary of into the boundary of the image. So
we begin by finding the images of the sides of . The first side, , is given by

. (See Figure 2.) From the given equations we have , , and so
. Thus is mapped into the line segment from to in the -plane.

The second side, is and, putting in the given equations, we
get

Eliminating , we obtain

which is part of a parabola. Similarly, is given by , whose image is
the parabolic arc

Finally, is given by whose image is , , that is,
. (Notice that as we move around the square in the counterclockwise direc-

tion, we also move around the parabolic region in the counterclockwise direction.) The
image of is the region (shown in Figure 2) bounded by the -axis and the parabolas
given by Equations 4 and 5.
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1066 CHAPTER 15 MULTIPLE INTEGRALS

Now let’s see how a change of variables affects a double integral. We start with a small
rectangle in the -plane whose lower left corner is the point and whose dimen-
sions are and . (See Figure 3.)

The image of is a region in the -plane, one of whose boundary points is
. The vector

is the position vector of the image of the point . The equation of the lower side of
is , whose image curve is given by the vector function . The tangent vector
at to this image curve is

Similarly, the tangent vector at to the image curve of the left side of (namely,
) is

We can approximate the image region by a parallelogram determined by the
secant vectors

shown in Figure 4. But

and so

Similarly

This means that we can approximate R by a parallelogram determined by the vectors
and . (See Figure 5.) Therefore we can approximate the area of by the area

of this parallelogram, which, from Section 12.4, is

�u0, v0 �uvS
�v�u
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SECTION 15.10 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS 1067

Computing the cross product, we obtain

i j k

The determinant that arises in this calculation is called the Jacobian of the transforma tion
and is given a special notation.

Definition The Jacobian of the transformation given by and
is

With this notation we can use Equation 6 to give an approximation to the area of :

where the Jacobian is evaluated at .
Next we divide a region in the -plane into rectangles and call their images in the
-plane . (See Figure 6.)

Applying the approximation to each we approximate the double integral of
over as follows:
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The Jacobian is named after the German mathe-
matician Carl Gustav Jacob Jacobi (1804–1851).
Although the French mathematician Cauchy first
used these special determinants involving par-
tial derivatives, Jacobi developed them into a
method for evaluating multiple integrals.
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1068 CHAPTER 15 MULTIPLE INTEGRALS

where the Jacobian is evaluated at . Notice that this double sum is a Riemann sum
for the integral

The foregoing argument suggests that the following theorem is true. (A full proof is
given in books on advanced calculus.)

Change of Variables in a Double Integral Suppose that is a transformation
whose Jacobian is nonzero and that maps a region in the -plane onto a region

in the -plane. Suppose that is continuous on and that and are type I or
type II plane regions. Suppose also that is one-to-one, except perhaps on the
boundary of . Then

Theorem 9 says that we change from an integral in and to an integral in and by
expressing and in terms of and and writing

Notice the similarity between Theorem 9 and the one-dimensional formula in Equation 2.
Instead of the derivative , we have the absolute value of the Jacobian, that is,

.
As a first illustration of Theorem 9, we show that the formula for integration in polar

coordinates is just a special case. Here the transformation from the -plane to the 
-plane is given by

and the geometry of the transformation is shown in Figure 7. maps an ordinary rectangle
in the -plane to a polar rectangle in the -plane. The Jacobian of is

Thus Theorem 9 gives

which is the same as Formula 15.4.2.

yy
S

f (t�u, v�, h�u, v�) � ��x, y�
��u, v� � du dv

9 T C1

S uv
R xy f R R S

T
S

yy
R

f �x, y� dA � yy
S

f (x�u, v�, y�u, v�) � ��x, y�
��u, v� � du dv

x y u v
x y u v

dA � � ��x, y�
��u, v� � du dv

dx�du

� ��x, y����u, v� �
T r�

xy

x � t�r, �� � r cos � y � h�r, �� � r sin �

T
r� xy T

��x, y�
��r, ��

� � �x

�r

�y

�r

�x

��

�y

�� � � � cos �

sin �

�r sin �

r cos � � � r cos2� � r sin2� � r � 0

yy
R

f �x, y� dx dy � yy
S

f �r cos �, r sin �� � ��x, y�
��r, �� � dr d�

� y
	



y

b

a
f �r cos �, r sin �� r dr d�

�ui, vj�

FIGURE 7
The polar coordinate transformation

0

y

x

¨=∫ r=b

¨=år=a

∫
å

R

0

¨

∫

å
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¨=∫

r=a

¨=å

r=bS

T
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SECTION 15.10 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS 1069

Use the change of variables , to evaluate the integral
, where is the region bounded by the -axis and the parabolas 

and , .

SOLUTION The region is pictured in Figure 2 (on page 1065). In Example 1 we discov-
ered that , where is the square . Indeed, the reason for making
the change of variables to evaluate the integral is that is a much simpler region than .
First we need to compute the Jacobian:

Therefore, by Theorem 9,

NOTE Example 2 was not a very difficult problem to solve because we were given a
suitable change of variables. If we are not supplied with a transformation, then the first step
is to think of an appropriate change of variables. If is difficult to integrate, then the
form of may suggest a transformation. If the region of integration is awkward,
then the transformation should be chosen so that the corresponding region in the -plane
has a convenient description.

Evaluate the integral , where is the trapezoidal region with
vertices , , , and .

SOLUTION Since it isn’t easy to integrate , we make a change of variables sug-
gested by the form of this function:

These equations define a transformation from the -plane to the -plane. Theo-
rem 9 talks about a transformation from the -plane to the -plane. It is obtained 
by solving Equations 10 for and :

The Jacobian of is

x � u 2 � v2 y � 2uv
xxR

y dA R x y 2 � 4 � 4x
y 2 � 4 � 4x y � 0

R
T �S � � R S 	0, 1
 � 	0, 1


S R

��x, y�
��u, v�

� � �x

�u

�y

�u

�x

�v

�y

�v � � � 2u

2v

�2v

2u � � 4u 2 � 4v 2 � 0

yy
R

y dA � yy
S

2uv � ��x, y�
��u, v� � dA � y

1

0
y

1

0
�2uv�4�u2 � v 2� du dv

� 8 y
1

0
y

1

0
�u3v � uv3� du dv � 8 y

1

0
[ 1

4u4v �
1
2 u2v3]u�1

u�0 dv

� y
1

0
�2v � 4v3 � dv � [v2 � v4 ]0

1
� 2

f �x, y�
f �x, y� R

S uv

EXAMPLE 3 xx
R e �x�y���x�y� dA R

�1, 0� �2, 0� �0, �2� �0, �1�

e �x�y���x�y�

10 u � x � y v � x � y

T �1 xy uv
T uv xy

x y

11 x � 1
2 �u � v� y � 1

2 �u � v�

T

EXAMPLE 2

��x, y�
��u, v�

� � �x

�u

�y

�u

�x

�v

�y

�v � � � 1
2
1
2

�
1
2

�
1
2

� � �
1
2
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1070 CHAPTER 15 MULTIPLE INTEGRALS

To find the region in the -plane corresponding to , we note that the sides of lie on
the lines

and, from either Equations 10 or Equations 11, the image lines in the -plane are

Thus the region is the trapezoidal region with vertices , , , and
shown in Figure 8. Since

Theorem 9 gives

Triple Integrals
There is a similar change of variables formula for triple integrals. Let be a transfor-
mation that maps a region in -space onto a region in -space by means of the
equations

The Jacobian of is the following determinant:

Under hypotheses similar to those in Theorem 9, we have the following formula for triple
integrals:

Use Formula 13 to derive the formula for triple integration in spherical
coordinates.

SOLUTION Here the change of variables is given by

S uv R R

y � 0 x � y � 2 x � 0 x � y � 1

uv

u � v v � 2 u � �v v � 1

S �1, 1� �2, 2� ��2, 2�
��1, 1�

S � ��u, v� � 1 � v � 2, �v � u � v�

yy
R

e �x�y���x�y� dA � yy
S

eu�v � ��x, y�
��u, v� � du dv

� y
2

1
y

v

�v
eu�v( 1

2 ) du dv � 1
2 y

2

1
[ve u�v ]u��v

u�v
dv

� 1
2 y

2

1
�e � e�1�v dv � 3

4 �e � e�1 �

T
S uvw R xyz

x � t�u, v, w� y � h�u, v, w� z � k�u, v, w�

T 3 � 3

12
��x, y, z�
��u, v, w�

� � �x

�u

�y

�u

�z

�u

�x

�v

�y

�v

�z

�v

�x

�w

�y

�w

�z

�w

�

13 yyy
R

f �x, y, z� dV � yyy
S

f (x�u, v, w�, y�u, v, w�, z�u, v, w�) � ��x, y, z�
��u, v, w� � du dv dw

v EXAMPLE 4

z �  cos �y �  sin � sin �x �  sin � cos �

FIGURE 8
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SECTION 15.10 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS 1071

1–6 Find the Jacobian of the transformation.

1. ,  

2. ,  

3. ,  

4. ,  

5. ,  ,  

6. ,  ,  

7–10 Find the image of the set under the given transformation.

7. ;

8. is the square bounded by the lines , , ,
;  , 

9. is the triangular region with vertices , , ;
, 

10. is the disk given by ;  , 

y � u � 3vx � 5u � v

y � u�vx � uv

y � er cos �x � e�r sin �

y � es�tx � es�t

z � w�uy � v�wx � u�v

z � u � v 2y � w � u 2x � v � w 2

S

S � ��u, v� � 0 � u � 3, 0 � v � 2�
x � 2u � 3v, y � u � v

v � 0u � 1u � 0S
y � u�1 � v 2 �x � vv � 1

�0, 1��1, 1��0, 0�S
y � vx � u2

y � bvx � auu 2 � v2 � 1S

11–14 A region in the -plane is given. Find equations for a
transformation that maps a rectangular region in the -plane
onto , where the sides of are parallel to the - and - axes.

11. is bounded by , , ,

12. is the parallelogram with vertices , , , 

13. lies between the circles and in the
first quadrant

14. is bounded by the hyperbolas , and the 
lines , in the first quadrant

15–20 Use the given transformation to evaluate the integral.

15. , where is the triangular region with
vertices , , and ;  , 

16. , where is the parallelogram with 
vertices , , , and ;

, 

17. , where is the region bounded by the ellipse 
;  , 

R xy
T S uv

R S u v

R y � 2x � 1 y � 2x � 1 y � 1 � x
y � 3 � x

R �0, 0� �4, 3� �2, 4� ��2, 1�

R x 2 � y2 � 1 x 2 � y2 � 2

R y � 1�x y � 4�x
y � x y � 4x

xx
R

�x � 3y� dA R
�0, 0� �2, 1� �1, 2� x � 2u � v y � u � 2v

xx
R �4x � 8y� dA R

��1, 3� �1, �3� �3, �1� �1, 5�
x � 1

4�u � v� y � 1
4�v � 3u�

xx
R x 2 dA R

9x 2 � 4y 2 � 36 x � 2u y � 3v

15.10 Exercises

We compute the Jacobian as follows:

Since , we have . Therefore

and Formula 13 gives

which is equivalent to Formula 15.9.3.

��x, y, z�
��, �, ��

� � sin � cos �

sin � sin �

cos �

� sin � sin �

� sin � cos �

0

 cos � cos �

 cos � sin �

� sin � �
� cos � � � sin � sin �

�  sin � cos �

 cos � cos �

 cos � sin � � �  sin � � sin � cos �

sin � sin �

� sin � sin ��

 sin � cos  � �
� cos � ��2 sin � cos � sin2� � 2 sin � cos � cos2��

�  sin � � sin2� cos2� �  sin2� sin2��

� �2 sin � cos2� � 2 sin � sin2� � �2 sin �

0 � � � � sin � � 0

� ��x, y, z�
��, �, �� � � � �2 sin � � � 2 sin �

yyy
R

f �x, y, z� dV � yyy
S

f � sin � cos �,  sin � sin �,  cos �� 2 sin � d d� d�

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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1072 CHAPTER 15 MULTIPLE INTEGRALS

18. , where is the region bounded 
by the ellipse ;

, 

19. , where is the region in the first quadrant bounded
by the lines and and the hyperbolas ,

;  , 

; 20. , where is the region bounded by the curves 
, , , ;  , . 

Illustrate by using a graphing calculator or computer to 
draw .

21. (a) Evaluate , where is the solid enclosed by the
ellipsoid . Use the transforma-
tion , , .

(b) The earth is not a perfect sphere; rotation has resulted in
flattening at the poles. So the shape can be approxi mated
by an ellipsoid with km and km.
Use part (a) to estimate the volume of the earth.

(c) If the solid of part (a) has constant density , find its
moment of inertia about the -axis.

22. An important problem in thermodynamics is to find the work
done by an ideal Carnot engine. A cycle consists of alternating
expansion and compression of gas in a piston. The work done
by the engine is equal to the area of the region enclosed by
two isothermal curves , and two adiabatic 

xxR �x 2 � xy � y 2 � dA R
x 2 � xy � y 2 � 2

x � s2 u � s2�3 v y � s2 u � s2�3 v

xx
R

xy dA R
y � x y � 3x xy � 1

xy � 3 x � u�v y � v

xx
R

y 2 dA R
xy � 1 xy � 2 xy 2 � 1 xy 2 � 2 u � xy v � xy 2

R

xxx
E

dV E
x 2�a 2 � y 2�b 2 � z2�c 2 � 1

z � cwy � bvx � au

c � 6356a � b � 6378

k
z

R
xy � bxy � a

curves , , where and .
Compute the work done by determining the area of .

23–27 Evaluate the integral by making an appropriate change of
variables.

23. , where is the parallelogram enclosed by

the lines , , , and

24. , where is the rectangle enclosed by the
lines , , , and 

25. , where is the trapezoidal region 

with vertices , , , and 

26. , where is the region in the first 
quadrant bounded by the ellipse 

27. , where is given by the inequality

28. Let be continuous on and let be the triangular
region with vertices , , and . Show that

yy
R

x � 2y

3x � y
dA R

x � 2y � 0 x � 2y � 4 3x � y � 1
3x � y � 8

xx
R

�x � y�e x2�y2

dA R
x � y � 0 x � y � 2 x � y � 0 x � y � 3

yy
R

cos� y � x

y � x� dA R

�1, 0� �2, 0� �0, 2� �0, 1�

xx
R

sin�9x 2 � 4y 2 � dA R
9x 2 � 4y 2 � 1

xxR e x�y dA R � x � � � y � � 1

f �0, 1	 R
�0, 0� �1, 0� �0, 1�

yy
R

f �x � y� dA � y
1

0
uf �u� du

0 � c � d0 � a � bxy 1.4 � dxy 1.4 � c
R
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CHAPTER 15 REVIEW 1073

15 Review

1. Suppose is a continuous function defined on a rectangle
.

(a) Write an expression for a double Riemann sum of . 
If , what does the sum represent?

(b) Write the definition of as a limit.
(c) What is the geometric interpretation of if

? What if takes on both positive and negative
values?

(d) How do you evaluate ?
(e) What does the Midpoint Rule for double integrals say?
(f) Write an expression for the average value of .

2. (a) How do you define if is a bounded region
that is not a rectangle?

(b) What is a type I region? How do you evaluate
if is a type I region?

(c) What is a type II region? How do you evaluate
if is a type II region?

(d) What properties do double integrals have?

3. How do you change from rectangular coordinates to polar coor-
dinates in a double integral? Why would you want to make the
change?

4. If a lamina occupies a plane region and has density function
, write expressions for each of the following in terms of

double integrals.
(a) The mass
(b) The moments about the axes
(c) The center of mass
(d) The moments of inertia about the axes and the origin

5. Let be a joint density function of a pair of continuous 
random variables and .
(a) Write a double integral for the probability that lies

between and and lies between and .

f
R � 	a, b
 � 	c, d 


f
f �x, y� � 0

xx
R

f �x, y� dA
xxR f �x, y� dA

ff �x, y� � 0

xxR
f �x, y� dA

f

Dxx
D

f �x, y� dA

DxxD f �x, y� dA

Dxx
D

f �x, y� dA

D
�x, y�

f
YX

X
dcYba

(b) What properties does possess?
(c) What are the expected values of and ?

6. Write an expression for the area of a surface with equation
.

7. (a) Write the definition of the triple integral of over a 
rectangular box .

(b) How do you evaluate ?

(c) How do you define if is a bounded solid
region that is not a box?

(d) What is a type 1 solid region? How do you evaluate
if is such a region?

(e) What is a type 2 solid region? How do you evaluate
if is such a region?

(f) What is a type 3 solid region? How do you evaluate
if is such a region?

8. Suppose a solid object occupies the region and has density
function . Write expressions for each of the following.
(a) The mass
(b) The moments about the coordinate planes
(c) The coordinates of the center of mass
(d) The moments of inertia about the axes

9. (a) How do you change from rectangular coordinates to cylin-
drical coordinates in a triple integral?

(b) How do you change from rectangular coordinates to 
spherical coordinates in a triple integral?

(c) In what situations would you change to cylindrical or
spherical coordinates?

10. (a) If a transformation is given by 
, what is the Jacobian of ?

(b) How do you change variables in a double integral?
(c) How do you change variables in a triple integral?

X Y

z � f �x, y�, �x, y� � D

f
B

xxx
B

f �x, y, z� dV

xxx
E f �x, y, z� dV E

xxxE f �x, y, z� dV E

xxxE
f �x, y, z� dV E

xxxE f �x, y, z� dV E

E
�x, y, z�

T x � t�u, v�,
y � h�u, v� T

f

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1.

2.

3.

4.

5. If is continuous on , then

y
2

�1
y

6

0
x 2 sin�x � y� dx dy � y

6

0
y

2

�1
x 2 sin�x � y� dy dx

y
1

0
y

x

0
sx � y 2 dy dx � y

x

0
y

1

0
sx � y 2 dx dy

y
2

1
y

4

3
x 2e y dy dx � y

2

1
x 2 dx y

4

3
e y dy

y
1

�1
y

1

0
ex2�y2

sin y dx dy � 0

f 	0, 1


y
1

0
y

1

0
f �x� f �y� dy dx � �y

1

0
f �x� dx�2

6.

7. If is the disk given by , then

8. The integral represents the moment of 
inertia about the -axis of a solid with constant density .

9. The integral 

represents the volume enclosed by the cone 
and the plane .

y
4

1
y

1

0
(x 2 � sy ) sin�x 2 y 2 � dx dy � 9

D x 2 � y 2 � 4

yy
D

s4 � x 2 � y 2 dA � 16
3 �

xxxE kr 3 dz dr d�
z E k

y
2�

0
y

2

0
y

2

r
dz dr d�

z � sx 2 � y 2 

z � 2

True-False Quiz
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1074 CHAPTER 15 MULTIPLE INTEGRALS

; Graphing calculator or computer required Computer algebra system requiredCAS

1. A contour map is shown for a function on the square
. Use a Riemann sum with nine terms to

estimate the value of . Take the sample points to
be the upper right corners of the squares.

2. Use the Midpoint Rule to estimate the integral in Exercise 1.

3–8 Calculate the iterated integral.

3. 4.

5. 6.

7. 8.

9–10 Write as an iterated integral, where is the
region shown and f is an arbitrary continuous function on .

9. 10.

11. Describe the region whose area is given by the integral 

f
R � 	0, 3
 � 	0, 3


xxR f �x, y� dA

y

0

1

1

1 2 3

2

3

2

3

4
5

8
9

10

6
7

x

y
1

0
y

1

0
ye xy dx dyy

2

1
y

2

0
�y � 2xe y � dx dy

y
1

0
y

e x

x
3xy 2 dy dxy

1

0
y

x

0
cos�x 2 � dy dx

y
1

0
y

y

0
y

1

x
6xyz dz dx dyy

�

0
y

1

0
y

s1�y 2

0
y sin x dz dy dx

Rxx
R

f �x, y� dA
R

0

4

y

x

R

4_40 42_2_4

y

x

R

2

4

y
��2

0
y

sin 2�

0
r dr d�

12. Describe the solid whose volume is given by the integral 

and evaluate the integral.

13–14 Calculate the iterated integral by first reversing the order of
integration.

13. 14.

15–28 Calculate the value of the multiple integral.

15. , where , 

16. , where ,

17. , 

where is bounded by , , 

18. , where is the triangular region with 

vertices , , and 

19. , where is the region in the first quadrant bounded by
the parabolas and 

20. , where is the region in the first quadrant that lies
above the hyperbola and the line and below the
line 

21. , where is the region in the first 
quad rant bounded by the lines and and the 
circle 

22. , where is the region in the first quadrant that lies
between the circles and 

23. , where
, ,

24. , where is the solid tetrahedron with vertices
, , , and 

25. , where is bounded by the paraboloid
and the plane 

y
1

0
y

1

x
cos�y 2� dy dx y

1

0
y

1

sy

yex2

x 3
 dx dy

xx
R

ye xy dA R � ��x, y� � 0 � x � 2 0 � y � 3�

xx
D xy dA D � ��x, y� � 0 � y � 1 y 2 � x � y � 2�

yy
D

y

1 � x 2 dA

D y � sx y � 0 x � 1

yy
D

1

1 � x 2 dA D

�0, 0� �1, 1� �0, 1�

xx
D

y dA D
x � y 2 x � 8 � y 2

xxD
y dA D

xy � 1 y � x
y � 2

xx
D

�x 2 � y 2 �3�2 dA D
y � 0 y � s3 x

x 2 � y 2 � 9

xx
D

x dA D
x 2 � y 2 � 1 x 2 � y 2 � 2

xxx
E

xy dV
E � ��x, y, z� � 0 � x � 3 0 � y � x 0 � z � x � y�

xxx
T

xy dV T
�0, 0, 0� (1

3 , 0, 0) �0, 1, 0� �0, 0, 1�

xxxE y 2z2 dV E
x � 1 � y 2 � z2 x � 0

y
��2

0
y

��2

0
y

2

1
2 sin � d d� d�
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CHAPTER 15 REVIEW 1075

26. , where is bounded by the planes , ,
and the cylinder in the first octant

27. , where lies above the plane , below the plane
, and inside the cylinder 

28. , where is the solid hemisphere that
lies above the -plane and has center the origin and radius 1

29–34 Find the volume of the given solid.

29. Under the paraboloid and above the rectangle

30. Under the surface and above the triangle in the 
-plane with vertices , , and 

31. The solid tetrahedron with vertices , , ,
and 

32. Bounded by the cylinder and the planes 
and 

33. One of the wedges cut from the cylinder by the
planes and 

34. Above the paraboloid and below the half-cone

35. Consider a lamina that occupies the region bounded by 
the parabola and the coordinate axes in the first
quadrant with density function .
(a) Find the mass of the lamina.
(b) Find the center of mass.
(c) Find the moments of inertia and radii of gyration about 

the - and -axes.

36. A lamina occupies the part of the disk that lies in
the first quadrant.
(a) Find the centroid of the lamina.
(b) Find the center of mass of the lamina if the density function

is .

37. (a) Find the centroid of a right circular cone with height 
and base radius . (Place the cone so that its base is in the

-plane with center the origin and its axis along the posi-
tive -axis.)

(b) Find the moment of inertia of the cone about its axis 
(the -axis).

38. Find the area of the part of the cone between
the planes and .

39. Find the area of the part of the surface that lies
above the triangle with vertices (0, 0), (1, 0), and (0, 2).

z � x 2 y
xy �1, 0� �2, 1� �4, 0�

�0, 0, 0� �0, 0, 1� �0, 2, 0�
�2, 2, 0�

x 2 � y 2 � 4 z � 0
y � z � 3

x 2 � 9y 2 � a 2

z � 0 z � mx

z � x 2 � y 2

z � sx 2 � y 2 

D
x � 1 � y 2

�x, y� � y

x y

x 2 � y 2 � a 2

�x, y� � xy 2

xy

z � x 2 � 4y 2

R � 	0, 2
 � 	1, 4


xxxH
z3

sx 2 � y 2 � z 2 dV H

z � y x 2 � y 2 � 4
xxxE yz dV E z � 0

xxxE
z dV E y � 0 z � 0

x � y � 2 y 2 � z2 � 1

h
a

xy
z

z

z2 � a 2�x 2 � y 2 �
z � 1 z � 2

z � x 2 � y

40. Graph the surface , , , and
find its surface area correct to four decimal places.

41. Use polar coordinates to evaluate

42. Use spherical coordinates to evaluate

; 43. If is the region bounded by the curves and
, find the approximate value of the integral .

(Use a graphing device to estimate the points of intersection 
of the curves.)

44. Find the center of mass of the solid tetrahedron with vertices
, , , and density function

.

45. The joint density function for random variables and is

(a) Find the value of the constant .
(b) Find .
(c) Find .

46. A lamp has three bulbs, each of a type with average lifetime
800 hours. If we model the probability of failure of the 
bulbs by an exponential density function with mean 800, 
find the probability that all three bulbs fail within a total of
1000 hours.

47. Rewrite the integral

as an iterated integral in the order .

48. Give five other iterated integrals that are equal to

49. Use the transformation , to evaluate

where is the square with vertices , , , 
and .

50. Use the transformation , , to 
find the volume of the region bounded by the surface

and the coordinate planes.

C
P�X � 2, Y � 1�
P�X � Y � 1�

y
1

�1
y

1

x2
y

1�y

0
f �x, y, z� dz dy dx

dx dy dz

y
2

0
y

y3

0
y

y2

0
f �x, y, z� dz dx dy

u � x � y v � x � y

yy
R

x � y

x � y
dA

R �0, 2� �1, 1� �2, 2�
�1, 3�

x � u 2 y � v2 z � w2

sx � sy � sz � 1

�0, 0, 3��0, 2, 0��1, 0, 0��0, 0, 0�
�x, y, z� � x 2 � y 2 � z2

YX

f �x, y� � �C�x � y�
0

if 0 � x � 3, 0 � y � 2

otherwise

xx
D y 2 dAy � e x

CAS

y � 1 � x 2D

y
2

�2
y

s4�y 2 

0
y

s4�x 2�y 2 

�s4�x 2�y 2
y 2

sx 2 � y 2 � z 2 dz dx dy

z � x sin y �3 � x � 3 �� � y � �CAS

y
3

0
y

s9�x 2 

�s9�x 2 
�x 3 � xy 2� dy dx
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1076 CHAPTER 15 MULTIPLE INTEGRALS

51. Use the change of variables formula and an appropriate trans-
formation to evaluate , where is the square with ver-
tices , , , and .

52. The Mean Value Theorem for double integrals says that 
if is a continuous function on a plane region that is of type
I or II, then there exists a point in such that

Use the Extreme Value Theorem (14.7.8) and Property 15.3.11
of integrals to prove this theorem. (Use the proof of the single-
variable version in Section 5.5 as a guide.)

53. Suppose that is continuous on a disk that contains the 
point . Let be the closed disk with center and
radius . Use the Mean Value Theorem for double integrals (see 

f
�a, b� Dr �a, b�
r

D�x0, y0 �

yy
D

f �x, y� dA � f �x0, y0 � A�D�

xx
R

xy dA R
�0, 0� �1, 1� �2, 0� �1, �1�

Df

Exercise 52) to show that

54. (a) Evaluate , where is an integer and is

the region bounded by the circles with center the origin and
radii and , .

(b) For what values of does the integral in part (a) have a
limit as ?

(c) Find , where is the region

bounded by the spheres with center the origin and radii 
and , .

(d) For what values of does the integral in part (c) have a
limit as ?

lim
r l 0

1

�r 2 yy
Dr

f �x, y� dA � f �a, b�

Dnyy
D

1

�x 2 � y 2 �n�2 dA

0 � r � RRr
n

r l 0�

Eyyy
E

1

�x 2 � y 2 � z2 �n�2 dV

r
0 � r � RR

n
r l 0�
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1. If denotes the greatest integer in , evaluate the integral

where .

2. Evaluate the integral

where max means the larger of the numbers and .

3. Find the average value of the function on the interval .

4. If , , and are constant vectors, is the position vector , and is given by
the inequalities , , , show that

5. The double integral is an improper integral and could be defined as

the limit of double integrals over the rectangle as . But if we expand the
integrand as a geometric series, we can express the integral as the sum of an infinite series.
Show that

6. Leonhard Euler was able to find the exact sum of the series in Problem 5. In 1736 he proved
that

In this problem we ask you to prove this fact by evaluating the double integral in Problem 5.
Start by making the change of variables

This gives a rotation about the origin through the angle . You will need to sketch the 
corresponding region in the -plane.

[Hint: If, in evaluating the integral, you encounter either of the expressions
or , you might like to use the identity

and the corresponding identity for .]

7. (a) Show that

(Nobody has ever been able to find the exact value of the sum of this series.)

(b) Show that

Use this equation to evaluate the triple integral correct to two decimal places.

�x� x

yy
R

�x � y� dA

R � ��x, y� � 1 � x � 3, 2 � y � 5�

y
1

0
y

1

0
e max�x2, y2� dy dx

�x 2, y 2 � x 2 y 2

f �x� � x
1
x cos�t 2 � dt [0, 1]

a b c r x i � y j � z k E
0 � a � r � 
 0 � b � r � 	 0 � c � r � �

yyy
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�
	��2

8 � a � �b � c� �

y
1

0
y

1

0

1
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 t l 1�

y
1

0
y

1

0

1
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dx dy � �

�
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�
�
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1
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� 2

6

x �
u � v

s2
y �

u � v

s2

��4
uv

�1 � sin ���cos � �cos ����1 � sin ��
cos � � sin����2� � �� sin �

y
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0
y
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0
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1
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1 � xyz
dx dy dz � �
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1
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0
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1
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8. Show that

by first expressing the integral as an iterated integral.

9. (a) Show that when Laplace’s equation

is written in cylindrical coordinates, it becomes

(b) Show that when Laplace’s equation is written in spherical coordinates, it becomes

10. (a) A lamina has constant density and takes the shape of a disk with center the origin and
radius . Use Newton’s Law of Gravitation (see Section 13.4) to show that the magnitude
of the force of attraction that the lamina exerts on a body with mass located at the
point on the positive -axis is

[Hint: Divide the disk as in Figure 4 in Section 15.4 and first compute the vertical com-
ponent of the force exerted by the polar subrectangle .]

(b) Show that the magnitude of the force of attraction of a lamina with density that occu-
pies an entire plane on an object with mass located at a distance from the plane is

Notice that this expression does not depend on .

11. If is continuous, show that

12. Evaluate .

13. The plane

,  ,  

cuts the solid ellipsoid

into two pieces. Find the volume of the smaller piece.

�2u

�x 2 �
�2u

�y 2 �
�2u

�z2 � 0 
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�� 2 �
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� 2 �
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�
�
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 2
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��
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 2

�2u

�� 2 �
1

 2 sin2�
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�� 2 � 0


R

m
�0, 0, d � z
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m d
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2 y
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Vector Calculus16

In this chapter we study the calculus of vector fields. (These are functions that assign vectors to points in
space.) In particular we define line integrals (which can be used to find the work done by a force field in
moving an object along a curve). Then we define surface integrals (which can be used to find the rate 
of fluid flow across a surface). The connections between these new types of integrals and the single,
double, and triple integrals that we have already met are given by the higher-dimensional versions of the
Fundamental Theorem of Calculus: Green’s Theorem, Stokes’ Theorem, and the Divergence Theorem.

1079

Parametric surfaces, which are studied in
Section 16.6, are frequently used by
programmers creating animated films. In
this scene from Antz, Princess Bala is
about to try to rescue Z, who is trapped
in a dewdrop. A parametric surface
represents the dewdrop and a family of
such surfaces depicts its motion. One of
the programmers for this film was heard
to say, “I wish I had paid more attention
in calculus class when we were studying
parametric surfaces. It would sure have
helped me today.”

© Dreamworks / Photofest
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1080 CHAPTER 16 VECTOR CALCULUS

The vectors in Figure 1 are air velocity vectors that indicate the wind speed and direction
at points 10 m above the surface elevation in the San Francisco Bay area. We see at a
glance from the largest arrows in part (a) that the greatest wind speeds at that time occurred
as the winds entered the bay across the Golden Gate Bridge. Part (b) shows the very dif-
ferent wind pattern 12 hours earlier. Associated with every point in the air we can imagine
a wind velocity vector. This is an example of a velocity vector field.

Other examples of velocity vector fields are illustrated in Figure 2: ocean currents and
flow past an airfoil.

Another type of vector field, called a force field, associates a force vector with each
point in a region. An example is the gravitational force field that we will look at in 
Example 4.

(a) 6:00 PM, March 1, 2010

FIGURE 1   Velocity vector fields showing San Francisco Bay wind patterns

(b) 6:00 AM, March 1, 2010

Nova Scotia

(a) Ocean currents off the coast of Nova Scotia

FIGURE 2   Velocity vector fields

(b) Airflow past an inclined airfoil
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SECTION 16.1 VECTOR FIELDS 1081

In general, a vector field is a function whose domain is a set of points in (or ) and
whose range is a set of vectors in (or ).

Definition Let be a set in (a plane region). A vector field on is a
function that assigns to each point in a two-dimensional vector .

The best way to picture a vector field is to draw the arrow representing the vector
starting at the point . Of course, it’s impossible to do this for all points ,

but we can gain a reasonable impression of by doing it for a few representative points in
as in Figure 3. Since is a two-dimensional vector, we can write it in terms of its

component functions and as follows:

or, for short,

Notice that and are scalar functions of two variables and are sometimes called scalar
fields to distinguish them from vector fields.

Definition Let be a subset of . A vector field on is a function that
assigns to each point in a three-dimensional vector .

A vector field on is pictured in Figure 4. We can express it in terms of its compo-
nent functions , , and as

As with the vector functions in Section 13.1, we can define continuity of vector fields 
and show that is continuous if and only if its component functions , , and are 
continuous.

We sometimes identify a point with its position vector and write
instead of . Then becomes a function that assigns a vector to a vec-

tor .

A vector field on is defined by . Describe by
sketching some of the vectors as in Figure 3.

SOLUTION Since , we draw the vector starting at the point in
Figure 5. Since , we draw the vector with starting point . Con-
tinuing in this way, we calculate several other representative values of in the table
and draw the corresponding vectors to represent the vector field in Figure 5.

� 3� 2

V3V2

� 2D1
�x, y�F

� 2

F�x, y�D

�x, y��x, y�F�x, y�
F

F�x, y�D
QP

F�x, y� � P�x, y� i � Q�x, y� j � �P�x, y�, Q�x, y��

F � P i � Q j

QP

F� 3� 3E2
F�x, y, z�E�x, y, z�

� 3F
RQP

F�x, y, z� � P�x, y, z� i � Q�x, y, z� j � R�x, y, z� k

RQPF

x � �x, y, z ��x, y, z�
F�x�FF�x, y, z�F�x�

x

FF�x, y� � �y i � x j� 2EXAMPLE 1v
F�x, y�

�1, 0�j � �0, 1 �F�1, 0� � j
�0, 1���1, 0 �F�0, 1� � �i

F�x, y�

FIGURE 3
Vector field on R@

0

(x, y)

F(x, y)

x

y

FIGURE 4
Vector field on R#

y

0

z

x

(x, y, z)

F (x, y, z)

FIGURE 5
F(x, y)=_y i+x j

F (1, 0)

F (0, 3) F (2, 2)

0 x

y

�3, 0 ��0, �3���3, 0 ��0, 3�
�2, 2 ��2, �2���2, �2 ���2, 2�
�1, 0 ��0, �1���1, 0 ��0, 1�

�0, �3 ���3, 0��0, 3 ��3, 0�
�2, �2 ���2, �2���2, 2 ��2, 2�
�0, �1 ���1, 0��0, 1 ��1, 0�

F�x, y��x, y�F�x, y��x, y�
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1082 CHAPTER 16 VECTOR CALCULUS

It appears from Figure 5 that each arrow is tangent to a circle with center the origin.
To confirm this, we take the dot product of the position vector with the
vector :

This shows that is perpendicular to the position vector and is therefore
tangent to a circle with center the origin and radius . Notice also that

so the magnitude of the vector is equal to the radius of the circle.

Some computer algebra systems are capable of plotting vector fields in two or three
dimensions. They give a better impression of the vector field than is possible by hand
because the computer can plot a large number of representative vectors. Figure 6 shows a
computer plot of the vector field in Example 1; Figures 7 and 8 show two other vector
fields. Notice that the computer scales the lengths of the vectors so they are not too long
and yet are proportional to their true lengths.

Sketch the vector field on given by .

SOLUTION The sketch is shown in Figure 9. Notice that all vectors are vertical and point
upward above the -plane or downward below it. The magnitude increases with the 
distance from the -plane.

We were able to draw the vector field in Example 2 by hand because of its particularly
simple formula. Most three-dimensional vector fields, however, are virtually impossible to 

x � x i � y j
F�x� � F�x, y�

� �xy � yx � 0x � F�x� � �x i � y j� � ��y i � x j�

�x, y �F�x, y�
� x � � sx 2 � y 2 

� F�x, y� � � s��y�2 � x 2 � sx 2 � y 2 � � x �
F�x, y�

5

_5

_5 5

6

_6

_6 6

5

_5

_5 5

FIGURE 6
F(x, y)=k_y, xl

FIGURE 7
F(x, y)=ky, sin xl

FIGURE 8
F(x, y)=k ln(1+¥), ln(1+≈)l

F�x, y, z� � z k� 3EXAMPLE 2v

xy
xy

FIGURE 9
F(x, y, z)=z k

y
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SECTION 16.1 VECTOR FIELDS 1083

sketch by hand and so we need to resort to a computer algebra system. Examples are
shown in Figures 10, 11, and 12. Notice that the vector fields in Figures 10 and 11 have simi-
lar formulas, but all the vectors in Figure 11 point in the general direction of the negative
y-axis because their y-components are all �2. If the vector field in Figure 12 represents a
velocity field, then a particle would be swept upward and would spiral around the -axis
in the clockwise direction as viewed from above.

Imagine a fluid flowing steadily along a pipe and let be the veloc-
ity vector at a point . Then assigns a vector to each point in a certain
domain (the interior of the pipe) and so is a vector field on called a velocity field.
A possible velocity field is illustrated in Figure 13. The speed at any given point is indi-
cated by the length of the arrow.

Velocity fields also occur in other areas of physics. For instance, the vector field in
Example 1 could be used as the velocity field describing the counterclockwise rotation of
a wheel. We have seen other examples of velocity fields in Figures 1 and 2.

Newton’s Law of Gravitation states that the magnitude of the gravitational
force between two objects with masses and is

where is the distance between the objects and is the gravitational constant. (This 
is an example of an inverse square law.) Let’s assume that the object with mass is 
located at the origin in . (For instance, could be the mass of the earth and the origin
would be at its center.) Let the position vector of the object with mass be .
Then , so . The gravitational force exerted on this second object acts
toward the origin, and the unit vector in this direction is

Therefore the gravitational force acting on the object at is

[Physicists often use the notation instead of for the position vector, so you may see 
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FIGURE 10
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In Visual 16.1 you can rotate the 
vector fields in Figures 10–12 as well as 
additional fields.
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FIGURE 13
Velocity field in fluid flow 
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1084 CHAPTER 16 VECTOR CALCULUS

Formula 3 written in the form .] The function given by Equation 3 is
an example of a vector field, called the gravitational field, because it associates a vector
[the force ] with every point in space.

Formula 3 is a compact way of writing the gravitational field, but we can also write 
it in terms of its component functions by using the facts that and

:

The gravitational field is pictured in Figure 14.

Suppose an electric charge is located at the origin. According to
Coulomb’s Law, the electric force exerted by this charge on a charge located at a
point with position vector is

where is a constant (that depends on the units used). For like charges, we have
and the force is repulsive; for unlike charges, we have and the force is attractive.
Notice the similarity between Formulas 3 and 4. Both vector fields are examples of force
fields.

Instead of considering the electric force , physicists often consider the force per unit
charge:

Then is a vector field on called the electric field of .

Gradient Fields
If is a scalar function of two variables, recall from Section 14.6 that its gradient (or
grad ) is defined by

Therefore is really a vector field on and is called a gradient vector field. Likewise,
if is a scalar function of three variables, its gradient is a vector field on given by

Find the gradient vector field of . Plot the gradient
vector field together with a contour map of f. How are they related?

SOLUTION The gradient vector field is given by

Figure 15 shows a contour map of with the gradient vector field. Notice that the gradi-
ent vectors are perpendicular to the level curves, as we would expect from Section 14.6. 

F � ��mMG�r 3 �r

xF�x�

x � x i � y j � z k

� x � � sx 2 � y 2 � z 2 

F�x, y, z� �
�mMGx

�x 2 � y 2 � z2 �3�2 i �
�mMGy

�x 2 � y 2 � z2�3�2 j �
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�x 2 � y 2 � z2�3�2 k

F

QEXAMPLE 5
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� x �3 x4

qQ � 0�
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1
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� 3E Q

∇ ff
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� f �x, y� � fx�x, y� i � fy�x, y� j
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� f �x, y, z� � fx�x, y, z� i � fy�x, y, z� j � fz�x, y, z� k
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SECTION 16.1 VECTOR FIELDS 1085

Notice also that the gradient vectors are long where the level curves are close to each
other and short where the curves are farther apart. That’s because the length of the gradi-
ent vector is the value of the directional derivative of and closely spaced level curves
indicate a steep graph.

A vector field is called a conservative vector field if it is the gradient of some scalar
function, that is, if there exists a function such that . In this situation is called
a potential function for .

Not all vector fields are conservative, but such fields do arise frequently in physics. For
example, the gravitational field F in Example 4 is conservative because if we define

then

In Sections 16.3 and 16.5 we will learn how to tell whether or not a given vector field is
conservative.

f

F
f F � ∇ f f

F

f �x, y, z� �
mMG

sx 2 � y 2 � z 2 

� f �x, y, z� �
�f

�x
i �

�f

�y
j �

�f

�z
k

�
�mMGx

�x 2 � y 2 � z 2�3�2 i �
�mMGy

�x 2 � y 2 � z 2�3�2 j �
�mMGz

�x 2 � y 2 � z 2 �3�2 k

� F�x, y, z�

1–10 Sketch the vector field by drawing a diagram like 
Fig ure 5 or Figure 9.

1. 2.

3. 4.

5.

6.

7.

8.

9.

10.

11–14 Match the vector fields with the plots labeled I–IV. 
Give reasons for your choices.

11.

12.

F

F�x, y� � 0.3 i � 0.4 j F�x, y� � 1
2 x i � y j

F�x, y� � �
1
2 i � �y � x� j F�x, y� � y i � �x � y� j

F�x, y� �
y i � x j

sx 2 � y 2 

F�x, y� �
y i � x j

sx 2 � y 2 

F�x, y, z� � k

F�x, y, z� � �y k

F�x, y, z� � x k

F�x, y, z� � j � i

F

F�x, y� � �x, �y �

F�x, y� � �y, x � y �

13.

14.

F�x, y� � �y, y � 2 �

F�x, y� � �cos�x � y�, x �

3

_3

_3 3

3

_3

_3 3

3

_3

_3 3

3

_3

_3 3

I II

III IV

16.1 Exercises

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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1086 CHAPTER 16 VECTOR CALCULUS

15–18 Match the vector fields on with the plots labeled 
I–IV. Give reasons for your choices.

15. 16.

17.

18.

19. If you have a CAS that plots vector fields (the command 
is fieldplot in Maple and PlotVectorField or 
VectorPlot in Mathematica), use it to plot

Explain the appearance by finding the set of points 
such that .

20. Let , where and . Use a
CAS to plot this vector field in various domains until you can
see what is happening. Describe the appearance of the plot
and explain it by finding the points where .

21–24 Find the gradient vector field of .

21. 22.

23.

24.

25–26 Find the gradient vector field of and sketch it.

25. 26.

27–28 Plot the gradient vector field of together with a contour
map of . Explain how they are related to each other.

27. 28.

F �3

F�x, y, z� � i � 2 j � 3 k F�x, y, z� � i � 2 j � z k

F�x, y, z� � x i � y j � 3 k

F�x, y, z� � x i � y j � z k

z

1

0

_1

y 10_1 x1
0

_1

z

1

0

_1

y 10_1
x1

0
_1

0
y 1_1 x1 0 _1

z

1

0

_1

z

1

0

_1

y 10_1 1 0 _1
x

I II

III IV

CAS

F�x, y� � �y 2 � 2xy� i � �3xy � 6x 2 � j

�x, y�
F�x, y� � 0

CAS F�x� � �r 2 � 2r�x x � �x, y � r � � x �

F�x� � 0

f

f �x, y� � xe xy f �x, y� � tan�3x � 4y�

f �x, y, z� � sx 2 � y 2 � z 2 

f �x, y, z� � x ln�y � 2z�

∇ f f

f �x, y� � x 2 � y f �x, y� � sx 2 � y2 

CAS f
f

f �x, y� � cos x � 2 sin yf �x, y� � ln�1 � x 2 � 2y 2�

29–32 Match the functions with the plots of their gradient 
vector fields labeled I–IV. Give reasons for your choices.

29. 30.

31. 32.

33. A particle moves in a velocity field . 
If it is at position at time , estimate its location at
time .

34. At time , a particle is located at position . If it
moves in a velocity field 

find its approximate location at time .

35. The flow lines (or streamlines) of a vector field are the
paths followed by a particle whose velocity field is the
given vector field. Thus the vectors in a vector field are tan-
gent to the flow lines.
(a) Use a sketch of the vector field to

draw some flow lines. From your sketches, can you
guess the equations of the flow lines?

(b) If parametric equations of a flow line are
, explain why these functions satisfy the differ-

ential equa tions and . Then solve
the differential equations to find an equation of the flow
line that passes through the point (1, 1).

36. (a) Sketch the vector field and then sketch
some flow lines. What shape do these flow lines appear
to have?

(b) If parametric equations of the flow lines are
, what differential equations do these functions 

satisfy? Deduce that .
(c) If a particle starts at the origin in the velocity field given

by F, find an equation of the path it follows.

f

f �x, y� � x 2 � y 2 f �x, y� � x�x � y�

f �x, y� � �x � y�2 f �x, y� � sinsx 2 � y 2 
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SECTION 16.2 LINE INTEGRALS 1087

In this section we define an integral that is similar to a single integral except that instead
of integrating over an interval , we integrate over a curve . Such integrals are called
line integrals, although “curve integrals” would be better terminology. They were invented
in the early 19th century to solve problems involving fluid flow, forces, electricity, and
magnetism.

We start with a plane curve given by the parametric equations

or, equivalently, by the vector equation , and we assume that is a
smooth curve. [This means that is continuous and . See Section 13.3.] If we
divide the parameter interval into n subintervals of equal width and we let

and , then the corresponding points divide into subarcs
with lengths (See Figure 1.) We choose any point in the
subarc. (This corresponds to a point in .) Now if is any function of two vari-
ables whose domain includes the curve , we evaluate at the point , multiply by
the length of the subarc, and form the sum

which is similar to a Riemann sum. Then we take the limit of these sums and make the fol-
lowing definition by analogy with a single integral.

Definition If is defined on a smooth curve given by Equations 1, then the
line integral of f along C is

if this limit exists.

In Section 10.2 we found that the length of is

A similar type of argument can be used to show that if is a continuous function, then the
limit in Definition 2 always exists and the following formula can be used to evaluate the
line integral:

The value of the line integral does not depend on the parametrization of the curve, pro-
vided that the curve is traversed exactly once as t increases from a to b.

�a, b	 C

C

1 x � x�t� y � y�t� a 	 t 	 b
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 r
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16.2 Line Integrals
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1088 CHAPTER 16 VECTOR CALCULUS

If is the length of C between and , then

So the way to remember Formula 3 is to express everything in terms of the parameter
Use the parametric equations to express and in terms of t and write ds as

In the special case where is the line segment that joins to , using as the
parameter, we can write the parametric equations of as follows: , ,

. Formula 3 then becomes

and so the line integral reduces to an ordinary single integral in this case.
Just as for an ordinary single integral, we can interpret the line integral of a positive

function as an area. In fact, if , represents the area of one side of
the “fence” or “curtain” in Figure 2, whose base is and whose height above the point

is .

Evaluate , where is the upper half of the unit circle
.

SOLUTION In order to use Formula 3, we first need parametric equations to represent C.
Recall that the unit circle can be parametrized by means of the equations

and the upper half of the circle is described by the parameter interval 
(See Figure 3.) Therefore Formula 3 gives

Suppose now that is a piecewise-smooth curve; that is, is a union of a finite num-
ber of smooth curves where, as illustrated in Figure 4, the initial point of

is the terminal point of Then we define the integral of along as the sum of the
integrals of along each of the smooth pieces of :

s�t� r�a� r�t�
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dt �2 

t:
yx

ds � �� dx
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Section 13.3.
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SECTION 16.2 LINE INTEGRALS 1089

Evaluate , where consists of the arc of the parabola
from to followed by the vertical line segment from to .

SOLUTION The curve is shown in Figure 5. is the graph of a function of , so we can
choose as the parameter and the equations for become

Therefore

On we choose as the parameter, so the equations of are

and

Thus

Any physical interpretation of a line integral depends on the physical inter-
pretation of the function . Suppose that represents the linear density at a point

of a thin wire shaped like a curve . Then the mass of the part of the wire from
to in Figure 1 is approximately and so the total mass of the wire is approx-
imately . By taking more and more points on the curve, we obtain the mass

of the wire as the limiting value of these approximations:

[For example, if represents the density of a semicircular wire, then the
integral in Example 1 would represent the mass of the wire.] The center of mass of the
wire with density function is located at the point , where

Other physical interpretations of line integrals will be discussed later in this chapter.

A wire takes the shape of the semicircle , , and is
thicker near its base than near the top. Find the center of mass of the wire if the linear
density at any point is proportional to its distance from the line .

SOLUTION As in Example 1 we use the parametrization , , ,
and find that . The linear density is

xC
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1090 CHAPTER 16 VECTOR CALCULUS

where is a constant, and so the mass of the wire is

From Equations 4 we have

By symmetry we see that , so the center of mass is

See Figure 6.

Two other line integrals are obtained by replacing by either or
in Definition 2. They are called the line integrals of along with respect

to x and y:

When we want to distinguish the original line integral from those in Equa  -
tions 5 and 6, we call it the line integral with respect to arc length.

The following formulas say that line integrals with respect to and can also be 
evaluated by expressing everything in terms of : , , ,

.

It frequently happens that line integrals with respect to and occur together. When
this happens, it’s customary to abbreviate by writing

When we are setting up a line integral, sometimes the most difficult thing is to think of
a parametric representation for a curve whose geometric description is given. In particular,
we often need to parametrize a line segment, so it’s useful to remember that a vector rep-

k
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SECTION 16.2 LINE INTEGRALS 1091

resentation of the line segment that starts at and ends at is given by

(See Equation 12.5.4.)

Evaluate , where (a) is the line segment from
to and (b) is the arc of the parabola from

to . (See Figure 7.)

SOLUTION
(a) A parametric representation for the line segment is

(Use Equation 8 with and .) Then , , and
Formulas 7 give

(b) Since the parabola is given as a function of , let’s take as the parameter and write
as

Then and by Formulas 7 we have

Notice that we got different answers in parts (a) and (b) of Example 4 even though the
two curves had the same endpoints. Thus, in general, the value of a line integral depends
not just on the endpoints of the curve but also on the path. (But see Section 16.3 for con-
ditions under which the integral is independent of the path.)

Notice also that the answers in Example 4 depend on the direction, or orientation, of the
curve. If denotes the line segment from to , you can verify, using the
parametrization

that

r1r0
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1092 CHAPTER 16 VECTOR CALCULUS

In general, a given parametrization , , , determines an orien-
tation of a curve , with the positive direction corresponding to increasing values of the
parameter (See Figure 8, where the initial point corresponds to the parameter value
and the terminal point corresponds to .)

If denotes the curve consisting of the same points as but with the opposite ori-
entation (from initial point to terminal point in Figure 8), then we have

But if we integrate with respect to arc length, the value of the line integral does not change
when we reverse the orientation of the curve:

This is because is always positive, whereas and change sign when we reverse
the orientation of .

Line Integrals in Space
We now suppose that is a smooth space curve given by the parametric equations

or by a vector equation . If is a function of three variables
that is continuous on some region containing , then we define the line integral of
along (with respect to arc length) in a manner similar to that for plane curves:

We evaluate it using a formula similar to Formula 3:

Observe that the integrals in both Formulas 3 and 9 can be written in the more compact
vector notation

For the special case , we get

where is the length of the curve (see Formula 13.3.3).
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SECTION 16.2 LINE INTEGRALS 1093

Line integrals along with respect to , , and can also be defined. For example,

Therefore, as with line integrals in the plane, we evaluate integrals of the form

by expressing everything , , , , , in terms of the parameter 

Evaluate , where is the circular helix given by the equa-
tions , , , . (See Figure 9.)

SOLUTION Formula 9 gives

Evaluate , where consists of the line segment
from to , followed by the vertical line segment from to

.

SOLUTION The curve is shown in Figure 10. Using Equation 8, we write as

or, in parametric form, as

Thus

Likewise, can be written in the form

or
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1094 CHAPTER 16 VECTOR CALCULUS

Then , so

Adding the values of these integrals, we obtain

Line Integrals of Vector Fields
Recall from Section 5.4 that the work done by a variable force in moving a particle
from to along the -axis is . Then in Section 12.3 we found that the
work done by a constant force in moving an object from a point to another point in
space is , where 

l
is the displacement vector.

Now suppose that is a continuous force field on , such as the
gravitational field of Example 4 in Section 16.1 or the electric force field of Example 5 in
Section 16.1. (A force field on could be regarded as a special case where and
and depend only on and .) We wish to compute the work done by this force in mov-
ing a particle along a smooth curve .

We divide into subarcs with lengths by dividing the parameter interval
into subintervals of equal width. (See Figure 1 for the two-dimensional case or 

Figure 11 for the three-dimensional case.) Choose a point on the subarc
corresponding to the parameter value . If is small, then as the particle moves from

to along the curve, it proceeds approximately in the direction of , the unit tan-
gent vector at . Thus the work done by the force in moving the particle from to

is approximately

and the total work done in moving the particle along is approximately

where is the unit tangent vector at the point on . Intuitively, we see that
these approximations ought to become better as becomes larger. Therefore we define the
work done by the force field as the limit of the Riemann sums in , namely,

Equation 12 says that work is the line integral with respect to arc length of the tangen tial
component of the force.

If the curve is given by the vector equation , then
, so using Equation 9 we can rewrite Equation 12 in the form
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SECTION 16.2 LINE INTEGRALS 1095

This integral is often abbreviated as and occurs in other areas of physics as well.
Therefore we make the following definition for the line integral of any continuous vector
field.

Definition Let be a continuous vector field defined on a smooth curve
given by a vector function , . Then the line integral of along C is

When using Definition 13, bear in mind that is just an abbreviation for
, so we evaluate simply by putting , , and

in the expression for . Notice also that we can formally write .

Find the work done by the force field in moving a par-
ticle along the quarter-circle , .

SOLUTION Since and , we have

and

Therefore the work done is

NOTE Even though and integrals with respect to arc length are
unchanged when orientation is reversed, it is still true that

because the unit tangent vector is replaced by its negative when is replaced by 

Evaluate , where and is the
twisted cubic given by

SOLUTION We have

xC F � dr

CF13
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y
C

F � dr � y
b
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C
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Figure 12 shows the force field and the curve in
Example 7. The work done is negative because
the field impedes movement along the curve.
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1096 CHAPTER 16 VECTOR CALCULUS

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1–16 Evaluate the line integral, where is the given curve.

1. ,  

2. ,  

3. ,  is the right half of the circle 

4. ,  is the line segment from to 

5. ,
is the arc of the curve from to 

6. ,
C is the arc of the curve from to 

7. ,  consists of line segments from
to and from to 

8. ,  consists of the arc of the circle 
from to followed by the line segment

from to 

C

xC y 3 ds C: x � t 3, y � t, 0 � t � 2

xC xy ds C: x � t 2, y � 2t, 0 � t � 1

xC xy 4 ds C x 2 � y 2 � 16

xC
x sin y ds C �0, 3� �4, 6�

xC
(x 2y 3 � sx ) dy

C y � sx �1, 1� �4, 2�

x
C

e x dx
x � y 3 ��1, �1� �1, 1�

x
C

�x � 2y� dx � x 2 dy C
�0, 0� �2, 1� �2, 1� �3, 0�

xC
x 2 dx � y 2 dy C

x 2 � y 2 � 4 �2, 0� �0, 2�
�0, 2� �4, 3�

9. ,  

10. ,  
is the line segment from to 

11. ,  
is the line segment from (0, 0, 0) to (1, 2, 3)

12. ,  
: , , , 

13. ,  : , , , 

14. ,  
: , , , 

15. ,  is the line segment from
to 

16. ,  consists of line
segments from to and from to

x
C

xyz ds
C: x � 2 sin t, y � t, z � �2 cos t, 0 � t � �

xC xyz2 ds
C ��1, 5, 0� �1, 6, 4�

x
C

xe yz ds
C

x
C

�x 2 � y 2 � z2� ds
C x � t y � cos 2t z � sin 2t 0 � t � 2�

x
C xye yz dy C x � t y � t 2 z � t 3 0 � t � 1

xC y dx � z dy � x dz
C x � st y � t z � t 2 1 � t � 4

x
C

z2 dx � x 2 dy � y 2 dz C �1, 0, 0�
�4, 1, 2�

xC �y � z� dx � �x � z� dy � �x � y� dz C
�0, 0, 0� �1, 0, 1� �1, 0, 1�

�0, 1, 2�

16.2 Exercises

Thus

Finally, we note the connection between line integrals of vector fields and line integrals
of scalar fields. Suppose the vector field on is given in component form by the equa-
tion . We use Definition 13 to compute its line integral along :

But this last integral is precisely the line integral in . Therefore we have

For example, the integral in Example 6 could be expressed as
where

y
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a
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x
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10
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SECTION 16.2 LINE INTEGRALS 1097

17. Let be the vector field shown in the figure.
(a) If is the vertical line segment from to ,

determine whether is positive, negative, or zero.
(b) If is the counterclockwise-oriented circle with radius 3

and center the origin, determine whether is posi-
tive, negative, or zero.

18. The figure shows a vector field and two curves and .
Are the line integrals of over and positive, negative, 
or zero? Explain.

19–22 Evaluate the line integral , where is given by the
vector function .

19. ,  
,  

20. ,
,  

21. ,
,  

22. ,
,  

23–26 Use a calculator or CAS to evaluate the line integral correct
to four decimal places.

23. , where and 
, 

F
C1 ��3, �3� ��3, 3�

x
C1

F � dr
C2

xC2
F � dr

y

x0
1

1

2 3

2

3

_3 _2 _1

_3

_2

_1

F C1 C2

F C1 C2

y

x

C¡

C™

xC F � dr C
r�t�

F�x, y� � xy i � 3y 2 j
r�t� � 11t 4 i � t 3 j 0 � t � 1

F�x, y, z� � �x � y� i � �y � z� j � z2 k
r�t� � t 2 i � t 3 j � t 2 k 0 � t � 1

F�x, y, z� � sin x i � cos y j � xz k
r�t� � t 3 i � t 2 j � t k 0 � t � 1

F�x, y, z� � x i � y j � xy k
r�t� � cos t i � sin t j � t k 0 � t � �

F�x, y� � xy i � sin y jx
C F � dr

1 � t � 2r�t� � e t i � e�t2

j

24. , where 
and , 

25. , where has parametric equations ,
, , 

26. , where has parametric equations , ,
, 

27–28 Use a graph of the vector field F and the curve C to guess
whether the line integral of F over C is positive, negative, or zero.
Then evaluate the line integral.

27. ,
is the arc of the circle traversed counter clock-

wise from (2, 0) to 

28. ,

is the parabola from to (1, 2)

29. (a) Evaluate the line integral , where
and is given by 

, .

; (b) Illustrate part (a) by using a graphing calculator or com-
puter to graph and the vectors from the vector field 
corresponding to , , and 1 (as in Figure 13).

30. (a) Evaluate the line integral , where
and is given by

, .

; (b) Illustrate part (a) by using a computer to graph and 
the vectors from the vector field corresponding to 

and (as in Figure 13).

31. Find the exact value of , where is the curve with
parametric equations , , ,

.

32. (a) Find the work done by the force field
on a particle that moves once around the circle

oriented in the counter-clockwise direction.
(b) Use a computer algebra system to graph the force field and

circle on the same screen. Use the graph to explain your
answer to part (a).

33. A thin wire is bent into the shape of a semicircle ,
. If the linear density is a constant , find the mass and

center of mass of the wire.

34. A thin wire has the shape of the first-quadrant part of the 
circle with center the origin and radius . If the density 
function is , find the mass and center of mass 
of the wire.

35. (a) Write the formulas similar to Equations 4 for the center of
mass of a thin wire in the shape of a space curve
if the wire has density function .

x
C F � dr F�x, y, z� � y sin z i � z sin x j � x sin y k

r�t� � cos t i � sin t j � sin 5t k 0 � t � �

xC x sin�y � z� ds C x � t 2

y � t 3 z � t 4 0 � t � 5

x
C ze�xy ds C x � t y � t 2

z � e�t 0 � t � 1

CAS

F�x, y� � �x � y� i � xy j
C x 2 � y 2 � 4

�0, �2�

F�x, y� �
x

sx 2 � y 2 
i �

y

sx 2 � y 2 
j

C y � 1 � x 2 ��1, 2�

x
C

F � dr
F�x, y� � e x�1 i � xy j C
r�t� � t 2 i � t 3 j 0 � t � 1

C
t � 0 1	s2

xC F � dr
F�x, y, z� � x i � z j � y k C
r�t� � 2t i � 3t j � t 2 k �1 � t � 1

C

t � �1 �
1
2

CAS xC x 3y 2z ds C
x � e�t cos 4 t y � e�t sin 4 t z � e�t

0 � t � 2�

F�x, y� � x 2 i � xy j

x 2 � y 2 � 4
CAS

x 2 � y 2 � 4
x � 0 k

a
��x, y� � kxy

�x, y, z � C
��x, y, z�
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1098 CHAPTER 16 VECTOR CALCULUS

(b) Find the center of mass of a wire in the shape of the helix
, , , , if the density

is a constant .

36. Find the mass and center of mass of a wire in the shape of the
helix , , , , if the density at
any point is equal to the square of the distance from the origin.

37. If a wire with linear density lies along a plane curve
its moments of inertia about the - and -axes are defined as

Find the moments of inertia for the wire in Example 3.

38. If a wire with linear density lies along a space curve
, its moments of inertia about the -, -, and -axes are

defined as

Find the moments of inertia for the wire in Exercise 35.

39. Find the work done by the force field
in moving an object along an arch of the cycloid

, .

40. Find the work done by the force field on
a particle that moves along the parabola from
to .

41. Find the work done by the force field
on a particle that moves

along the line segment from to .

42. The force exerted by an electric charge at the origin on a
charged particle at a point with position vector

is where is a constant. (See
Example 5 in Section 16.1.) Find the work done as the particle
moves along a straight line from to .

43. The position of an object with mass at time is
, .

(a) What is the force acting on the object at time ?
(b) What is the work done by the force during the time interval

?

44. An object with mass moves with position function
, . Find the work

done on the object during this time period.

x � 2 sin t y � 2 cos t z � 3t 0 � t � 2�
k

x � t y � cos t z � sin t 0 � t � 2�

��x, y� C,
x y

Ix � y
C

y 2��x, y� ds Iy � y
C

x 2��x, y� ds

��x, y, z�
C x y z

Ix � y
C

� y 2 � z2 ���x, y, z� ds

Iy � y
C

�x 2 � z2 ���x, y, z� ds

Iz � y
C

�x 2 � y 2 ���x, y, z� ds

F�x, y� � x i � � y � 2� j

r�t� � �t � sin t� i � �1 � cos t� j 0 � t � 2�

F�x, y� � x 2 i � ye x j
x � y 2 � 1 �1, 0�

�2, 1�

F�x, y, z� � �x � y 2, y � z2, z � x 2�
�0, 0, 1� �2, 1, 0�

�x, y, z�
r � �x, y, z � F�r� � Kr�� r �3 K

�2, 0, 0� �2, 1, 5�

m t
r�t� � at 2 i � bt 3 j 0 � t � 1

t

0 � t � 1

m
r�t� � a sin t i � b cos t j � ct k 0 � t � ��2

45. A 160-lb man carries a 25-lb can of paint up a helical staircase
that encircles a silo with a radius of 20 ft. If the silo is 90 ft
high and the man makes exactly three complete revolutions
climbing to the top, how much work is done by the man
against gravity?

46. Suppose there is a hole in the can of paint in Exercise 45 and
9 lb of paint leaks steadily out of the can during the man’s
ascent. How much work is done?

47. (a) Show that a constant force field does zero work on a 
particle that moves once uniformly around the circle

.
(b) Is this also true for a force field , where is a

constant and ?

48. The base of a circular fence with radius 10 m is given by
. The height of the fence at position

is given by the function , so
the height varies from 3 m to 5 m. Suppose that 1 L of paint
covers . Sketch the fence and determine how much paint
you will need if you paint both sides of the fence.

49. If is a smooth curve given by a vector function ,
, and is a constant vector, show that

50. If is a smooth curve given by a vector function ,
, show that

51. An object moves along the curve shown in the figure from
(1, 2) to (9, 8). The lengths of the vectors in the force field
are measured in newtons by the scales on the axes. Estimate
the work done by on the object.

52. Experiments show that a steady current in a long wire pro -
duces a magnetic field that is tangent to any circle that lies in
the plane perpendicular to the wire and whose center is the axis
of the wire (as in the figure). Ampère’s Law relates the electric 

x 2 � y 2 � 1
F�x� � kx k

x � �x, y �

x � 10 cos t, y � 10 sin t
�x, y� h�x, y� � 4 � 0.01�x 2 � y 2�

100 m2

C r�t�
a � t � b v

y
C

v � dr � v � �r�b� � r�a�	

C r�t�
a � t � b

y
C

r � dr � 1
2[�r�b��2 � �r�a��2]

C
F

F

0 1

1

y
(meters)

x
(meters)

C

C

I
B
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Recall from Section 4.3 that Part 2 of the Fundamental Theorem of Calculus can be writ-
ten as

where is continuous on . We also called Equation 1 the Net Change Theorem: The
integral of a rate of change is the net change.

If we think of the gradient vector of a function of two or three variables as a sort
of derivative of , then the following theorem can be regarded as a version of the Funda-
 mental Theorem for line integrals.

Theorem Let be a smooth curve given by the vector function , .
Let be a differentiable function of two or three variables whose gradient vector

is continuous on . Then

NOTE Theorem 2 says that we can evaluate the line integral of a conservative vector
field (the gradient vector field of the potential function ) simply by knowing the value of

at the endpoints of . In fact, Theorem 2 says that the line integral of is the net
change in f. If is a function of two variables and is a plane curve with initial point

and terminal point , as in Figure 1, then Theorem 2 becomes

If is a function of three variables and is a space curve joining the point 
to the point , then we have

Let’s prove Theorem 2 for this case.

1 y
b

a
F��x� dx � F�b� � F�a�

F� �a, b	

∇ f f
f

2 C r�t� a � t � b
f

∇ f C

y
C

� f � dr � f �r�b�� � f �r�a��

f
f C ∇ f

f C
A�x1, y1� B�x2, y2 �

y
C

� f � dr � f �x2, y2 � � f �x1, y1 �

f C A�x1, y1, z1�
B�x2, y2, z2�

y
C

� f � dr � f �x2, y2, z2 � � f �x1, y1, z1 �

SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS 1099

current to its magnetic effects and states that

where is the net current that passes through any surface
bounded by a closed curve , and is a constant called the
permeability of free space. By taking to be a circle with
radius , show that the magnitude of the magnetic
field at a distance from the center of the wire is

C 	0

C
r B � � B �

r

B �
	0 I

2�r

y
C

B � dr � 	0 I

I

B

I

16.3 The Fundamental Theorem for Line Integrals

FIGURE 1

0
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C x
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0
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C

y

z

x

(b)
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1100 CHAPTER 16 VECTOR CALCULUS

PROOF OF THEOREM 2 Using Definition 16.2.13, we have

(by the Chain Rule)

The last step follows from the Fundamental Theorem of Calculus (Equation 1).

Although we have proved Theorem 2 for smooth curves, it is also true for piecewise-
smooth curves. This can be seen by subdividing into a finite number of smooth curves
and adding the resulting integrals.

Find the work done by the gravitational field

in moving a particle with mass from the point to the point along a
piecewise-smooth curve . (See Example 4 in Section 16.1.)

SOLUTION From Section 16.1 we know that is a conservative vector field and, in fact,
, where

Therefore, by Theorem 2, the work done is

Independence of Path
Suppose and are two piecewise-smooth curves (which are called paths) that have
the same initial point and terminal point . We know from Example 4 in Section 16.2
that, in general, . But one implication of Theorem 2 is that

whenever is continuous. In other words, the line integral of a conservative vector field
depends only on the initial point and terminal point of a curve.

In general, if is a continuous vector field with domain , we say that the line integral
is independent of path if for any two paths and in 

that have the same initial and terminal points. With this terminology we can say that line
integrals of conservative vector fields are independent of path.

y
C

� f � dr � y
b

a
� f �r�t�� � r��t� dt

� y
b

a

 
f


x

dx

dt
�


f


y

dy

dt
�


f


z

dz

dt� dt

� y
b

a

d

dt
f �r�t�� dt

� f �r�b�� � f �r�a��

C

EXAMPLE 1

F�x� � �
mMG

� x �3 x

�2, 2, 0��3, 4, 12�m
C

F
F � ∇ f

f �x, y, z� �
mMG

sx 2 � y 2 � z 2 

W � y
C

F � dr � y
C

� f � dr

� f �2, 2, 0� � f �3, 4, 12�

�
mMG

s22 � 22 
�

mMG

s32 � 42 � 122 
� mMG
 1

2s2
�

1

13
�

C2C1

BA
xC1

F � dr � xC2
F � dr

y
C1

� f � dr � y
C2

� f � dr

∇ f

DF
C2C1xC1

F � dr � xC2
F � drxC F � dr

D
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS 1101

A curve is called closed if its terminal point coincides with its initial point, that is,
. (See Figure 2.) If is independent of path in and is any closed

path in , we can choose any two points and on and regard as being composed
of the path from to followed by the path from to . (See Fig ure 3.) Then

since and have the same initial and terminal points.
Conversely, if it is true that whenever is a closed path in , then we

demonstrate independence of path as follows. Take any two paths and from to
in and define to be the curve consisting of followed by . Then

and so . Thus we have proved the following theorem.

Theorem is independent of path in if and only if for
every closed path in .

Since we know that the line integral of any conservative vector field is independent
of path, it follows that for any closed path. The physical interpretation is that
the work done by a conservative force field (such as the gravitational or electric field in
Section 16.1) as it moves an object around a closed path is 0.

The following theorem says that the only vector fields that are independent of path are
conservative. It is stated and proved for plane curves, but there is a similar version for
space curves. We assume that is open, which means that for every point in there is
a disk with center that lies entirely in . (So doesn’t contain any of its boundary
points.) In addition, we assume that is connected: This means that any two points in
can be joined by a path that lies in .

Theorem Suppose is a vector field that is continuous on an open connected 
region . If is independent of path in , then is a conservative vector
field on ; that is, there exists a function such that .

PROOF Let be a fixed point in . We construct the desired potential function by
defining

for any point in . Since is independent of path, it does not matter 
which path from to is used to evaluate . Since is open, there exists
a disk contained in with center . Choose any point in the disk with
and let consist of any path from to followed by the horizontal line seg-
ment from to . (See Figure 4.) Then

Notice that the first of these integrals does not depend on , so

xC F � drr�b� � r�a�
CBAD

CD

BC2BAC1

C
A

y
C

F � dr � y
C1

F � dr � y
C2

F � dr � y
C1

F � dr � y
�C2

F � dr � 0

�C2C1

DCx
C F � dr � 0

BAC2C1

�C2C1CD

0 � y
C

F � dr � y
C1

F � dr � y
�C2

F � dr � y
C1

F � dr � y
C2

F � dr

x
C1

F � dr � x
C2

F � dr

xC
F � dr � 0DxC

F � dr3
DC

F
x

C
F � dr � 0

D DP
DDP

DD
D

F4
FDxC F � drD

∇ f � FfD

fDA�a, b�

f �x, y� � y
�x, y�

�a, b�
F � dr

x
C

F � drD�x, y�
Df �x, y��x, y��a, b�C

x1 � x�x1, y��x, y�D
�x1, y��a, b�C1C

�x, y��x1, y�C2

f �x, y� � y
C1

F � dr � y
C2

F � dr � y
�x1, y�

�a, b�
F � dr � y

C2

F � dr

x

�

�x
f �x, y� � 0 �

�

�x y
C2

F � dr

FIGURE 2
A closed curve

C

FIGURE 3

C¡

C™

B

A

FIGURE 4

(a, b)

x0

y

D

(x¡, y)

C¡

C™

(x, y)
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1102 CHAPTER 16 VECTOR CALCULUS

If we write , then

On , is constant, so . Using as the parameter, where , we have

by Part 1 of the Fundamental Theorem of Calculus (see Section 4.3). A similar argument,
using a vertical line segment (see Figure 5), shows that

Thus

which says that is conservative.

The question remains: How is it possible to determine whether or not a vector field 
is conservative? Suppose it is known that is conservative, where and 
have continuous first-order partial derivatives. Then there is a function such that 

, that is,

Therefore, by Clairaut’s Theorem,

Theorem If is a conservative vector field,
where and have continuous first-order partial derivatives on a domain , then
throughout we have

The converse of Theorem 5 is true only for a special type of region. To explain this, we
first need the concept of a simple curve, which is a curve that doesn’t intersect itself any-
where between its endpoints. [See Figure 6; for a simple closed curve, but

when .]
In Theorem 4 we needed an open connected region. For the next theorem we need a

stronger condition. A simply-connected region in the plane is a connected region such
that every simple closed curve in encloses only points that are in . Notice from Figure
7 that, intuitively speaking, a simply-connected region contains no hole and can’t consist
of two separate pieces.

In terms of simply-connected regions, we can now state a partial converse to Theorem 5
that gives a convenient method for verifying that a vector field on is conservative. The
proof will be sketched in the next section as a consequence of Green’s Theorem.

F � P i � Q j

y
C2

F � dr � y
C2

P dx � Q dy

x1 � t � xtdy � 0yC2

�




x y
x

x1

P�t, y� dt � P�x, y�




x
f �x, y� �





x y
C2

P dx � Q dy





y
f �x, y� �





y y
C2

P dx � Q dy �




y y
y

y1

Q�x, t� dt � Q�x, y�

F � P i � Q j �

f


x
i �


f


y
j � ∇ f

F

PF � P i � Q jF
fQ

F � ∇ f

Q �

f


y
andP �


f


x


P


y
�


2 f


y 
x
�


2 f


x 
y
�


Q


x

F�x, y� � P�x, y� i � Q�x, y� j5
DQP

D


P


y
�


Q


x

r�a� � r�b�
a � t1 � t2 � br�t1� � r�t2�

D
D

D

� 2

FIGURE 5

(a, b)

x0

y

D

(x, y)

C¡

C™

(x, y¡)

FIGURE 6
Types of curves

simple,
not closed

not simple,
closed

not simple,
not closed

not simple,
closed

simple,
closed

FIGURE 7

simply-connected region

regions that are not simply-connected

97817_16_ch16_p1098-1107.qk_97817_16_ch16_p1098-1107  11/9/10  9:06 AM  Page 1102

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS 1103

C

10

_10

_10 10

FIGURE 8

Figures 8 and 9 show the vector fields in 
Examples 2 and 3, respec tively. The vectors in
Figure 8 that start on the closed curve all
appear to point in roughly the same direction as

. So it looks as if and therefore
is not conservative. The calculation in Example

2 confirms this impression. Some of the vectors
near the curves and in Figure 9 point in
approximately the same direction as the curves,
whereas others point in the opposite direction.
So it appears plau sible that line integrals around
all closed paths are . Example 3 shows that 
is indeed conservative.

F0

C2C1

F
xC F � dr � 0C

C

FIGURE 9

C™C¡

2

_2

_2 2

Theorem Let be a vector field on an open simply-connected
region . Suppose that and have continuous first-order derivatives and

Then is conservative.

Determine whether or not the vector field

is conservative.

SOLUTION Let and . Then

Since , is not conservative by Theorem 5.

Determine whether or not the vector field

is conservative.

SOLUTION Let and . Then

Also, the domain of is the entire plane , which is open and simply-
connected. Therefore we can apply Theorem 6 and conclude that is conservative.

In Example 3, Theorem 6 told us that is conservative, but it did not tell us how to find
the (potential) function such that . The proof of Theorem 4 gives us a clue as to
how to find . We use “partial integration” as in the following example.

(a) If , find a function such that .

(b) Evaluate the line integral , where is the curve given by 

SOLUTION
(a) From Example 3 we know that is conservative and so there exists a function
with , that is,

F � P i � Q j6
QPD

throughout D

P


y
�


Q


x

F

EXAMPLE 2v

F�x, y� � �x � y� i � �x � 2� j

Q�x, y� � x � 2P�x, y� � x � y


Q


x
� 1


P


y
� �1

F
P�
y � 
Q�
x

EXAMPLE 3v

F�x, y� � �3 � 2xy� i � �x 2 � 3y 2 � j

Q�x, y� � x 2 � 3y 2P�x, y� � 3 � 2xy


P


y
� 2x �


Q


x

�D � � 2�F
F

F
F � ∇ ff

f

EXAMPLE 4
F � ∇ ffF�x, y� � �3 � 2xy� i � �x 2 � 3y 2 � j

CxC
F � dr

0 � t � �r�t� � e t sin t i � e t cos t j

fF
∇ f � F

fx�x, y� � 3 � 2xy7

fy�x, y� � x 2 � 3y 28
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1104 CHAPTER 16 VECTOR CALCULUS

Integrating with respect to , we obtain

Notice that the constant of integration is a constant with respect to , that is, a function
of , which we have called . Next we differentiate both sides of with respect to :

Comparing and , we see that

Integrating with respect to , we have

where is a constant. Putting this in , we have

as the desired potential function.

(b) To use Theorem 2 all we have to know are the initial and terminal points of ,
namely, and . In the expression for in part (a), any
value of the constant will do, so let’s choose . Then we have

This method is much shorter than the straightforward method for evaluating line inte-
grals that we learned in Section 16.2.

A criterion for determining whether or not a vector field on is conservative is
given in Section 16.5. Meanwhile, the next example shows that the technique for finding
the potential function is much the same as for vector fields on .

If , find a function such 
that .

SOLUTION If there is such a function , then

Integrating with respect to , we get

where is a constant with respect to . Then differentiating with respect to ,
we have

x7

f �x, y� � 3x � x 2y � t�y�9

x
y9t�y�y

fy�x, y� � x 2 � t��y�10

108

t��y� � �3y 2

y

t�y� � �y 3 � K

9K

f �x, y� � 3x � x 2y � y 3 � K

C
f �x, y�r��� � �0, �e��r�0� � �0, 1�

K � 0K

� e 3� � ��1� � e 3� � 1y
C

F � dr � y
C

� f � dr � f �0, �e�� � f �0, 1�

� 3F

� 2

EXAMPLE 5v fF�x, y, z� � y 2 i � �2xy � e 3z � j � 3ye 3z k
∇ f � F

f

fx�x, y, z� � y 211

fy�x, y, z� � 2xy � e 3z12

fz�x, y, z� � 3ye 3z13

x11

f �x, y, z� � xy 2 � t�y, z�14

y14xt�y, z�

fy�x, y, z� � 2xy � ty�y, z�
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS 1105

and comparison with gives

Thus and we rewrite as

Finally, differentiating with respect to and comparing with , we obtain and
therefore , a constant. The desired function is

It is easily verified that .

Conservation of Energy
Let’s apply the ideas of this chapter to a continuous force field that moves an object
along a path given by , , where is the initial point and
is the terminal point of . According to Newton’s Second Law of Motion (see Sec-
 tion 13.4), the force at a point on is related to the acceleration by the
equation

So the work done by the force on the object is

(Theorem 13.2.3, Formula 4)

(Fundamental Theorem of Calculus)

Therefore

where is the velocity.
The quantity , that is, half the mass times the square of the speed, is called the

kinetic energy of the object. Therefore we can rewrite Equation 15 as

which says that the work done by the force field along is equal to the change in kinetic
energy at the endpoints of .

Now let’s further assume that is a conservative force field; that is, we can write
. In physics, the potential energy of an object at the point is defined as

, so we have . Then by Theorem 2 we have

12

ty�y, z� � e 3z

14t�y, z� � ye 3z � h�z�

f �x, y, z� � xy 2 � ye 3z � h�z�

h��z� � 013z
h�z� � K

f �x, y, z� � xy 2 � ye 3z � K

∇ f � F

r�t�C
F

C
r�b� � Br�a� � Aa � t � b

F�r�t�� a�t� � r�t�C

F�r�t�� � mr�t�

� y
b

a
mr�t� � r��t� dtW � y

C
F � dr � y

b

a
F�r�t�� � r��t� dt

�
m

2
 y

b

a

d

dt
�r��t� � r��t�	 dt

�
m

2
 [� r��t� �2]a

b
�

m

2
 y

b

a

d

dt � r��t� �2 dt

�
m

2
 (� r��b� �2 � � r��a� �2 )

W � 1
2 m � v�b� �2 �

1
2 m � v�a� �215

v � r�
1
2 m � v�t� �2

W � K�B� � K�A�16

C
C

F
F � ∇ f

F � �∇PP�x, y, z� � �f �x, y, z�
�x, y, z�

� P�A� � P�B�� ��P�r�b�� � P�r�a��	W � y
C

F � dr � �y
C

�P � dr
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1106 CHAPTER 16 VECTOR CALCULUS

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1. The figure shows a curve and a contour map of a function
whose gradient is continuous. Find .

2. A table of values of a function with continuous gradient is
given. Find , where has parametric equations

3–10 Determine whether or not is a conservative vector field. 
If it is, find a function such that .

3.

4.

5.

6.

7.

8. ,  

C f
x

C
� f � dr

y

x0

10

20
30

40
50

60

C

f
x

C � f � dr C

x � t 2 � 1    y � t 3 � t 0 � t � 1

1

3

8

6

5

2

4

7

9

x
y

0

1

2

0 1 2

F
f F � � f

F�x, y� � �2x � 3y� i � ��3x � 4y � 8� j

F�x, y� � e x sin y i � e x cos y j

F�x, y� � e x cos y i � e x sin y j

F�x, y� � �3x 2 � 2y 2� i � �4xy � 3� j

F�x, y� � �ye x � sin y� i � �e x � x cos y� j

F�x, y� � �2xy � y�2� i � �x 2 � 2xy�3� j y � 0

9.

10.

11. The figure shows the vector field and
three curves that start at (1, 2) and end at (3, 2).
(a) Explain why has the same value for all three

curves.
(b) What is this common value?

12–18 (a) Find a function such that and (b) use 
part (a) to evaluate along the given curve .

12. ,
is the arc of the parabola from to 

13. ,

: ,  

14. ,
,  

15. ,
is the line segment from to 

F�x, y� � �ln y � 2xy 3� i � �3x 2y 2 � x�y� j

F�x, y� � �xy cosh xy � sinh xy� i � �x 2 cosh xy � j

F�x, y� � �2xy, x 2 �

x
C F � dr

y

x0 3

3

2

1

21

f F � ∇ f
xC

F � dr C

F�x, y� � x 2 i � y 2 j
C y � 2x 2 ��1, 2� �2, 8�

F�x, y� � xy 2 i � x 2y j

C r�t� � � t � sin 12� t, t � cos 12� t � 0 � t � 1

F�x, y� � �1 � xy�e xy i � x 2e xy j
C: r�t� � cos t i � 2 sin t j 0 � t � ��2

F�x, y, z� � yz i � xz j � �xy � 2z� k
C �1, 0, �2� �4, 6, 3�

16.3 Exercises

Comparing this equation with Equation 16, we see that

which says that if an object moves from one point to another point under the influence
of a conservative force field, then the sum of its potential energy and its kinetic energy
remains constant. This is called the Law of Conservation of Energy and it is the reason
the vector field is called conservative.

P�A� � K�A� � P�B� � K�B�

A B
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS 1107

16. ,
: , , ,  

17. ,
: ,  

18. ,
: ,  

19–20 Show that the line integral is independent of path and eval-
uate the integral.

19. ,  

is any path from to 

20. ,  

is any path from to 

21. Suppose you’re asked to determine the curve that requires the
least work for a force field to move a particle from one
point to another point. You decide to check first whether is
conservative, and indeed it turns out that it is. How would
you reply to the request?

22. Suppose an experiment determines that the amount of work
required for a force field to move a particle from the point

to the point along a curve is 1.2 J and the
work done by in moving the particle along another curve 

between the same two points is 1.4 J. What can you say
about ? Why?

23–24 Find the work done by the force field in moving an
object from to .

23. ;  , 

24. ;  , 

25–26 Is the vector field shown in the figure conservative?
Explain.

25. 26.

27. If , use a plot to guess
whether is conservative. Then determine whether your
guess is correct.

C r�t� � �t 2 � 1� i � �t 2 � 1� j � �t 2 � 2t� k 0 � t � 2

F�x, y, z� � sin y i � �x cos y � cos z� j � y sin z k
C r�t� � sin t i � t j � 2t k 0 � t � ��2

F�x, y, z� � �y2z � 2xz2� i � 2xyz j � �xy 2 � 2x 2z� k
C x � st y � t � 1 z � t 2 0 � t � 1

F�x, y, z� � yze xz i � e xz j � xye xz k

x
C

2xe�y dx � �2y � x 2e�y� dy

�2, 1��1, 0�C

x
C sin y dx � �x cos y � sin y� dy

�1, ���2, 0�C

F
F

F
C1�5, �3��1, 2�

F
C2

F

F
QP

Q�2, 4�P�1, 1�F�x, y� � 2y 3�2 i � 3xsy j

Q�2, 0�P�0, 1�F�x, y� � e�y i � xe�y j

y

x

y

x

F�x, y� � sin y i � �1 � x cos y� jCAS

F

28. Let , where . Find curves
and that are not closed and satisfy the equation.

(a) (b)

29. Show that if the vector field is conser-
vative and , , have continuous first-order partial deriva-
tives, then

30. Use Exercise 29 to show that the line integral
is not independent of path.

31–34 Determine whether or not the given set is (a) open, 
(b) connected, and (c) simply-connected.

31. 32.

33.

34.

35. Let .

(a) Show that .

(b) Show that is not independent of path. 
[Hint: Compute and , where 
and are the upper and lower halves of the circle

from to .] Does this contradict
Theorem 6?

36. (a) Suppose that is an inverse square force field, that is,

for some constant , where . Find the
work done by in moving an object from a point
along a path to a point in terms of the distances and

from these points to the origin.
(b) An example of an inverse square field is the gravita-

 tional field discussed in Example 4
in Section 16.1. Use part (a) to find the work done by 
the gravitational field when the earth moves from 
aphelion (at a maximum distance of km 
from the sun) to perihelion (at a minimum distance of

km). (Use the values kg,
kg, and 

(c) Another example of an inverse square field is the elec tric
force field discussed in Example 5 in
Section 16.1. Suppose that an electron with a charge of

C is located at the origin. A positive unit
charge is positioned a distance m from the elec tron
and moves to a position half that distance from the elec-
tron. Use part (a) to find the work done by the electric
force field. (Use the value .)

F � � f f �x, y� � sin�x � 2y� C1

C2

y
C1

F � dr � 0 y
C2

F � dr � 1

F � P i � Q j � R k
P Q R


P


y
�


Q


x


P


z
�


R


x


Q


z
�


R


y

xC
y dx � x dy � xyz dz

��x, y� � 0 � y � 3 ��x, y� � 1 � � x � � 2

��x, y� � 1 � x 2 � y 2 � 4, y � 0

��x, y� � �x, y� � �2, 3�

F�x, y� �
�y i � x j

x 2 � y 2


P�
y � 
Q�
x

x
C F � dr

xC1
F � dr xC2

F � dr C1

C2

x 2 � y 2 � 1 �1, 0� ��1, 0�

F

F�r� �
cr

� r �3

c r � x i � y j � z k
F P1

P2 d1

d2

F � ��mMG �r�� r �3

1.52 � 108

1.47 � 108 m � 5.97 � 1024

M � 1.99 � 1030 G � 6.67 � 10�11 N�m2�kg2.�

F � �qQr�� r �3

�1.6 � 10�19

10�12

� � 8.985 � 10 9
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1108 CHAPTER 16 VECTOR CALCULUS

Green’s Theorem gives the relationship between a line integral around a simple closed
curve and a double integral over the plane region bounded by . (See Figure 1. We
assume that consists of all points inside as well as all points on .) In stating Green’s
Theorem we use the convention that the positive orientation of a simple closed curve
refers to a single counterclockwise traversal of . Thus if is given by the vector func-
tion , , then the region is always on the left as the point traverses .
(See Figure 2.)

Green’s Theorem Let be a positively oriented, piecewise-smooth, simple closed
curve in the plane and let be the region bounded by . If and have continu-
ous partial derivatives on an open region that contains , then

NOTE The notation

g
C

is sometimes used to indicate that the line integral is calculated using the positive orienta-
tion of the closed curve . Another notation for the positively oriented boundary curve of

is , so the equation in Green’s Theorem can be written as

Green’s Theorem should be regarded as the counterpart of the Fundamental Theorem of
Calculus for double integrals. Compare Equation 1 with the statement of the Funda mental
Theorem of Calculus, Part 2, in the following equation:

In both cases there is an integral involving derivatives ( , , and ) on the left
side of the equation. And in both cases the right side involves the values of the original
functions ( , , and ) only on the boundary of the domain. (In the one-dimensional case,
the domain is an interval whose boundary consists of just two points, and .)

C D C
D C C

C
C C

r�t� a � t � b D r�t� C

FIGURE 2 (a) Positive orientation

y

x0

D

C

(b) Negative orientation

y

x0

D

C

C
D C P Q

D

y
C

P dx � Q dy � yy
D

� �Q

�x
�

�P

�y � dA

�y
C

P dx � Q dy or P dx � Q dy

C
D �D

1 yy
D

� �Q

�x
�

�P

�y � dA � y
�D

P dx � Q dy

y
b

a
F��x� dx � F�b� � F�a�

F� �Q��x �P��y

F Q P
�a, b� a b

16.4 Green’s Theorem

FIGURE 1

y

x0

D

C

Recall that the left side of this equation 
is another way of writing , where

.F � P i � Q j
x

C
F � dr
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SECTION 16.4 GREEN’S THEOREM 1109

Green’s Theorem is not easy to prove in general, but we can give a proof for the spe-
cial case where the region is both type I and type II (see Section 15.3). Let’s call such
regions simple regions.

PROOF OF GREEN’S THEOREM FOR THE CASE IN WHICH IS A SIMPLE REGION Notice that
Green’s Theorem will be proved if we can show that

and

We prove Equation 2 by expressing as a type I region:

where and are continuous functions. This enables us to compute the double integral
on the right side of Equation 2 as follows:

where the last step follows from the Fundamental Theorem of Calculus.
Now we compute the left side of Equation 2 by breaking up as the union of the four

curves , , , and shown in Figure 3. On we take as the parameter and write
the parametric equations as , , . Thus

Observe that goes from right to left but goes from left to right, so we can write
the parametric equations of as , , . Therefore

On or (either of which might reduce to just a single point), is constant, so
and

Hence

D

2 y
C

P dx � �yy
D

�P

�y
dA

3 y
C

Q dy � yy
D

�Q

�x
dA

D

D � 	�x, y� 
 a � x � b, t1�x� � y � t2�x��

t1 t2

4 yy
D

�P

�y
dA � y

b

a
y

t2�x�

t1�x�

�P

�y
�x, y� dy dx � y

b

a
�P�x, t2�x�� � P�x, t1�x��� dx

C
C1 C2 C3 C4 C1 x

x � x y � t1�x� a � x � b

y
C1

P�x, y� dx � y
b

a
P�x, t1�x�� dx

C3 �C3

�C3 x � x y � t2�x� a � x � b

y
C3

P�x, y� dx � �y
�C3

P�x, y� dx � �y
b

a
P�x, t2�x�� dx

C2 C4 x dx � 0

y
C2

P�x, y� dx � 0 � y
C4

P�x, y� dx

y
C

P�x, y� dx � y
C1

P�x, y� dx � y
C2

P�x, y� dx � y
C3

P�x, y� dx � y
C4

P�x, y� dx

� y
b

a
P�x, t1�x�� dx � y

b

a
P�x, t2�x�� dx

George Green

Green’s Theorem is named after the self-
taught English scientist George Green 
(1793–1841). He worked full-time in his father’s
bakery from the age of nine and taught himself
mathematics from library books. In 1828 he 
published privately An Essay on the Application
of Mathematical Analysis to the Theories of
Electricity and Magnetism, but only 100 copies
were printed and most of those went to his
friends. This pamphlet contained a theorem 
that is equivalent to what we know as Green’s
Theorem, but it didn’t become widely known 
at that time. Finally, at age 40, Green entered 
Cambridge University as an undergraduate 
but died four years after graduation. In 1846 
William Thomson (Lord Kelvin) located a copy 
of Green’s essay, realized its significance, and
had it reprinted. Green was the first person to 
try to formulate a mathematical theory of elec-
tricity and magnetism. His work was the basis
for the subsequent electromagnetic theories of
Thomson, Stokes, Rayleigh, and Maxwell.

FIGURE 3

y

x0 a b

D

C¡

y=g™(x)

y=g¡(x)

C™

C£

C¢
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1110 CHAPTER 16 VECTOR CALCULUS

Comparing this expression with the one in Equation 4, we see that

Equation 3 can be proved in much the same way by expressing as a type II region (see
Exercise 30). Then, by adding Equations 2 and 3, we obtain Green’s Theorem.

Evaluate , where is the triangular curve consisting of the
line segments from to , from to , and from to .

SOLUTION Although the given line integral could be evaluated as usual by the methods of
Section 16.2, that would involve setting up three separate integrals along the three sides
of the triangle, so let’s use Green’s Theorem instead. Notice that the region enclosed by

is simple and has positive orientation (see Figure 4). If we let and
, then we have

Evaluate , where is the circle
.

SOLUTION The region bounded by is the disk , so let’s change to polar
coordinates after applying Green’s Theorem:

In Examples 1 and 2 we found that the double integral was easier to evaluate than the
line integral. (Try setting up the line integral in Example 2 and you’ll soon be convinced!)
But sometimes it’s easier to evaluate the line integral, and Green’s Theorem is used in the
reverse direction. For instance, if it is known that on the curve ,
then Green’s Theorem gives

no matter what values and assume in the region .
Another application of the reverse direction of Green’s Theorem is in computing areas.

Since the area of is , we wish to choose and so that

y
C

P�x, y� dx � �yy
D

�P

�y
dA

D

CxC
x 4 dx � xy dyEXAMPLE 1

�0, 0��0, 1��0, 1��1, 0��1, 0��0, 0�

D
P�x, y� � x 4CC

Q�x, y� � xy

y
C

x 4 dx � xy dy � yy
D

� �Q

�x
�

�P

�y � dA � y
1

0
y

1�x

0
�y � 0� dy dx

� y
1

0
[ 1

2 y 2 ]y�0
y�1�x

dx � 1
2 y

1

0
�1 � x�2 dx

� �
1
6 �1 � x�3 ]0

1
� 1

6

C�x
C �3y � e sin x � dx � (7x � sy 4 � 1) dyEXAMPLE 2v

x 2 � y 2 � 9

x 2 � y 2 � 9CD

�y
C

�3y � e sin x � dx � (7x � sy 4 � 1) dy

� yy
D

� �

�x
(7x � sy 4 � 1) �

�

�y
�3y � e sin x� dA

� 4 y
2�

0
d� y

3

0
r dr � 36�� y

2�

0
y

3

0
�7 � 3� r dr d�

CP�x, y� � Q�x, y� � 0

yy
D

� �Q

�x
�

�P

�y � dA � y
C

P dx � Q dy � 0

DQP

QPxxD 1 dAD

�Q

�x
�

�P

�y
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FIGURE 4

y

x

C

(1, 0)(0, 0)

(0, 1) y=1-x

D

Instead of using polar coordinates, we could 
simply use the fact that is a disk of radius 3
and write

yy
D

4 dA � 4 � ��3�2 � 36�

D
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SECTION 16.4 GREEN’S THEOREM 1111

There are several possibilities:

Then Green’s Theorem gives the following formulas for the area of :

Find the area enclosed by the ellipse .

SOLUTION The ellipse has parametric equations and , where
. Using the third formula in Equation 5, we have

Formula 5 can be used to explain how planimeters work. A planimeter is a mechani-
cal instrument used for measuring the area of a region by tracing its boundary curve. These
devices are useful in all the sciences: in biology for measuring the area of leaves or wings,
in medicine for measuring the size of cross-sections of organs or tumors, in forestry for
estimating the size of forested regions from photographs.

Figure 5 shows the operation of a polar planimeter: The pole is fixed and, as the tracer
is moved along the boundary curve of the region, the wheel partly slides and partly rolls
perpendicular to the tracer arm. The planimeter measures the distance that the wheel rolls
and this is proportional to the area of the enclosed region. The explanation as a conse-
quence of Formula 5 can be found in the following articles:

■ R. W. Gatterman, “The planimeter as an example of Green’s Theorem” Amer. Math.
Monthly, Vol. 88 (1981), pp. 701–4.

■ Tanya Leise, “As the planimeter wheel turns” College Math. Journal, Vol. 38
(2007), pp. 24 –31.

Extended Versions of Green’s Theorem
Although we have proved Green’s Theorem only for the case where is simple, we can
now extend it to the case where is a finite union of simple regions. For example, if is
the region shown in Figure 6, then we can write , where and are both
simple. The boundary of is and the boundary of is so, apply-
ing Green’s Theorem to and separately, we get

P�x, y� � 0 P�x, y� � �y P�x, y� � �
1
2 y

Q�x, y� � 1
2 xQ�x, y� � 0Q�x, y� � x

D

A � �y
C

x dy � ��y
C

y dx � 1
2 �y

C
x dy � y dx5

x 2

a 2 �
y 2

b 2 � 1EXAMPLE 3

y � b sin tx � a cos t
0 � t � 2�

A � 1
2 y

C
x dy � y dx

� 1
2 y

2�

0
 �a cos t��b cos t� dt � �b sin t���a sin t� dt

�
ab

2
 y

2�

0
 dt � �ab

D
DD

D2D1D � D1 � D2

C2 � ��C3�D2C1 � C3D1

D2D1

y
C1�C3

P dx � Q dy � yy
D1

��Q

�x
�

�P

�y � dA

y
C2���C3 �

P dx � Q dy � yy
D2

��Q

�x
�

�P

�y � dA
FIGURE 6
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1112 CHAPTER 16 VECTOR CALCULUS

If we add these two equations, the line integrals along and cancel, so we get

which is Green’s Theorem for , since its boundary is .
The same sort of argument allows us to establish Green’s Theorem for any finite union

of nonoverlapping simple regions (see Figure 7).

Evaluate , where is the boundary of the semiannular
region in the upper half-plane between the circles and .

SOLUTION Notice that although is not simple, the -axis divides it into two simple
regions (see Figure 8). In polar coordinates we can write

Therefore Green’s Theorem gives

Green’s Theorem can be extended to apply to regions with holes, that is, regions that
are not simply-connected. Observe that the boundary of the region in Fig ure 9 con-
sists of two simple closed curves and . We assume that these boundary curves are 
oriented so that the region is always on the left as the curve is traversed. Thus the 
positive direction is counterclockwise for the outer curve but clockwise for the inner
curve . If we divide into two regions and by means of the lines shown in 
Figure 10 and then apply Green’s Theorem to each of and we get

Since the line integrals along the common boundary lines are in opposite directions, they
cancel and we get

which is Green’s Theorem for the region .

If , show that for every
positively oriented simple closed path that encloses the origin.

SOLUTION Since is an arbitrary closed path that encloses the origin, it’s difficult to 
compute the given integral directly. So let’s consider a counterclockwise-oriented circle

�C3C3

y
C1�C2

P dx � Q dy � yy
D

� �Q

�x
�

�P

�y � dA

C � C1 � C2D � D1 � D2

C�xC y 2 dx � 3xy dyEXAMPLE 4v
x 2 � y 2 � 4x 2 � y 2 � 1D

yD

D � 	�r, �� 
 1 � r � 2, 0 � � � ��

�y
C

y 2 dx � 3xy dy � yy
D

� �

�x
�3xy� �

�

�y
�y 2�dA

� yy
D

y dA � y
�

0
y

2

1
�r sin �� r dr d�

� y
�

0
sin � d� y

2

1
r 2 dr � [�cos �]0

� [ 1
3 r 3 ]1

2
�

14

3

DC
C2C1

CD
C1

D	D�DC2

D	,D�

yy
D

� �Q

�x
�

�P

�y � dA � yy
D�

��Q

�x
�

�P

�y � dA � yy
D	

� �Q

�x
�

�P

�y � dA

� y
�D�

P dx � Q dy � y
�D	

P dx � Q dy

yy
D

��Q

�x
�

�P

�y � dA � y
C1

P dx � Q dy � y
C2

P dx � Q dy � y
C

P dx � Q dy

D

x
C F � dr � 2�F�x, y� � ��y i � x j���x 2 � y 2�EXAMPLE 5v
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SECTION 16.4 GREEN’S THEOREM 1113

with center the origin and radius , where is chosen to be small enough that lies
inside . (See Figure 11.) Let be the region bounded by and . Then its positively
oriented boundary is and so the general version of Green’s Theorem gives

Therefore

that is,

We now easily compute this last integral using the parametrization given by
, . Thus

We end this section by using Green’s Theorem to discuss a result that was stated in the
preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We’re assuming that is a vector field
on an open simply-connected region , that and have continuous first-order partial
derivatives, and that

If is any simple closed path in and is the region that encloses, then Green’s The-
o   rem gives

A curve that is not simple crosses itself at one or more points and can be broken up 
into a number of simple curves. We have shown that the line integrals of around these 
simple curves are all 0 and, adding these integrals, we see that for any
closed curve . Therefore is independent of path in by Theo rem 16.3.3. It fol-
lows that is a conservative vector field.

C D C C�
C � ��C��

y
C

P dx � Q dy � y
�C�

P dx � Q dy � yy
D

��Q

�x
�

�P

�y � dA

� yy
D

� y 2 � x 2

�x 2 � y 2�2 �
y 2 � x 2

�x 2 � y 2�2 dA � 0

y
C

P dx � Q dy � y
C�

P dx � Q dy

y
C

F � dr � y
C�

F � dr

r�t� � a cos t i � a sin t j 0 � t � 2�

y
C

F � dr � y
C�

F � dr � y
2�

0
F�r�t�� � r��t� dt

� y
2�

0

��a sin t���a sin t� � �a cos t��a cos t�
a 2 cos2t � a 2 sin2t

dt � y
2�

0
dt � 2�

F � P i � Q j
D P Q

�P

�y
�

�Q

�x
throughout D

C D R C

�y
C

F � dr � �y
C

P dx � Q dy � yy
R

� �Q

�x
�

�P

�y � dA � yy
R

0 dA � 0

F
x

C F � dr � 0
C x

C F � dr D
F

C�aa

FIGURE 11
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1–4 Evaluate the line integral by two methods: (a) directly and 
(b) using Green’s Theorem.

1. ,
is the circle with center the origin and radius 2

�x
C

�x � y� dx � �x � y� dy
C

2. , 
is the rectangle with vertices , , , and 

3. ,
is the triangle with vertices , (1, 0), and (1, 2)

�xC
xy dx � x 2 dy

C �0, 0� �3, 0� �3, 1� �0, 1�

�x
C

xy dx � x 2 y 3 dy
C �0, 0�

16.4 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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1114 CHAPTER 16 VECTOR CALCULUS

4. ,  consists of the arc of the parabola
from to and the line segments from

to and from to 

5–10 Use Green’s Theorem to evaluate the line integral along
the given positively oriented curve.

5. ,
is the triangle with vertices , , and 

6. ,
is the rectangle with vertices , , , and 

7. ,
is the boundary of the region enclosed by the parabolas

and 

8. ,  is the ellipse 

9. ,  is the circle 

10. ,  is the boundary of the
region between the circles and 

11–14 Use Green’s Theorem to evaluate . (Check the 
orientation of the curve before applying the theorem.)

11.  ,  
is the triangle from to to to 

12. ,  
consists of the arc of the curve from

to and the line segment from to 

13. ,  
is the circle oriented clockwise

14. ,  is the triangle from
to to to 

15–16 Verify Green’s Theorem by using a computer algebra sys-
tem to evaluate both the line integral and the double integral.

15. ,  ,
consists of the line segment from to

followed by the arc of the parabola from
to 

16. ,  ,
is the ellipse 

17. Use Green’s Theorem to find the work done by the force
in moving a particle from the 

origin along the -axis to , then along the line segment 
to , and then back to the origin along the -axis.

18. A particle starts at the point , moves along the -axis
to , and then along the semicircle to the
starting point. Use Green’s Theorem to find the work done
on this particle by the force field .

�xC
x 2y 2 dx � xy dy C

�0, 0� �1, 1� �1, 1�
�0, 1�

xC
xy 2 dx � 2x 2y dy

C �0, 0� �2, 2� �2, 4�

xC
cos y dx � x 2 sin y dy

C �0, 0� �5, 0� �5, 2� �0, 2�

x
C

(y � esx ) dx � �2x � cos y 2 � dy
C
y � x 2 x � y 2

xC y 4 dx � 2xy 3 dy C

x
C y 3 dx � x 3 dy C x 2 � y 2 � 4

xC �1 � y 3� dx � �x 3 � e y2

� dy C

y � x 2

�0, 1� �0, 0�

x 2 � 2y 2 � 2

x 2 � y 2 � 4 x 2 � y 2 � 9

x
C

F � dr

F�x, y� � �y cos x � xy sin x, xy � x cos x �
C

F�x, y� � �e�x � y 2, e�y � x 2 �
C

F�x, y� � �y � cos y, x sin y �
�x � 3�2 � �y � 4�2 � 4C

CF�x, y� � �sx 2 � 1, tan�1 x �

�0, 0� �0, 4� �2, 0� �0, 0�

y � cos x ����2, 0�
���2, 0� ���2, 0� ����2, 0�

�0, 0�
�1, 1� �0, 1� �0, 0�

CAS

Q�x, y� � x 2e yP�x, y� � y 2e x

�1, 1���1, 1�C

��1, 1�
�1, 1�y � 2 � x 2

Q�x, y� � x 3y 8P�x, y� � 2x � x 3y 5

4x 2 � y 2 � 4C

F�x, y� � x�x � y� i � xy 2 j
�1, 0�x

y�0, 1�

x��2, 0�
y � s4 � x 2 �2, 0�

F�x, y� � �x, x 3 � 3xy 2 �

19. Use one of the formulas in to find the area under one
arch of the cycloid .

; 20. If a circle with radius 1 rolls along the outside of the 
circle , a fixed point on traces out a 
curve called an epicycloid, with parametric equations

, . Graph the epi-
cycloid and use to find the area it encloses.

21. (a) If is the line segment connecting the point to
the point , show that 

(b) If the vertices of a polygon, in counterclockwise order,
are , , show that the area of
the polygon is

(c) Find the area of the pentagon with vertices , ,
, , and .

22. Let be a region bounded by a simple closed path in the 
-plane. Use Green’s Theorem to prove that the coordi nates

of the centroid of are

where is the area of .

23. Use Exercise 22 to find the centroid of a quarter-circular
region of radius .

24. Use Exercise 22 to find the centroid of the triangle with 
vertices , , and , where and .

25. A plane lamina with constant density occupies a
region in the -plane bounded by a simple closed path .
Show that its moments of inertia about the axes are

26. Use Exercise 25 to find the moment of inertia of a circular
disk of radius with constant density about a diameter.
(Compare with Example 4 in Section 15.5.)

27. Use the method of Example 5 to calculate , where

and is any positively oriented simple closed curve that
encloses the origin.

28. Calculate , where and
is the positively oriented boundary curve of a region

that has area 6.

29. If is the vector field of Example 5, show that
for every simple closed path that does not pass through or
enclose the origin.

C
x 2 � y 2 � 16 P C

x � 5 cos t � cos 5t y � 5 sin t � sin 5t

C �x1, y1�
�x2, y2�

y
C

x dy � y dx � x1 y2 � x2 y1

�x1, y1 � �x2, y2 �, . . . , �xn , yn �

A � 1
2 ��x1 y2 � x2 y1 � � �x2 y3 � x3 y2 � � 
 
 


A � � �xn�1 yn � xn yn�1 � � �xn y1 � x1 yn ��

�0, 0� �2, 1�
�1, 3� �0, 2� ��1, 1�

D C
xy

�x, y � D

x �
1

2A
�y

C
x 2 dy y � �

1

2A
�y

C
y 2 dx

A D

a

�0, 0� �a, 0� �a, b� a � 0 b � 0

��x, y� � �
xy C

Ix � �
�

3
 �y

C
y 3 dx Iy �

�

3
 �y

C
x 3 dy

a �

xC F � dr

F�x, y� �
2xy i � �y 2 � x 2� j

�x 2 � y 2�2

C

xC F � dr F�x, y� � �x 2 � y, 3x � y 2�
C D

F x
C F � dr � 0

x � t � sin t, y � 1 � cos t
5

5
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SECTION 16.5 CURL AND DIVERGENCE 1115

30. Complete the proof of the special case of Green’s Theorem
by proving Equation 3.

31. Use Green’s Theorem to prove the change of variables 
formula for a double integral (Formula 15.10.9) for the case
where :f �x, y� � 1

yy
R

dx dy � yy
S

� ��x, y�
��u, v� � du dv

Here is the region in the -plane that corresponds to the
region in the -plane under the transformation given by

, .
[Hint: Note that the left side is and apply the first

part of Equation 5. Convert the line integral over to a 
line integral over and apply Green’s Theorem in the 

-plane.]

R xy
S uv

x � t�u, v� y � h�u, v�
A�R�

�R
�S

uv

In this section we define two operations that can be performed on vector fields and that
play a basic role in the applications of vector calculus to fluid flow and electricity and mag-
netism. Each operation resembles differentiation, but one produces a vector field whereas
the other produces a scalar field.

Curl
If is a vector field on and the partial derivatives of , , and
all exist, then the curl of is the vector field on defined by

As an aid to our memory, let’s rewrite Equation 1 using operator notation. We intro-
duce the vector differential operator (“del”) as

It has meaning when it operates on a scalar function to produce the gradient of :

If we think of as a vector with components , , and , we can also consider
the formal cross product of with the vector field as follows:

So the easiest way to remember Definition 1 is by means of the symbolic expression

F � P i � Q j � R k � 3 P Q R
F � 3

1 curl F � ��R

�y
�

�Q

�z � i � � �P

�z
�

�R

�x � j � ��Q

�x
�

�P

�y � k

∇

∇ � i 
�

�x
� j 

�

�y
� k 

�

�z

f

∇ f � i
�f

�x
� j

�f

�y
� k

�f

�z
�

�f

�x
i �

�f

�y
j �

�f

�z
k

∇ ���x ���y ���z
∇ F

 � F � 
 i
�

�x

P

j
�

�y

Q

k
�

�z

R 

� � �R

�y
�

�Q

�z � i � ��P

�z
�

�R

�x � j � ��Q

�x
�

�P

�y � k

� curl F

curl F � ∇ � F2

16.5 Curl and Divergence
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1116 CHAPTER 16 VECTOR CALCULUS

If , find .

SOLUTION Using Equation 2, we have

Recall that the gradient of a function of three variables is a vector field on and so
we can compute its curl. The following theorem says that the curl of a gradient vector field
is .

Theorem If is a function of three variables that has continuous second-order
partial derivatives, then

PROOF We have

by Clairaut’s Theorem.

Since a conservative vector field is one for which , Theorem 3 can be re phrased
as follows:

If is conservative, then .

This gives us a way of verifying that a vector field is not conservative.

F�x, y, z� � xz i � xyz j � y 2 k curl F

curl F �  � F � 
 i
�

�x

xz

j
�

�y

xyz

k
�

�z

�y 2 

� � �

�y
��y 2 � �

�

�z
�xyz� i � � �

�x
��y 2� �

�

�z
�xz� j

� � �

�x
�xyz� �

�

�y
�xz� k

� ��2y � xy� i � �0 � x� j � �yz � 0� k

� �y�2 � x� i � x j � yz k

f � 3

0

3 f

curl� f � � 0

curl� f � �  � � f � � 

i
�

�x

�f

�x

j
�

�y

�f

�y

k
�

�z

�f

�z



� � �2f

�y �z
�

�2f

�z �y� i � � �2f

�z �x
�

�2f

�x �z� j � � �2f

�x �y
�

�2f

�y �x� k

� 0 i � 0 j � 0 k � 0

F � ∇ f

F curl F � 0

EXAMPLE 1

Most computer algebra systems have com-
mands that compute the curl and divergence of
vector fields. If you have access to a CAS, use
these commands to check the answers to the
examples and exercises in this section.

CAS

Notice the similarity to what we know 
from Section 12.4: for every 
three-dimensional vector .a

a � a � 0

Compare this with Exercise 29 in 
Section 16.3.
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Show that the vector field is not 
conservative.

SOLUTION In Example 1 we showed that

This shows that and so, by Theorem 3, is not conservative.

The converse of Theorem 3 is not true in general, but the following theorem says the
converse is true if is defined everywhere. (More generally it is true if the domain is 
simply-connected, that is, “has no hole.”) Theorem 4 is the three-dimensional version 
of Theorem 16.3.6. Its proof requires Stokes’ Theorem and is sketched at the end of 
Section 16.8.

Theorem If is a vector field defined on all of whose component func-
tions have continuous partial derivatives and , then is a conservative
vector field.

(a) Show that

is a conservative vector field.
(b) Find a function such that .

SOLUTION
(a) We compute the curl of :

Since and the domain of is , is a conservative vector field by 
Theorem 4.

(b) The technique for finding was given in Section 16.3. We have

Integrating with respect to , we obtain

F�x, y, z� � xz i � xyz j � y 2 k

curl F � �y�2 � x� i � x j � yz k

curl F � 0 F

F

4 F � 3

curl F � 0 F

F�x, y, z� � y 2z3 i � 2xyz3 j � 3xy 2z2 k

f F �  f

F

curl F �  � F � 
 i
�

�x

y 2z 3

j
�

�y

2xyz 3

k
�

�z

3xy 2z 2 

� �6xyz2 � 6xyz2 � i � �3y 2z2 � 3y 2z2 � j � �2yz3 � 2yz3 � k

� 0

curl F � 0 F � 3 F

f

5 fx�x, y, z� � y 2z3

6 fy�x, y, z� � 2xyz3

7 fz�x, y, z� � 3xy 2z2

x

8 f �x, y, z� � xy 2z3 � t�y, z�

EXAMPLE 2v

v EXAMPLE 3

5
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1118 CHAPTER 16 VECTOR CALCULUS

Differentiating with respect to , we get , so comparison
with gives . Thus and

Then gives . Therefore

The reason for the name curl is that the curl vector is associated with rotations. One
connection is explained in Exercise 37. Another occurs when represents the velocity
field in fluid flow (see Example 3 in Section 16.1). Particles near (x, y, ) in the fluid tend
to rotate about the axis that points in the direction of , and the length of this
curl vector is a measure of how quickly the particles move around the axis (see Figure 1).
If at a point , then the fluid is free from rotations at and is called irro ta-
tional at . In other words, there is no whirlpool or eddy at P. If , then a 
tiny paddle wheel moves with the fluid but doesn’t rotate about its axis. If , the
paddle wheel rotates about its axis. We give a more detailed explanation in Section 16.8 as
a consequence of Stokes’ Theorem.

Divergence
If is a vector field on and , , and exist, then
the divergence of is the function of three variables defined by

Observe that is a vector field but is a scalar field. In terms of the gradient oper-
ator , the divergence of can be written symbolically
as the dot product of and :

If , find .

SOLUTION By the definition of divergence (Equation 9 or 10) we have

If is a vector field on , then is also a vector field on . As such, we can 
compute its divergence. The next theorem shows that the result is 0.

Theorem If is a vector field on and , , and have
continuous second-order partial derivatives, then

y fy�x, y, z� � 2xyz3 � ty�y, z�
ty�y, z� � 0 t�y, z� � h�z�

fz�x, y, z� � 3xy 2z2 � h��z�

h��z� � 0

f �x, y, z� � xy 2z3 � K

F
z

curl F�x, y, z�

curl F � 0 P P F
P curl F � 0

curl F � 0

F � P i � Q j � R k � 3 �P��x �Q��y �R��z
F

9 div F �
�P

�x
�

�Q

�y
�

�R

�z

curl F div F
� � ����x� i � ����y� j � ����z� k F

� F

10 div F � � � F

F�x, y, z� � xz i � xyz j � y 2 k div F

div F � � � F �
�

�x
�xz� �

�

�y
�xyz� �

�

�z
��y 2� � z � xz

F � 3 curl F � 3

11 F � P i � Q j � R k � 3 P Q R

div curl F � 0

8
6

7

EXAMPLE 4

FIGURE 1

(x, y, z)

curl F(x, y, z)
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SECTION 16.5 CURL AND DIVERGENCE 1119

PROOF Using the definitions of divergence and curl, we have

because the terms cancel in pairs by Clairaut’s Theorem.

Show that the vector field can’t be 
written as the curl of another vector field, that is, .

SOLUTION In Example 4 we showed that

and therefore . If it were true that , then Theorem 11 would give

which contradicts . Therefore is not the curl of another vector field.

Again, the reason for the name divergence can be understood in the context of fluid
flow. If is the velocity of a fluid (or gas), then represents the net rate
of change (with respect to time) of the mass of fluid (or gas) flowing from the point
per unit volume. In other words, measures the tendency of the fluid to diverge
from the point . If , then is said to be incompressible.

Another differential operator occurs when we compute the divergence of a gradient
vector field . If is a function of three variables, we have

and this expression occurs so often that we abbreviate it as . The operator

is called the Laplace operator because of its relation to Laplace’s equation

We can also apply the Laplace operator to a vector field

in terms of its components:

div curl F � � � �� � F�

�
�

�x ��R

�y
�

�Q

�z � �
�

�y � �P

�z
�

�R

�x � �
�

�z � �Q

�x
�

�P

�y �
�

�2R

�x �y
�

�2Q

�x �z
�

�2P

�y �z
�

�2R

�y �x
�

�2Q

�z �x
�

�2P

�z �y

� 0

F�x, y, z� � xz i � xyz j � y 2 kEXAMPLE 5v
F � curl G

div F � z � xz

F � curl Gdiv F � 0

div F � div curl G � 0

Fdiv F � 0

div F�x, y, z�F�x, y, z�
�x, y, z�

div F�x, y, z�
Fdiv F � 0�x, y, z�

f� f

div�� f � � � � �� f � �
�2f

�x 2 �
�2f

�y 2 �
�2f

�z2

� 2 f

� 2 � � � �

� 2 f �
�2f

�x 2 �
�2f

�y 2 �
�2f

�z2 � 0

� 2

F � P i � Q j � R k

� 2F � � 2P i � � 2Q j � � 2R k

Note the analogy with the scalar triple 
product: .a � �a � b� � 0

The reason for this interpretation of will
be explained at the end of Section 16.9 as a 
consequence of the Divergence Theorem.

div F
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1120 CHAPTER 16 VECTOR CALCULUS

Vector Forms of Green’s Theorem
The curl and divergence operators allow us to rewrite Green’s Theorem in versions that
will be useful in our later work. We suppose that the plane region , its boundary curve 

, and the functions and satisfy the hypotheses of Green’s Theorem. Then we con-
sider the vector field . Its line integral is

and, regarding as a vector field on with third component , we have

Therefore

and we can now rewrite the equation in Green’s Theorem in the vector form

Equation 12 expresses the line integral of the tangential component of along as the
double integral of the vertical component of over the region enclosed by . We
now derive a similar formula involving the normal component of .

If is given by the vector equation

then the unit tangent vector (see Section 13.2) is

You can verify that the outward unit normal vector to is given by

(See Figure 2.) Then, from Equation 16.2.3, we have

D
QPC

F � P i � Q j

�y
C

F � dr � �y
C

P dx � Q dy

0�3F

curl F � � i
�

�x

P�x, y�

j
�

�y

Q�x, y�

k
�

�z

0 � � � �Q

�x
�

�P

�y � k

�curl F� � k � ��Q

�x
�

�P

�y � k � k �
�Q

�x
�

�P

�y

�y
C

F � dr � yy
D

�curl F� � k dA12

CF
CDcurl F

F
C

a � t � br�t� � x�t� i � y�t� j

T�t� �
x��t�

� r��t� � i �
y��t�

� r��t� � j

C

n�t� �
y��t�

� r��t� � i �
x��t�

� r��t� � j

�y
C

F � n ds � y
b

a
�F � n��t� � r��t� � dt

� y
b

a
�P(x�t�, y�t�) y��t�

� r��t� � �
Q(x�t�, y�t�) x��t�

� r��t� � 	 � r��t� � dt

� y
b

a
P(x�t�, y�t�) y��t� dt � Q(x�t�, y�t�) x��t� dt

� y
C

P dy � Q dx � yy
D

� �P

�x
�

�Q

�y � dA

FIGURE 2

0

y

x

D

C

r(t) n(t)

T(t)
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SECTION 16.5 CURL AND DIVERGENCE 1121

1–8 Find (a) the curl and (b) the divergence of the vector field.

1.

2.

3.

4.

5.

6.

7.

8.

9–11 The vector field F is shown in the xy-plane and looks the
same in all other horizontal planes. (In other words, F is inde pen d-
ent of and its -component is 0.)
(a) Is div F positive, negative, or zero? Explain.
(b) Determine whether curl . If not, in which direction does

curl F point?

9. 10.

11.

F�x, y, z� � �x � yz� i � �y � xz� j � �z � xy� k

F�x, y, z� � xy 2z3 i � x 3yz2 j � x 2y 3z k

F�x, y, z� � xye z i � yze x k

F�x, y, z� � sin yz i � sin zx j � sin xy k

F�x, y, z� �
1

sx 2 � y 2 � z2 
�x i � y j � z k�

F�x, y, z� � e xy sin z j � y tan�1�x�z� k

F�x, y, z� � 
e x sin y, e y sin z , e z sin x �

F�x, y, z� � � x

y
, 

y

z
, 

z

x

zz

F � 0

y

x0

y

x0

y

x0

12. Let be a scalar field and a vector field. State whether 
each expression is meaningful. If not, explain why. If so, state
whether it is a scalar field or a vector field.

(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) ( j)

(k) ( l)

13–18 Determine whether or not the vector field is conservative. 
If it is conservative, find a function such that .

13.

14.

15.

16.

17.

18.

19. Is there a vector field on such that
? Explain.

20. Is there a vector field on such that
? Explain.

21. Show that any vector field of the form

where , , are differentiable functions, is irrotational.

22. Show that any vector field of the form

is incompressible.

Ff

grad fcurl f

curl�grad f �div F

grad�div F�grad F

grad�div f �div�grad f �
div�div F�curl�curl F�
div�curl�grad f ���grad f � � �div F�

F � ∇ ff

F�x, y, z� � y 2z3 i � 2xyz3 j � 3xy 2z2 k

F�x, y, z� � xyz 2 i � x 2yz2 j � x 2y 2z k

F�x, y, z� � 3xy 2z2 i � 2x 2yz3 j � 3x 2y 2z2 k

F�x, y, z� � i � sin z j � y cos z k

F�x, y, z� � e yz i � xze yz j � xye yz k

F�x, y, z� � e x sin yz i � ze x cos yz j � ye x cos yz k

� 3G
curl G � 
x sin y, cos y, z � xy�

� 3G
curl G � 
xyz, �y 2z, yz2�

F�x, y, z� � f �x� i � t�y� j � h�z� k

htf

F�x, y, z� � f �y, z� i � t�x, z� j � h�x, y� k

16.5 Exercises

1. Homework Hints available at stewartcalculus.com

by Green’s Theorem. But the integrand in this double integral is just the divergence of .
So we have a second vector form of Green’s Theorem.

This version says that the line integral of the normal component of along is equal to
the double integral of the divergence of over the region enclosed by .

F

13 �y
C

F � n ds � yy
D

div F�x, y� dA

F C
F D C
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1122 CHAPTER 16 VECTOR CALCULUS

23–29 Prove the identity, assuming that the appropriate partial
derivatives exist and are continuous. If is a scalar field and ,
are vector fields, then , , and are defined by

23. div

24. curl

25. div

26. curl

27. div

28. div

29.

30–32 Let and .

30. Verify each identity.
(a) (b)
(c)

31. Verify each identity.
(a) (b)
(c) (d)

32. If , find div . Is there a value of for which 
div ?

33. Use Green’s Theorem in the form of Equation 13 to prove
Green’s first identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and are
continuous. (The quantity occurs in the line inte-
gral. This is the directional derivative in the direction of the
normal vector and is called the normal derivative of .)

34. Use Green’s first identity (Exercise 33) to prove Green’s 
second identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and are
continuous.

35. Recall from Section 14.3 that a function is called harmonic
on if it satisfies Laplace’s equation, that is, on .
Use Green’s first identity (with the same hypotheses as in 

GFf
F � GF � Gf F

� f F��x, y, z� � f �x, y, z� F�x, y, z�

�F � G��x, y, z� � F�x, y, z� � G�x, y, z�

�F � G��x, y, z� � F�x, y, z� � G�x, y, z�

�F � G� � div F � div G

�F � G� � curl F � curl G

div F � F � � f� f F� � f

curl F � �� f � � F� f F� � f

�F � G� � G � curl F � F � curl G

�� f � �t� � 0

curl�curl F� � grad�div F� � � 2F

r � � r �r � x i � y j � z k

� � �rr� � 4r� � r � 3
� 2r 3 � 12r

� � r � 0�r � r�r

� ln r � r�r 2��1�r� � �r�r 3

pFF � r�r p

F � 0

yy
D

f �2
t dA � �y

C
f ��t� � n ds � yy

D

� f � �t dA

CD
tf

�t � n � Dn t

tn

yy
D

� f �2
t � t�2f � dA � �y

C
� f �t � t� f � � n ds

CD
tf

t

D�2
t � 0D

Exercise 33) to show that if is harmonic on then
. Here is the normal derivative of defined

in Exercise 33.

36. Use Green’s first identity to show that if is harmonic 
on and if on the boundary curve then

. (Assume the same hypotheses as in 
Exercise 33.)

37. This exercise demonstrates a connection between the curl 
vector and rotations. Let be a rigid body rotating about the 
-axis. The rotation can be described by the vector ,

where is the angular speed of , that is, the tangential speed
of any point in divided by the distance from the axis of
rotation. Let be the position vector of .
(a) By considering the angle in the figure, show that the

velocity field of is given by .
(b) Show that .
(c) Show that .

38. Maxwell’s equations relating the electric field and magnetic
field as they vary with time in a region containing no charge
and no current can be stated as follows:

where is the speed of light. Use these equations to prove the
following:

(a)

(b)

(c) [Hint: Use Exercise 29.]

(d)

D,t

tDn tx�C
Dn t ds � 0

f
C,f �x, y� � 0D,

xxD � �f �2 dA � 0

B
w � 	kz

B	
dBP

Pr � 
x, y, z �



v � w � rB
v � �	y i � 	 x j
curl v � 2w

0 

¨ 

P 

d 

B

w 

v 

z 

y 

x 

E
H

div H � 0div E � 0

curl H �
1

c

�E
�t

curl E � �
1

c

�H
�t

c

� � �� � E� � �
1

c 2

�2 E
�t 2

� � �� � H� � �
1

c 2

�2 H
�t 2

� 2E �
1

c 2

�2 E
�t 2

� 2H �
1

c 2

�2 H
�t 2
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1123

39. We have seen that all vector fields of the form 
satisfy the equation and that all vector fields of the
form satisfy the equation (assuming 
continuity of the appropriate partial derivatives). This suggests
the question: Are there any equations that all functions of the 

F � �t

curl F � 0
div F � 0F � curl G

form must satisfy? Show that the answer to 
this question is “No” by proving that every continuous 
function on is the divergence of some vector field.

[Hint: Let ,where

f � div G

f � 3

G�x, y, z� � 
t�x, y, z�, 0, 0�
t�x, y, z� � x

x
0 f �t, y, z� dt.]

So far we have considered special types of surfaces: cylinders, quadric surfaces, graphs of
functions of two variables, and level surfaces of functions of three variables. Here we use
vector functions to describe more general surfaces, called parametric surfaces, and com-
pute their areas. Then we take the general surface area formula and see how it applies to
special surfaces.

Parametric Surfaces
In much the same way that we describe a space curve by a vector function of a single
parameter , we can describe a surface by a vector function of two param  eters 
and . We suppose that

is a vector-valued function defined on a region in the -plane. So x, y, and , the com-
ponent functions of r, are functions of the two variables u and with domain D. The set of
all points in such that

and varies throughout , is called a parametric surface and Equations 2 are called
parametric equations of . Each choice of u and gives a point on S; by making all 
choices, we get all of S. In other words, the surface is traced out by the tip of the position
vector as moves throughout the region . (See Figure 1.)

Identify and sketch the surface with vector equation

SOLUTION The parametric equations for this surface are

r�t�
t r�u, v� u

v

1 r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k

D uv z
v

�x, y, z� � 3

2 x � x�u, v� y � y�u, v� z � z�u, v�

�u, v� D S
S v

S
r�u, v� �u, v� D

0

z

x y

S

r(u, √)
0

√

u

D
(u, √)

r

FIGURE 1
A parametric surface

r�u, v� � 2 cos u i � v j � 2 sin u k

EXAMPLE 1

z � 2 sin uy � vx � 2 cos u

16.6 Parametric Surfaces and Their Areas
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1124 CHAPTER 16 VECTOR CALCULUS

So for any point on the surface, we have

This means that vertical cross-sections parallel to the -plane (that is, with y constant)
are all circles with radius 2. Since and no restriction is placed on , the surface is a
circular cylinder with radius 2 whose axis is the y-axis (see Figure 2).

In Example 1 we placed no restrictions on the parameters u and and so we obtained the
entire cylinder. If, for instance, we restrict u and by writing the parameter domain as

then and we get the quarter-cylinder with length 3 illustrated in
Figure 3.

If a parametric surface S is given by a vector function , then there are two useful
families of curves that lie on S, one family with u constant and the other with constant.
These families correspond to vertical and horizontal lines in the -plane. If we keep con-
stant by putting becomes a vector function of the single parameter
and defines a curve lying on . (See Figure 4.)

Similarly, if we keep constant by putting given by
that lies on . We call these curves grid curves. (In Example 1, for instance, the grid curves
obtained by letting u be constant are horizontal lines whereas the grid curves with constant
are circles.) In fact, when a computer graphs a parametric surface, it usually depicts the sur-
face by plotting these grid curves, as we see in the following example.

Use a computer algebra system to graph the surface

Which grid curves have u constant? Which have constant?

SOLUTION We graph the portion of the surface with parameter domain
in Figure 5. It has the appearance of a spiral tube. To identify the grid

curves, we write the corresponding parametric equations:

If is constant, then and are constant, so the parametric equations resemble
those of the helix in Example 4 in Section 13.1. Thus the grid curves with constant are
the spiral curves in Figure 5. We deduce that the grid curves with u constant must be 

�x, y, z�

x 2 � z2 � 4 cos2u � 4 sin2u � 4

xz
vy � v

v
v

0 � v � 30 � u � ��2

x � 0, z � 0, 0 � y � 3,

r�u, v�
v

uuv
vu � u0, then r�u0, v�

SC1

FIGURE 4

r 

0 

z 

y 
x 

C¡  

C™

0 

D 

√=√ ̧  

(u ̧ , √ ̧) 

u=u ̧  

u 

√ 

r�u, v0�v � v0, we get a curve C2v
S

v

EXAMPLE 2

r�u, v� � 
�2 � sin v� cos u, �2 � sin v� sin u, u � cos v�

v

0 � u � 4�,
0 � v � 2�

z � u � cos vy � �2 � sin v� sin ux � �2 � sin v� cos u

cos vsin vv
v

FIGURE 2 

0 

(0, 0, 2) 

(2, 0, 0) 

x 
y 

z 

FIGURE 3 

0 

(0 , 3, 2) 

x 
y 

z 

Visual 16.6 shows animated versions 
of Figures 4 and 5, with moving grid curves, for
several parametric surfaces.

TEC

y
x

u constant

√ constant

FIGURE 5
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1125

curves that look like circles in the figure. Further evidence for this assertion is that if u is
kept constant, , then the equation shows that the -values vary
from to .

In Examples 1 and 2 we were given a vector equation and asked to graph the corre-
sponding parametric surface. In the following examples, however, we are given the more
challenging problem of finding a vector function to represent a given surface. In the rest of
this chapter we will often need to do exactly that.

Find a vector function that represents the plane that passes through the point
with position vector and that contains two nonparallel vectors a and b.

SOLUTION If P is any point in the plane, we can get from to by moving a certain
distance in the direction of and another distance in the direction of . So there are
scalars u and such that A . (Figure 6 illustrates how this works, by 
means of the Parallelogram Law, for the case where and are positive. See also 
Exercise 46 in Section 12.2.) If r is the position vector of P, then

A A

So the vector equation of the plane can be written as

where u and are real numbers.
If we write , , , and , 

then we can write the parametric equations of the plane through the point as
follows:

Find a parametric representation of the sphere

SOLUTION The sphere has a simple representation in spherical coordinates, so let’s
choose the angles and in spherical coordinates as the parameters (see Section 15.9).
Then, putting in the equations for conversion from spherical to rectangular coordi-
nates (Equations 15.9.1), we obtain

as the parametric equations of the sphere. The corresponding vector equation is

We have and , so the parameter domain is the rectangle
. The grid curves with constant are the circles of constant lati-

tude (including the equator). The grid curves with constant are the meridians (semi -
circles), which connect the north and south poles (see Figure 7).

NOTE We saw in Example 4 that the grid curves for a sphere are curves of constant lat-
itude and longitude. For a general parametric surface we are really making a map and the
grid curves are similar to lines of latitude and longitude. Describing a point on a para-
metric surface (like the one in Figure 5) by giving specific values of and is like giving
the latitude and longitude of a point.

zz � u0 � cos vu � u0

u0 � 1u0 � 1

EXAMPLE 3
r0P0

PP0

ba
� ua � vbP0 Pv

vu

� r0 � ua � vbP0 P�r � OP0

r�u, v� � r0 � ua � vb

v
b � 
b1, b2, b3�a � 
a1, a2, a3 �r0 � 
x0, y0, z0 �r � 
x, y, z �

�x0, y0, z0�

z � z0 � ua3 � vb3y � y0 � ua2 � vb2x � x0 � ua1 � vb1

EXAMPLE 4v

x 2 � y 2 � z2 � a 2

 � a

�

 � a

z � a cos �y � a sin � sin 
x � a sin � cos 


r��, 
� � a sin � cos 
 i � a sin � sin 
 j � a cos � k

0 � 
 � 2�0 � � � �
�D � �0, �� � �0, 2��




vu

P

ua
P¸

√b

a

b

FIGURE 6

FIGURE 7

0
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¨

˙

k

c π

D

˙=c

¨=k

r

˙=c

¨=k

0

z
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1126 CHAPTER 16 VECTOR CALCULUS

Find a parametric representation for the cylinder

SOLUTION The cylinder has a simple representation in cylindrical coordinates, so
we choose as parameters and in cylindrical coordinates. Then the parametric equa-
tions of the cylinder are

where and .

Find a vector function that represents the elliptic paraboloid .

SOLUTION If we regard and as parameters, then the parametric equations are simply

and the vector equation is

In general, a surface given as the graph of a function of and , that is, with an equation
of the form , can always be regarded as a parametric surface by taking and
as parameters and writing the parametric equations as

Parametric representations (also called parametrizations) of surfaces are not unique. The
next example shows two ways to parametrize a cone.

Find a parametric representation for the surface , that is, the
top half of the cone .

SOLUTION 1 One possible representation is obtained by choosing x and y as parameters:

So the vector equation is

SOLUTION 2 Another representation results from choosing as parameters the polar 
coordinates r and . A point on the cone satisfies , , and

x 2 � y 2 � 4 0 � z � 1

r � 2

 z

x � 2 cos 
 y � 2 sin 
 z � z

0 � 
 � 2� 0 � z � 1

z � x 2 � 2y 2

x y

x � x y � y z � x 2 � 2y 2

r�x, y� � x i � y j � �x 2 � 2y 2� k

x y
z � f �x, y� x y

x � x y � y z � f �x, y�

z � 2sx 2 � y 2 

z2 � 4x 2 � 4y 2

x � x y � y z � 2sx 2 � y 2 

r�x, y� � x i � y j � 2sx 2 � y 2 k

FIGURE 9FIGURE 8

v EXAMPLE 6

EXAMPLE 7

EXAMPLE 5

y � r sin 
x � r cos 
�x, y, z�


One of the uses of parametric sur faces is in
computer graphics. Figure 8 shows the result of
trying to graph the sphere 
by solving the equation for and graphing the
top and bottom hemispheres separately. Part 
of the sphere appears to be missing because 
of the rectangular grid system used by the 
computer. The much better picture in Figure 9
was produced by a computer using the 
parametric equations found in Example 4.

z
x 2 � y 2 � z2 � 1

In Module 16.6 you can investigate 
several families of parametric surfaces.
TEC
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1127

. So a vector equation for the cone is

where and .

Surfaces of Revolution
Surfaces of revolution can be represented parametrically and thus graphed using a com-
puter. For instance, let’s consider the surface obtained by rotating the curve ,

, about the -axis, where . Let be the angle of rotation as shown in Fig-
ure 10. If is a point on , then

Therefore we take and as parameters and regard Equations 3 as parametric equations of
. The parameter domain is given by , .

Find parametric equations for the surface generated by rotating the curve
, , about the -axis. Use these equations to graph the surface of rev-

olution.

SOLUTION From Equations 3, the parametric equations are

and the parameter domain is , . Using a computer to plot these
equations and rotate the image, we obtain the graph in Figure 11.

We can adapt Equations 3 to represent a surface obtained through revolution about the
- or -axis (see Exercise 30).

Tangent Planes
We now find the tangent plane to a parametric surface traced out by a vector function

at a point with position vector . If we keep constant by putting , then
becomes a vector function of the single parameter and defines a grid curve

lying on . (See Figure 12.) The tangent vector to at is obtained by taking the partial
derivative of with respect to :

r�r, 
� � r cos 
 i � r sin 
 j � 2r k

r � 0 0 � 
 � 2�

S y � f �x�
a � x � b x f �x� � 0 


�x, y, z� S

3 x � x y � f �x� cos 
 z � f �x� sin 


x 

S a � x � b 0 � 
 � 2�

y � sin x 0 � x � 2� x

x � x y � sin x cos 
 z � sin x sin 


0 � x � 2� 0 � 
 � 2�

y z

S

r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k

P0 r�u0, v0 � u u � u0

r�u0, v� v C1

S C1 P0

r v

rv �
�x

�v
�u0, v0� i �

�y

�v
�u0, v0� j �

�z

�v
�u0, v0 � k4

FIGURE 12

0 u 

D 

√=√¸ 

(u ̧ , √ ̧ ) 

u=u ̧  

√ 

0 

z 

y x 

C¡  

C™ 

r u 
r √ 

P¸ 

r 

z � 2sx 2 � y 2 � 2r

EXAMPLE 8

For some purposes the parametric representa-
tions in Solutions 1 and 2 are equally good, 
but Solution 2 might be preferable in certain
situations. If we are interested only in the part
of the cone that lies below the plane ,
for instance, all we have to do in Solution 2 is
change the parameter domain to

0 � 
 � 2�0 � r �
1
2

z � 1

0 

z 

y 

x 

¨ 
z 

x 

(x, y , z) 

y=ƒ 

ƒ 

ƒ 

FIGURE 10

FIGURE 11

z y

x
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1128 CHAPTER 16 VECTOR CALCULUS

Similarly, if we keep constant by putting , we get a grid curve given by
that lies on , and its tangent vector at is

If is not , then the surface is called smooth (it has no “corners”). For a smooth
surface, the tangent plane is the plane that contains the tangent vectors and , and the
vector is a normal vector to the tangent plane.

Find the tangent plane to the surface with parametric equations ,
, at the point .

SOLUTION We first compute the tangent vectors:

Thus a normal vector to the tangent plane is

Notice that the point corresponds to the parameter values and , so
the normal vector there is

Therefore an equation of the tangent plane at is

or

Surface Area
Now we define the surface area of a general parametric surface given by Equation 1. For
simplicity we start by considering a surface whose parameter domain is a rectangle, and
we divide it into subrectangles . Let’s choose to be the lower left corner of .
(See Figure 14.) 

v v � v0 C2

r�u, v0� S P0

ru �
�x

�u
�u0, v0� i �

�y

�u
�u0, v0� j �

�z

�u
�u0, v0� k

x � u 2

y � v2 z � u � 2v �1, 1, 3�

ru �
�x

�u
i �

�y

�u
j �

�z

�u
k � 2u i � k

rv �
�x

�v
i �

�y

�v
j �

�z

�v
k � 2v j � 2 k

ru � rv � � i
2u

0

j
0

2v

k
1

2 � � �2v i � 4u j � 4uv k

v EXAMPLE 9

5

ru � rv 0 S
ru rv

ru � rv

�1, 1, 3� u � 1 v � 1

�2 i � 4 j � 4 k

�1, 1, 3�

�2�x � 1� � 4�y � 1� � 4�z � 3� � 0

x � 2y � 2z � 3 � 0

D
Rij �ui*, vj*� Rij

FIGURE 14
The image of the

subrectangle Rij is the patch Sij.

0

y

z

x

Pij
Sijr

(u*
i , √*

j)

0 u

√

Îu

Rij

Î√

Figure 13 shows the self-intersecting 
surface in Example 9 and its tangent plane 
at .�1, 1, 3�

FIGURE 13

z

x

y

(1, 1, 3)
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1129

The part of the surface that corresponds to is called a patch and has the point
with position vector as one of its corners. Let

be the tangent vectors at as given by Equations 5 and 4.
Figure 15(a) shows how the two edges of the patch that meet at can be approximated

by vectors. These vectors, in turn, can be approximated by the vectors and
because partial derivatives can be approximated by difference quotients. So we approxi-
mate by the parallelogram determined by the vectors and . This parallelogram
is shown in Figure 15(b) and lies in the tangent plane to at . The area of this parallelo-
gram is

and so an approximation to the area of is

Our intuition tells us that this approximation gets better as we increase the number of sub-
rectangles, and we recognize the double sum as a Riemann sum for the double integral

. This motivates the following definition.

Definition If a smooth parametric surface is given by the equation

and is covered just once as ranges throughout the parameter domain ,
then the surface area of is

where

Find the surface area of a sphere of radius .

SOLUTION In Example 4 we found the parametric representation

where the parameter domain is

We first compute the cross product of the tangent vectors:

Pij

r�ui*, vj*�

ru* � ru�ui*, vj*� and rv* � rv�ui*, vj*�

Pij

Sij S Rij

Pij

�u ru* �v rv*

Sij �u ru* �v rv*
S Pij

� ��u ru*� � ��v rv*� � � � ru* � rv* � �u �v

S

�
m

i�1
�
n

j�1
� ru* � rv* � �u �v

xxD � ru � rv � du dv

6 S

r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k �u, v� � D

S �u, v� D
S

A�S � � yy
D

� ru � rv � dA

ru �
�x

�u
i �

�y

�u
j �

�z

�u
k rv �

�x

�v
i �

�y

�v
j �

�z

�v
k

a

x � a sin � cos � y � a sin � sin � z � a cos �

EXAMPLE 10

D � ���, �� � 0 	 � 	 
, 0 	 � 	 2
 �

r� � r� � �
i
�x

��

�x

��

j
�y

��

�y

��

k
�z

��

�z

��
� � � i

�a cos � cos �

�a sin � sin �

j
a cos � sin �

a sin � cos �

k
�a sin �

0 �
� a 2 sin2� cos � i � a 2 sin2� sin � j � a 2 sin � cos � k

FIGURE 15
Approximating a patch
by a parallelogram
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1130 CHAPTER 16 VECTOR CALCULUS

Notice the similarity between the surface area
formula in Equation 9 and the arc length formula

from Section 8.1.

L � y
b

a
�1 � �dy

dx�2 

dx

Thus

since for . Therefore, by Definition 6, the area of the sphere is

Surface Area of the Graph of a Function
For the special case of a surface with equation , where lies in and has
continuous partial derivatives, we take and as parameters. The parametric equations are

so

and

Thus we have

and the surface area formula in Definition 6 becomes

Find the area of the part of the paraboloid that lies under
the plane .

SOLUTION The plane intersects the paraboloid in the circle , . There-
fore the given surface lies above the disk with center the origin and radius 3. (See 

� r� � r� � � sa 4 sin 4� cos 2� � a 4 sin 4� sin 2� � a 4 sin 2� cos 2�

� sa 4 sin 4� � a 4 sin2� cos2� � a 2
ssin2� � a 2 sin �

0 � � � �sin � � 0

A � yy
D

� r� � r� � dA � y
2�

0
y

�

0
a 2 sin � d� d�

� a 2
y

2�

0
d� y

�

0
sin � d� � a 2�2��2 � 4�a 2

fD�x, y�z � f �x, y�S
yx

z � f �x, y�y � yx � x

ry � j � � 	f

	y� krx � i � � 	f

	x� k

rx � ry � � i

1

0

j

0

1

k
	f

	x

	f

	y
� � 


	f

	x
i 


	f

	y
j � k7

� rx � ry � � �� 	f

	x�2

� � 	f

	y�2

� 1 � �1 � � 	z

	x�2

� � 	z

	y�2

8

A�S � � yy
D

�1 � � 	z

	x�2

� � 	z

	y�2 

dA9

z � x 2 � y 2EXAMPLE 11v
z � 9

z � 9x 2 � y 2 � 9
D
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1131

Figure 16.) Using Formula 9, we have

Converting to polar coordinates, we obtain

The question remains whether our definition of surface area is consistent with the
surface area formula from single-variable calculus (8.2.4).

We consider the surface obtained by rotating the curve , , about
the -axis, where and is continuous. From Equations 3 we know that para-
metric equations of are

To compute the surface area of we need the tangent vectors

Thus

and so

because . Therefore the area of is

This is precisely the formula that was used to define the area of a surface of revolution in
single-variable calculus (8.2.4).

A � yy
D

�1 � � 	z

	x�2

� � 	z

	y�2 

dA

� yy
D

s1 � 4�x 2 � y 2� dA

A � y
2�

0
y

3

0
s1 � 4r 2 r dr d� � y

2�

0
d� y

3

0
rs1 � 4r 2 dr

� 2� ( 1
8 ) 2

3 �1 � 4r 2 �3�2 ]0
3

�
�

6
 (37s37 
 1)

6

S y � f �x� a � x � b
x f �x� � 0 f �

S

x � x y � f �x� cos � z � f �x� sin � a � x � b 0 � � � 2�

S

rx � i � f ��x� cos � j � f ��x� sin � k

r� � 
f �x� sin � j � f �x� cos � k

rx � r� � � i
1

0

j
f ��x� cos �

 
f �x� sin �

k
f ��x� sin �

f �x� cos � �
� f �x� f ��x� i 
 f �x� cos � j 
 f �x� sin � k

� rx � r� � � s	 f �x�
2	 f ��x�
2 � 	 f �x�
2 cos 2� � 	 f �x�
2 sin2�

� s	 f �x�
2	1 � 	 f ��x�
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 � f �x�s1 � 	 f ��x�
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f �x� � 0 S
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D
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� 2� y
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a
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2 dx

� y
2�

0
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1132 CHAPTER 16 VECTOR CALCULUS

1–2 Determine whether the points and lie on the given
surface.

1.

2.

3–6 Identify the surface with the given vector equation.

3.

4. ,  

5.

6.

; 7–12 Use a computer to graph the parametric surface. Get a
printout and indicate on it which grid curves have constant and
which have constant.

7.

8. ,  

9. ,  
, 

10. ,
, 

11. ,  ,  ,
, 

12. ,  ,  ,
, 

13–18 Match the equations with the graphs labeled I–VI and 
give reasons for your answers. Determine which families of grid
curves have constant and which have constant.

13.

14. ,  

15.

16. ,
,

17. ,  ,  

18. ,  ,  

P Q

r�u, v� � �2u � 3v, 1 � 5u 
 v, 2 � u � v �
P�7, 10, 4�,  Q�5, 22, 5�

r�u, v� � �u � v, u 2 
 v, u � v 2 �
P�3, 
1, 5�,  Q�
1, 3, 4�

r�u, v� � �u � v� i � �3 
 v� j � �1 � 4u � 5v� k

r�u, v� � 2 sin u i � 3 cos u j � v k 0 � v � 2

r�s, t� � �s, t, t 2 
 s 2 �

r�s, t� � �s sin 2t, s 2, s cos 2t �

u
v

r�u, v� � �u 2, v 2, u � v � , 

1 � u � 1, 
1 � v � 1

r�u, v� � �u, v 3, 
v �

2 � u � 2, 
2 � v � 2

r�u, v� � �u cos v, u sin v, u5�

1 � u � 1 0 � v � 2�

r�u, v� � �u, sin�u � v�, sin v �

� � u � � 
� � v � �

x � sin v y � cos u sin 4v z � sin 2u sin 4v
0 � u � 2� 
��2 � v � ��2

x � sin u y � cos u sin  v z � sin v

u v

r�u, v� � u cos v i � u sin v j � v k

r�u, v� � u cos v i � u sin v j � sin u k 
� � u � �

r�u, v� � sin v i � cos u sin 2v j � sin u sin 2v k

x � �1 
 u��3 � cos v� cos 4�u

y � �1 
 u��3 � cos v� sin 4�u

z � 3u � �1 
 u� sin v

x � cos3u cos3v y � sin3u cos3v z � sin3v

x � (1 
 � u �)cos v y � (1 
 � u �) sin v z � u

0 � u � 2� 0 � v � 2�
19–26 Find a parametric representation for the surface.

19. The plane through the origin that contains the vectors
and 

20. The plane that passes through the point and
contains the vectors and 

21. The part of the hyperboloid that lies in
front of the -plane

22. The part of the ellipsoid that lies to the
left of the -plane

23. The part of the sphere that lies above the
cone 

24. The part of the sphere that lies between
the planes and 

25. The part of the cylinder that lies between the
planes and 

y

x

x

y

y

z

z

x

z

z

x y

III

V

x
y

z

IV

I II

VI

y

z

x

i 
 j
j 
 k

�0, 
1, 5�
�
3, 2, 5 ��2, 1, 4 �

4x 2 
 4y2 
 z2 � 4
yz

x 2 � 2y 2 � 3z2 � 1
xz

x 2 � y 2 � z2 � 4
z � sx 2 � y 2 

x 2 � y 2 � z 2 � 16
z � 2z � 
2

y 2 � z 2 � 16
x � 5x � 0

16.6 Exercises

; Graphing calculator or computer required Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS 1133

26. The part of the plane that lies inside the cylinder

27–28 Use a computer algebra system to produce a graph that
looks like the given one.

27. 28.

; 29. Find parametric equations for the surface obtained by 
rotating the curve , , about the -axis and
use them to graph the surface.

; 30. Find parametric equations for the surface obtained by 
rotating the curve , , about the 
-axis and use them to graph the surface.

; 31. (a) What happens to the spiral tube in Example 2 (see Fig-
 ure 5) if we replace by and by ?

(b) What happens if we replace by and 
by ?

; 32. The surface with parametric equations

where and , is called a Möbius
strip. Graph this surface with several viewpoints. What is
unusual about it?

33–36 Find an equation of the tangent plane to the given
parametric surface at the specified point.

33. ,  ,  ;  

34. ,  ,  ;  

35. ;  , 

36. ;  
, 

37–38 Find an equation of the tangent plane to the given
parametric surface at the specified point. Graph the surface and
the tangent plane.

37. ;  , 

z � x � 3
x 2 � y 2 � 1

CAS

3

0

_3
_3

0

0 5

z

y
x

0

_1
_1

1

0
1

0

_1

z

y x

y � e 
x 0 � x � 3 x

x � 4y 2 
 y 4 
2 � y � 2
y

cos usin usin ucos u
sin ucos 2ucos u

sin 2u

x � 2 cos � � r cos���2�

y � 2 sin � � r cos���2�

z � r sin���2�

0 � � � 2�

1
2 � r �

1
2

�2, 3, 0�z � u 
 vy � 3u2x � u � v

�5, 2, 3�z � u � vy � v 3 � 1x � u2 � 1

v � ��3u � 1r�u, v� � u cos v i � u sin v j � v k

r�u, v� � sin u i � cos u sin v j � sin v k
v � ��6u � ��6

CAS

v � 0u � 1r�u, v� � u 2 i � 2u sin v j � u cos v k

38. ;  

39–50 Find the area of the surface.

39. The part of the plane that lies in the 
first octant

40. The part of the plane with vector equation
that is given by

41. The part of the plane that lies inside the 
cylinder 

42. The part of the cone that lies between the
plane and the cylinder 

43. The surface , , 

44. The part of the surface that lies above the
triangle with vertices , , and 

45. The part of the surface that lies within the 
cylinder 

46. The part of the paraboloid that lies inside the
cylinder 

47. The part of the surface that lies between the
planes , , , and 

48. The helicoid (or spiral ramp) with vector equation
, , 

49. The surface with parametric equations , ,
, , 

50. The part of the sphere that lies inside the
cylinder , where 

51. If the equation of a surface is , where
, and you know that and ,

what can you say about ?

52–53 Find the area of the surface correct to four decimal places
by expressing the area in terms of a single integral and using
your calculator to estimate the integral.

52. The part of the surface that lies inside the
cylinder 

53. The part of the surface that lies above the 
disk 

54. Find, to four decimal places, the area of the part of the sur-
face that lies above the square

. Illustrate by graphing this part of the
surface.

55. (a) Use the Midpoint Rule for double integrals (see Sec -
tion 15.1) with six squares to estimate the area of the 
surface , , .

r�u, v� � �1 
 u 2 
 v 2� i 
 v j 
 u k �
1, 
1, 
1�

3x � 2y � z � 6

r�u, v� � �u � v, 2 
 3u, 1 � u 
 v�
0 � u � 2, 
1 � v � 1

x � 2y � 3z � 1
x 2 � y2 � 3

z � sx 2 � y2 

y � x y � x 2

z � 2
3 �x 3�2 � y 3�2 � 0 � x � 1 0 � y � 1

z � 1 � 3x � 2y 2

z � xy
x 2 � y 2 � 1

x � y 2 � z2

y 2 � z2 � 9

y � 4x � z2

x � 0 x � 1 z � 0 z � 1

r�u, v� � u cos v i � u sin v j � v k 0 � u � 1 0 � v � �

x � u2 y � uv
z � 1

2v 2 0 � u � 1 0 � v � 2

x 2 � y2 � z 2 � b2

x 2 � y 2 � a 2 0 � a � b

S z � f �x, y�
x 2 � y 2 � R 2 � fx � � 1 � fy � � 1

A�S�

z � cos�x 2 � y 2�
x 2 � y 2 � 1

z � e
x2
y2

x 2 � y 2 � 4

�0, 0� �0, 1� �2, 1�

CAS

z � �1 � x 2 ���1 � y 2 �
� x � � � y � � 1

0 � y � 40 � x � 6z � 1��1 � x 2 � y 2�
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1134 CHAPTER 16 VECTOR CALCULUS

(b) Use a computer algebra system to approximate the sur-
face area in part (a) to four decimal places. Compare
with the answer to part (a).

56. Find the area of the surface with vector equation
, ,

. State your answer correct to four decimal
places.

57. Find the exact area of the surface ,
, .

58. (a) Set up, but do not evaluate, a double integral for the area
of the surface with parametric equations ,

, , , .
(b) Eliminate the parameters to show that the surface is an

elliptic paraboloid and set up another double integral for
the surface area.

; (c) Use the parametric equations in part (a) with and
to graph the surface.

(d) For the case , , use a computer algebra system
to find the surface area correct to four decimal places.

59. (a) Show that the parametric equations ,
, , , ,

represent an ellipsoid.

; (b) Use the parametric equations in part (a) to graph the
ellipsoid for the case , , .

(c) Set up, but do not evaluate, a double integral for the sur-
 face area of the ellipsoid in part (b).

60. (a) Show that the parametric equations ,
, , represent a hyperboloid

of one sheet.

; (b) Use the parametric equations in part (a) to graph the
hyperboloid for the case , , .

(c) Set up, but do not evaluate, a double integral for the sur-
 face area of the part of the hyperboloid in part (b) that
lies between the planes and .

CAS

0 � u � �r�u, v� � �cos3u cos3v, sin3u cos3v, sin3v �
0 � v � 2�

z � 1 � 2x � 3y � 4y 2CAS

0 � y � 11 � x � 4

x � au cos v
0 � v � 2�0 � u � 2z � u 2y � bu sin v

a � 2
b � 3

b � 3a � 2CAS

x � a sin u cos v
0 � v � 2�0 � u � �z � c cos uy � b sin u sin v

c � 3b � 2a � 1

x � a cosh u cos v
z � c sinh uy � b cosh u sin v

CAS

c � 3b � 2a � 1

z � 3z � 
3

61. Find the area of the part of the sphere 
that lies inside the paraboloid .

62. The figure shows the surface created when the cylinder
intersects the cylinder . Find the 

area of this surface.

63. Find the area of the part of the sphere 
that lies inside the cylinder .

64. (a) Find a parametric representation for the torus obtained 
by rotating about the -axis the circle in the -plane
with center and radius . [Hint: Take as
parameters the angles and shown in the figure.]

; (b) Use the parametric equations found in part (a) to graph
the torus for several values of a and b.

(c) Use the parametric representation from part (a) to find
the surface area of the torus.

z xz
�b, 0, 0� a � b

� 

å 
¨ 

0 

(x, y, z) 

(b, 0, 0) 

z 

x 

y 

z � x 2 � y 2

x 2 � z 2 � 1y 2 � z 2 � 1

z 

y 
x 

x 2 � y 2 � z2 � a 2

x 2 � y 2 � ax

x 2 � y 2 � z2 � 4z

The relationship between surface integrals and surface area is much the same as the rela-
tionship between line integrals and arc length. Suppose is a function of three variables
whose domain includes a surface . We will define the surface integral of over in such
a way that, in the case where , the value of the surface integral is equal to the
surface area of . We start with parametric surfaces and then deal with the special case
where is the graph of a function of two variables.

Parametric Surfaces
Suppose that a surface has a vector equation

We first assume that the parameter domain is a rectangle and we divide it into subrect-

f
S f S

f �x, y, z� � 1
S

S

S

r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k �u, v� � D

D

16.7 Surface Integrals

97817_16_ch16_p1130-1137.qk_97817_16_ch16_p1130-1137  11/9/10  9:23 AM  Page 1134

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



SECTION 16.7 SURFACE INTEGRALS 1135

angles with dimensions and . Then the surface is divided into corresponding
patches as in Figure 1. We evaluate at a point in each patch, multiply by the area

of the patch, and form the Riemann sum

Then we take the limit as the number of patches increases and define the surface integral
of f over the surface S as

Notice the analogy with the definition of a line integral (16.2.2) and also the analogy with
the definition of a double integral (15.1.5).

To evaluate the surface integral in Equation 1 we approximate the patch area by the
area of an approximating parallelogram in the tangent plane. In our discussion of surface
area in Section 16.6 we made the approximation

where

are the tangent vectors at a corner of . If the components are continuous and and
are nonzero and nonparallel in the interior of D, it can be shown from Definition 1, even
when D is not a rectangle, that

This should be compared with the formula for a line integral:

Observe also that

Formula 2 allows us to compute a surface integral by converting it into a double inte-
gral over the parameter domain . When using this formula, remember that is
evaluated by writing , , and in the formula for .

Compute the surface integral , where is the unit sphere
.

SOLUTION As in Example 4 in Section 16.6, we use the parametric representation

Sij f Pij*
�Sij


m

i�1

n

j�1
f �Pij*� �Sij

yy
S

f �x, y, z� dS � lim
m, n l �


m

i�1

n

j�1
f �Pij*� �Sij

�Sij

�Sij � � ru � rv � �u �v

ru �
	x

	u
i �

	y

	u
j �

	z

	u
k rv �

	x

	v
i �

	y

	v
j �

	z

	v
k

Sij ru rv

2 yy
S

f �x, y, z� dS � yy
D

f �r�u, v�� � ru � rv � dA

y
C

f �x, y, z� ds � y
b

a
f �r�t�� � r��t� � dt

yy
S

1 dS � yy
D

� ru � rv � dA � A�S�

D f �r�u, v��
x � x�u, v� y � y�u, v� z � z�u, v� f �x, y, z�

xxS x 2 dS S
x 2 � y 2 � z2 � 1

S�v�uRij

EXAMPLE 1

0 � � � 2�0 � � � �z � cos �y � sin � sin �x � sin � cos �

1

We assume that the surface is covered only 
once as ranges throughout . The value 
of the surface integral does not depend on the
parametrization that is used.

D�u, v�

FIGURE 1

0

√

u

Rij

Î√

Îu

0

z

y

x

P*
ij

S

Sij

D

r
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1136 CHAPTER 16 VECTOR CALCULUS

that is,

As in Example 10 in Section 16.6, we can compute that

Therefore, by Formula 2,

Surface integrals have applications similar to those for the integrals we have previously
considered. For example, if a thin sheet (say, of aluminum foil) has the shape of a surface

and the density (mass per unit area) at the point is , then the total mass
of the sheet is

and the center of mass is , where

Moments of inertia can also be defined as before (see Exercise 41).

Graphs
Any surface with equation can be regarded as a parametric surface with para-
metric equations

and so we have

Thus

and

r��, �� � sin � cos � i � sin � sin � j � cos � k

� r� � r� � � sin �

yy
S

x 2 dS � yy
D

�sin � cos ��2 � r� � r� � dA

� y
2�

0
y

�

0
sin2� cos2� sin � d� d� � y

2�

0
cos2� d� y

�

0
sin3� d�

� y
2�

0

1
2 �1 � cos 2�� d� y

�

0
�sin � 
 sin � cos2�� d�

� 1
2 [� �

1
2 sin 2�]0

2� [
cos � �
1
3 cos3�]0

�
�

4�

3

S �x, y, z� ��x, y, z�

m � yy
S

��x, y, z� dS

�x, y, z �

x �
1

m yy
S

x ��x, y, z� dS y �
1

m yy
S

y ��x, y, z� dS z �
1

m yy
S

z ��x, y, z� dS

S z � t�x, y�

x � x y � y z � t�x, y�

rx � i � � 	t

	x� k ry � j � � 	t

	y� k

3 rx � ry � 

	t

	x
i 


	t

	y
j � k

� rx � ry � � �� 	z

	x�2

� � 	z

	y�2

� 1

Here we use the identities

Instead, we could use Formulas 64 and 67 in 
the Table of Integrals.

sin2� � 1 
 cos2�

cos2� � 1
2 �1 � cos 2��
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SECTION 16.7 SURFACE INTEGRALS 1137

Therefore, in this case, Formula 2 becomes

Similar formulas apply when it is more convenient to project onto the -plane or 
-plane. For instance, if is a surface with equation and is its projection

onto the -plane, then

Evaluate , where is the surface , , .
(See Figure 2.)

SOLUTION Since

Formula 4 gives

If is a piecewise-smooth surface, that is, a finite union of smooth surfaces ,
that intersect only along their boundaries, then the surface integral of over is defined

by

Evaluate , where is the surface whose sides are given by the
cylinder , whose bottom is the disk in the plane , and
whose top is the part of the plane that lies above .

SOLUTION The surface is shown in Figure 3. (We have changed the usual position of 
the axes to get a better look at .) For we use and as parameters (see Example 5 
in Section 16.6) and write its parametric equations as

where

S yz
xz S y � h�x, z� D

xz

yy
S

f �x, y, z� dS � yy
D

f (x, h�x, z�, z)��	y

	x�2

� �	y

	z�2

� 1 dA

xxS y dS S z � x � y 2 0 � x � 1 0 � y � 2

	z

	x
� 1 and

	z

	y
� 2y

4 yy
S

f �x, y, z� dS � yy
D

f (x, y, t�x, y�)�� 	z

	x�2

� � 	z

	y�2

� 1 dA

EXAMPLE 2

yy
S

y dS � yy
D

y�1 � � 	z

	x�2

� � 	z

	y�2 

dA

� y
1

0
y

2

0
ys1 � 1 � 4y 2 dy dx

� y
1

0
dx s2 y

2

0
ys1 � 2y 2 dy

� s2 (1
4 ) 2

3 �1 � 2y 2�3�2]0
2

�
13s2

3

S S1 S2, . . . ,
Sn f S

yy
S

f �x, y, z� dS � yy
S1

f �x, y, z� dS � � � � � yy
S

f �x, y, z� dS
n

xx
S

z dS S S1

x 2 � y 2 � 1 S2 x 2 � y 2 � 1 z � 0
S3 z � 1 � x S2

S
S S1 � z

x � cos � y � sin � z � z

0 � � � 2� and 0 � z � 1 � x � 1 � cos �

v EXAMPLE 3

FIGURE 2
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1138 CHAPTER 16 VECTOR CALCULUS

Therefore

and

Thus the surface integral over is

Since lies in the plane , we have

The top surface lies above the unit disk and is part of the plane . So,
taking in Formula 4 and converting to polar coordinates, we have

Therefore

r� � rz � � i
�sin �

0

j
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0
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0

1 � � cos � i � sin � j
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SECTION 16.7 SURFACE INTEGRALS 1139

Oriented Surfaces
To define surface integrals of vector fields, we need to rule out nonorientable surfaces such
as the Möbius strip shown in Figure 4. [It is named after the German geometer August
Möbius (1790–1868).] You can construct one for yourself by taking a long rectangular
strip of paper, giving it a half-twist, and taping the short edges together as in Fig ure 5. 
If an ant were to crawl along the Möbius strip starting at a point , it would end up on 
the “other side” of the strip (that is, with its upper side pointing in the opposite direction).
Then, if the ant continued to crawl in the same direction, it would end up back at the 
same point without ever having crossed an edge. (If you have constructed a Möbius strip,
try drawing a pencil line down the middle.) Therefore a Möbius strip really has only 
one side. You can graph the Möbius strip using the parametric equations in Exercise 32 in 
Section 16.6.

From now on we consider only orientable (two-sided) surfaces. We start with a surface
that has a tangent plane at every point on (except at any boundary point). There

are two unit normal vectors and at . (See Figure 6.) 
If it is possible to choose a unit normal vector at every such point so that

varies con tinuously over , then is called an oriented surface and the given choice of
provides with an orientation. There are two possible orientations for any orientable sur-
face (see Figure 7).

For a surface given as the graph of , we use Equation 3 to associate with
the surface a natural orientation given by the unit normal vector

Since the -component is positive, this gives the upward orientation of the surface.
If is a smooth orientable surface given in parametric form by a vector function 

, then it is automatically supplied with the orientation of the unit normal vector

and the opposite orientation is given by . For instance, in Example 4 in Sec tion 16.6 we 

P

P

FIGURE 5
Constructing a Möbius strip
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The two orientations  
of an orientable surface 
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A Möbius strip
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Visual 16.7 shows a Möbius strip 
with a normal vector that can be moved along 
the surface.
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1140 CHAPTER 16 VECTOR CALCULUS

found the parametric representation

for the sphere . Then in Example 10 in Section 16.6 we found that

and

So the orientation induced by is defined by the unit normal vector

Observe that points in the same direction as the position vector, that is, outward from the
sphere (see Figure 8). The opposite (inward) orientation would have been obtained (see
Figure 9) if we had reversed the order of the parameters because .

For a closed surface, that is, a surface that is the boundary of a solid region , the 
convention is that the positive orientation is the one for which the normal vectors point 
outward from , and inward-pointing normals give the negative orientation (see Figures 8
and 9).

Surface Integrals of Vector Fields
Suppose that is an oriented surface with unit normal vector , and imagine a fluid with
density and velocity field flowing through . (Think of as an imagi-
nary surface that doesn’t impede the fluid flow, like a fishing net across a stream.) Then the
rate of flow (mass per unit time) per unit area is . If we divide into small patches ,
as in Figure 10 (compare with Figure 1), then is nearly planar and so we can approxi-
mate the mass of fluid per unit time crossing in the direction of the normal by the
quantity

where , , and are evaluated at some point on . (Recall that the component of the vec-
tor in the direction of the unit vector is .) By summing these quantities and tak-
ing the limit we get, according to Definition 1, the surface integral of the function
over :

and this is interpreted physically as the rate of flow through .

r��, �� � a sin � cos � i � a sin � sin � j � a cos � k

x 2 � y 2 � z2 � a 2

r� � r� � a 2 sin2� cos � i � a 2 sin2� sin � j � a 2 sin � cos � k

� r� � r� � � a 2 sin �

r��, ��

n �
r� � r�

� r� � r� � � sin � cos � i � sin � sin � j � cos � k �
1

a
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Positive orientation 
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Negative orientation 
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SECTION 16.7 SURFACE INTEGRALS 1141

If we write , then is also a vector field on and the integral in Equation 7
becomes

A surface integral of this form occurs frequently in physics, even when is not , and is
called the surface integral (or flux integral) of over .

Definition If is a continuous vector field defined on an oriented surface
with unit normal vector , then the surface integral of over S is

This integral is also called the flux of across .

In words, Definition 8 says that the surface integral of a vector field over is equal to
the surface integral of its normal component over (as previously defined).

If is given by a vector function , then is given by Equation 6, and from Defi-
nition 8 and Equation 2 we have

where is the parameter domain. Thus we have

Find the flux of the vector field across the unit
sphere .

SOLUTION As in Example 1, we use the parametric representation

Then

and, from Example 10 in Section 16.6,

Therefore

� 3FF � 	v

yy
S

F � n dS

	vF
SF

SF8
Fn

yy
S

F � dS � yy
S

F � n dS

SF

S
S

nr�u, v�S

yy
S

F � dS � yy
S

F �
ru � rv

� ru � rv � dS

� yy
D


F�r�u, v�� �
ru � rv

� ru � rv � �� ru � rv � dA

D

yy
S

F � dS � yy
D

F � �ru � rv � dA9

EXAMPLE 4
x 2 � y 2 � z2 � 1

F�x, y, z� � z i � y j � x k

r��, �� � sin � cos � i � sin � sin � j � cos � k 0 
 � 
 � 0 
 � 
 2�

F�r��, ��� � cos � i � sin � sin � j � sin � cos � k

r� � r� � sin2� cos � i � sin2� sin � j � sin � cos � k

F�r��, ��� � �r� � r� � � cos � sin2� cos � � sin3� sin2� � sin2� cos � cos �

Compare Equation 9 to the similar expression 
for evaluating line integrals of vector fields in
Definition 16.2.13:

y
C

F � dr � y
b

a
F�r�t�� � r��t� dt

FIGURE 11

y

x

z

Figure 11 shows the vector field in Example 4
at points on the unit sphere.
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1142 CHAPTER 16 VECTOR CALCULUS

and, by Formula 9, the flux is

by the same calculation as in Example 1.

If, for instance, the vector field in Example 4 is a velocity field describing the flow of a
fluid with density 1, then the answer, , represents the rate of flow through the unit
sphere in units of mass per unit time.

In the case of a surface given by a graph , we can think of and as param-
eters and use Equation 3 to write

Thus Formula 9 becomes

This formula assumes the upward orientation of ; for a downward orientation we multi-
ply by . Similar formulas can be worked out if is given by or .
(See Exercises 37 and 38.)

Evaluate , where and is the
boundary of the solid region enclosed by the paraboloid and the 
plane .

SOLUTION consists of a parabolic top surface and a circular bottom surface . (See
Figure 12.) Since is a closed surface, we use the convention of positive (outward) 
orientation. This means that is oriented upward and we can use Equation 10 with 

being the projection of onto the -plane, namely, the disk . Since

on and
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SECTION 16.7 SURFACE INTEGRALS 1143

we have

The disk is oriented downward, so its unit normal vector is and we have

since on . Finally, we compute, by definition, as the sum of the sur-
face integrals of over the pieces and :

Although we motivated the surface integral of a vector field using the example of fluid
flow, this concept also arises in other physical situations. For instance, if is an electric
field (see Example 5 in Section 16.1), then the surface integral

is called the electric flux of through the surface . One of the important laws of electro-
statics is Gauss’s Law, which says that the net charge enclosed by a closed surface is

where is a constant (called the permittivity of free space) that depends on the units used.
(In the SI system, .) Therefore, if the vector field in
Example 4 represents an electric field, we can conclude that the charge enclosed by is

.
Another application of surface integrals occurs in the study of heat flow. Suppose the

temperature at a point in a body is . Then the heat flow is defined as the
vector field
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1144 CHAPTER 16 VECTOR CALCULUS

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

1. Let be the boundary surface of the box enclosed by the
planes , , , , , and . Approx-
imate by using a Riemann sum as in Defi ni -
tion 1, taking the patches to be the rectangles that are the
faces of the box and the points to be the centers of the
rectangles.

2. A surface consists of the cylinder , ,
together with its top and bottom disks. Suppose you know that

is a continuous function with 

Estimate the value of by using a Riemann sum,
taking the patches to be four quarter-cylinders and the top
and bottom disks.

S
z � 6z � 0y � 4y � 0x � 2x � 0

xxS
e�0.1�x�y�z� dS

Sij

Pij*S

�1 
 z 
 1x 2 � y 2 � 1S

f

f �0, 0, 1� � 4f �0, 1, 0� � 3f �1, 0, 0� � 2

xxS f �x, y, z� dS
Sij

3. Let be the hemisphere , and 
suppose is a continuous function with

, and . 
By dividing into four patches, estimate the value of

.

4. Suppose that , where is a 
function of one variable such that . Evaluate

, where is the sphere .

5–20 Evaluate the surface integral.

5. ,
is the parallelogram with parametric equations ,

, , , 

H x 2 � y 2 � z2 � 50, z � 0
f f �3, 4, 5� � 7,

f �3, �4, 5� � 8, f ��3, 4, 5� � 9 f ��3, �4, 5� � 12
H

xxH f �x, y, z� dS

f �x, y, z� � t(sx 2 � y 2 � z 2 ) t

t�2� � �5
xx

S
f �x, y, z� dS S x 2 � y 2 � z2 � 4

xx
S

�x � y � z� dS
S x � u � v
y � u � v z � 1 � 2u � v 0 
 u 
 2 0 
 v 
 1

16.7 Exercises

where is an experimentally determined constant called the conductivity of the sub-
stance. The rate of heat flow across the surface in the body is then given by the surface
integral

The temperature in a metal ball is proportional to the square of the 
distance from the center of the ball. Find the rate of heat flow across a sphere of 
radius with center at the center of the ball.

SOLUTION Taking the center of the ball to be at the origin, we have

where is the proportionality constant. Then the heat flow is

where is the conductivity of the metal. Instead of using the usual parametrization of
the sphere as in Example 4, we observe that the outward unit normal to the sphere

at the point is

and so

But on we have , so . Therefore the rate of heat
flow across is

K
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u
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a
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2KC
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v EXAMPLE 6
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SECTION 16.7 SURFACE INTEGRALS 1145

6. ,
is the cone with parametric equations , 

, , , 

7. , is the helicoid with vector equation
, , 

8. ,
is the surface with vector equation

, 

9. ,
is the part of the plane that lies above the

rectangle 

10. ,
is the part of the plane that lies in the first

octant

11. ,
is the triangular region with vertices , , 

and 

12. ,

is the surface , , 

13. ,
is the part of the cone that lies between the

planes and 

14. ,
is the surface , , 

15. ,
is the part of the paraboloid that lies inside the

cylinder 

16. ,
is the part of the sphere that lies 

inside the cylinder and above the -plane

17. ,
is the hemisphere , 

18. ,
is the boundary of the region enclosed by the cylinder

and the planes and 

19. ,
is the part of the cylinder that lies between the

planes and in the first octant

20. ,
is the part of the cylinder between the planes

and , together with its top and bottom disks

21–32 Evaluate the surface integral for the given vector
field and the oriented surface . In other words, find the flux of
across . For closed surfaces, use the positive (outward) orientation.

21. ,  
is the parallelogram of Exercise 5 with upward orientation

xx
S xyz dS

S x � u cos v
y � u sin v z � u 0 
 u 
 1 0 
 v 
 ��2

xx
S

y dS S
r�u, v� � �u cos v, u sin v, v � 0 
 u 
 1 0 
 v 
 �

xxS
�x 2 � y 2� dS

S
r�u, v� � �2uv, u 2 � v2, u 2 � v2 � u 2 � v2 
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xxS x 2yz dS
S z � 1 � 2x � 3y

�0, 3� � �0, 2�

xxS xz dS
S

xxS
x dS

S

2x � 2y � z � 4

�1, 0, 0� �0, �2, 0�
�0, 0, 4�

xxS y dS

0 
 y 
 10 
 x 
 1z � 2
3 �x 3�2 � y 3�2 �S

xx
S

x 2z2 dS
z2 � x 2 � y 2S

z � 3z � 1

xxS z dS
0 
 z 
 10 
 y 
 1x � y � 2z 2S

xx
S y dS

y � x 2 � z2S
x 2 � z2 � 4

xx
S

y2 dS
x 2 � y2 � z2 � 4S

xyx 2 � y2 � 1

xxS
�x 2z � y 2z� dS

z � 0x 2 � y 2 � z2 � 4S

xx
S

xz dS
S

x � y � 5x � 0y2 � z2 � 9

xxS �z � x 2 y� dS
y2 � z2 � 1S

x � 3x � 0

xxS �x 2 � y 2 � z2 � dS
x 2 � y2 � 9S

z � 2z � 0

xxS F � dS
FSF

S

S
F�x, y, z� � ze xy i � 3ze xy j � xy k

22. ,
is the helicoid of Exercise 7 with upward orientation

23. ,  is the part of the 
para boloid that lies above the square

, and has upward orientation

24. ,
is the part of the cone between the planes

and with downward orientation

25. ,
is the part of the sphere in the first octant,

with orientation toward the origin

26. ,
is the hemisphere , , oriented in the

direction of the positive -axis

27. ,
consists of the paraboloid , , 

and the disk , 

28. ,  is the surface ,
, , with upward orientation

29. ,
is the cube with vertices 

30. ,  is the boundary of the region
enclosed by the cylinder and the planes 
and 

31. ,  is the boundary of the solid
half-cylinder , 

32. ,
is the surface of the tetrahedron with vertices ,

, , and 

33. Evaluate correct to four decimal places,
where is the surface , , .

34. Find the exact value of , where is the surface
, , .

35. Find the value of correct to four decimal places,
where is the part of the paraboloid that
lies above the -plane.

36. Find the flux of 

across the part of the cylinder that lies above 
the -plane and between the planes and with
upward orientation. Illustrate by using a computer algebra sys-
tem to draw the cylinder and the vector field on the same
screen.

37. Find a formula for similar to Formula 10 for the case
where is given by and is the unit normal that
points toward the left.

S
F�x, y, z� � z i � y j � x k

F�x, y, z� � xy i � yz j � zx k S
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 y 
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y
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 y 
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x � y � 2

F�x, y, z� � x 2 i � y 2 j � z2 k S
0 
 z 
 s1 � y 2 0 
 x 
 2
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S �0, 0, 0�
�1, 0, 0� �0, 1, 0� �0, 0, 1�
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 1

CAS xxS x 2 yz dS S
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 1
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S
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xy

CAS
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1146 CHAPTER 16 VECTOR CALCULUS

38. Find a formula for similar to Formula 10 for the case
where is given by and is the unit normal that
points forward (that is, toward the viewer when the axes are
drawn in the usual way).

39. Find the center of mass of the hemisphere 
, if it has constant density.

40. Find the mass of a thin funnel in the shape of a cone
, , if its density function is

.

41. (a) Give an integral expression for the moment of inertia 
about the -axis of a thin sheet in the shape of a surface if
the density function is .

(b) Find the moment of inertia about the -axis of the funnel in
Exercise 40.

42. Let be the part of the sphere that lies
above the plane . If has constant density , find 
(a) the center of mass and (b) the moment of inertia about 
the -axis.

43. A fluid has density and flows with velocity
, where and are measured in

meters and the components of in meters per second. Find the
rate of flow outward through the cylinder ,

.

xxS F � dS
S x � k�y, z� n

x 2 � y 2 � z2 � a 2,
z � 0

z � sx 2 � y 2 1 
 z 
 4
	�x, y, z� � 10 � z

Iz

Sz
	

z

x 2 � y2 � z2 � 25S
kSz � 4

z

870 kg�m3

zy,x,v � z i � y 2 j � x 2 k
v

x 2 � y 2 � 4
0 
 z 
 1

44. Seawater has density and flows in a velocity field
, where and are measured in meters and the

components of in meters per second. Find the rate of flow
outward through the hemisphere , .

45. Use Gauss’s Law to find the charge contained in the solid
hemisphere , , if the electric field is 

46. Use Gauss’s Law to find the charge enclosed by the cube 
with vertices if the electric field is 

47. The temperature at the point in a substance with con-
ductivity is . Find the rate of
heat flow inward across the cylindrical surface ,

.

48. The temperature at a point in a ball with conductivity is
inversely proportional to the distance from the center of the
ball. Find the rate of heat flow across a sphere of radius
with center at the center of the ball.

49. Let be an inverse square field, that is, for
some constant , where . Show that the flux
of across a sphere with center the origin is independent of
the radius of .

1025 kg�m3

zy,x,v � y i � x j
v

z � 0x 2 � y 2 � z 2 � 9

z � 0x 2 � y 2 � z2 
 a 2

E�x, y, z� � x i � y j � 2z k

�1, 1, 1�

E�x, y, z� � x i � y j � z k

�x, y, z�
u�x, y, z� � 2y 2 � 2z2K � 6.5

y 2 � z2 � 6
0 
 x 
 4

K

aS

F�r� � cr�� r �3F
r � x i � y j � z kc

SF
S

Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theo rem.
Whereas Green’s Theorem relates a double integral over a plane region to a line integral
around its plane boundary curve, Stokes’ Theorem relates a surface integral over a surface

to a line integral around the boundary curve of (which is a space curve). Figure 1 shows
an oriented surface with unit normal vector . The orientation of induces the positive
orientation of the boundary curve C shown in the figure. This means that if you walk in
the positive direction around with your head pointing in the direction of , then the sur-
face will always be on your left.

Stokes’ Theorem Let be an oriented piecewise-smooth surface that is bounded 
by a simple, closed, piecewise-smooth boundary curve with positive orientation.
Let be a vector field whose components have continuous partial derivatives on 
an open region in that contains . Then

Since

D

S S
n S

C n

S
C

F
� 3 S

y
C

F � dr � yy
S

curl F � dS

yy
S

curl F � dS � yy
S

curl F � n dSandy
C

F � dr � y
C

F � T ds

16.8 Stokes’ Theorem
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FIGURE 1
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SECTION 16.8 STOKES’  THEOREM 1147

Stokes’ Theorem says that the line integral around the boundary curve of of the tangen-
tial component of is equal to the surface integral over of the normal component of the
curl of .

The positively oriented boundary curve of the oriented surface is often written as 
, so Stokes’ Theorem can be expressed as

There is an analogy among Stokes’ Theorem, Green’s Theorem, and the Fundamental 
Theorem of Calculus. As before, there is an integral involving derivatives on the left side
of Equation 1 (recall that is a sort of derivative of ) and the right side involves the
values of only on the boundary of .

In fact, in the special case where the surface is flat and lies in the -plane with
upward orientation, the unit normal is , the surface integral becomes a double integral,
and Stokes’ Theorem becomes

This is precisely the vector form of Green’s Theorem given in Equation 16.5.12. Thus we
see that Green’s Theorem is really a special case of Stokes’ Theorem.

Although Stokes’ Theorem is too difficult for us to prove in its full generality, we can
give a proof when is a graph and , , and are well behaved.

PROOF OF A SPECIAL CASE OF STOKES’ THEOREM We assume that the equation of is
, where has continuous second-order partial derivatives and 

is a simple plane region whose boundary curve corresponds to . If the orientation of
is upward, then the positive orientation of corresponds to the positive orientation of
. (See Figure 2.) We are also given that , where the partial deriva-

tives of , , and are continuous.
Since is a graph of a function, we can apply Formula 16.7.10 with replaced by

. The result is

where the partial derivatives of , , and are evaluated at . If

is a parametric representation of , then a parametric representation of is

F
F

S
�S

1 yy
S

curl F � dS � y
�S

F � dr

curl F F
F S

S xy
k

y
C

F � dr � yy
S

curl F � dS � yy
S

�curl F� � k dA

S F S C

S
z � t�x, y�, �x, y� � D t D

C1 C
S C
C1 F � P i � Q j � R k

P Q R

S

S F
curl F

2 yy
S

curl F � dS

� yy
D


�� �R

�y
�

�Q

�z 	 �z

�x
� ��P

�z
�

�R

�x 	 �z

�y
� ��Q

�x
�

�P

�y 	� dA

P Q R �x, y, t�x, y��

x � x�t� y � y�t� a 
 t 
 b

C1 C

x � x�t� y � y�t� z � t(x�t�, y�t�) a 
 t 
 b

S
George Stokes

Stokes’ Theorem is named after the Irish mathe-
matical physicist Sir George Stokes (1819–1903).
Stokes was a professor at Cambridge University
(in fact he held the same position as Newton,
Lucasian Professor of Mathematics) and was
especially noted for his studies of fluid flow 
and light. What we call Stokes’ Theorem was
actually discovered by the Scottish physicist 
Sir William Thomson (1824–1907, known as 
Lord Kelvin). Stokes learned of this theorem 
in a letter from Thomson in 1850 and asked 
students to prove it on an examination at 
Cambridge University in 1854. We don’t know 
if any of those students was able to do so.
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1148 CHAPTER 16 VECTOR CALCULUS

This allows us, with the aid of the Chain Rule, to evaluate the line integral as follows:

where we have used Green’s Theorem in the last step. Then, using the Chain Rule again
and remembering that , , and are functions of , , and and that is itself a function
of and , we get

Four of the terms in this double integral cancel and the remaining six terms can be
arranged to coincide with the right side of Equation 2. Therefore

Evaluate , where and is the
curve of intersection of the plane and the cylinder . (Orient to
be counterclockwise when viewed from above.)

SOLUTION The curve (an ellipse) is shown in Figure 3. Although could be 
evaluated directly, it’s easier to use Stokes’ Theorem. We first compute

Although there are many surfaces with boundary C, the most convenient choice is the
elliptical region S in the plane that is bounded by . If we orient upward,
then has the induced positive orientation. The projection of onto the -plane is 

y
C

F � dr � y
b

a
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dx

dt
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SECTION 16.8 STOKES’  THEOREM 1149

the disk and so using Equation 16.7.10 with , we have

Use Stokes’ Theorem to compute the integral , where
and is the part of the sphere that 

lies inside the cylinder and above the -plane. (See Figure 4.)

SOLUTION To find the boundary curve we solve the equations and
. Subtracting, we get and so (since ). Thus is the

circle given by the equations , . A vector equation of is

so

Also, we have

Therefore, by Stokes’ Theorem,

Note that in Example 2 we computed a surface integral simply by knowing the values
of on the boundary curve . This means that if we have another oriented surface with
the same boundary curve , then we get exactly the same value for the surface integral!

In general, if and are oriented surfaces with the same oriented boundary curve
and both satisfy the hypotheses of Stokes’ Theorem, then

This fact is useful when it is difficult to integrate over one surface but easy to integrate
over the other.

We now use Stokes’ Theorem to throw some light on the meaning of the curl vector.
Suppose that is an oriented closed curve and represents the velocity field in fluid flow.
Consider the line integral

� 1
2 �2�� � 0 � �

xxS
curl F � dS

F�x, y, z� � xz i � yz j � xy k S x 2 � y 2 � z2 � 4
x 2 � y 2 � 1 xy

C x 2 � y 2 � z2 � 4
x 2 � y 2 � 1 z2 � 3 z � s3 z � 0 C

x 2 � y 2 � 1 z � s3 C

r�t� � cos t i � sin t j � s3 k 0 � t � 2�
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F�r�t�� � s3 cos t i � s3 sin t j � cos t sin t k

x 2 � y 2 � 1 z � t�x, y� � 2 � y

y
C

F � dr � yy
S

curl F � dS � yy
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1150 CHAPTER 16 VECTOR CALCULUS

and recall that is the component of in the direction of the unit tangent vector .
This means that the closer the direction of is to the direction of , the larger the value of

. Thus is a measure of the tendency of the fluid to move around and is
called the circulation of around . (See Figure 5.)

Now let be a point in the fluid and let be a small disk with radius and
center Then ( for all points on because is con tin-
uous. Thus, by Stokes’ Theorem, we get the following approximation to the circulation
around the boundary circle :

This approximation becomes better as and we have

Equation 4 gives the relationship between the curl and the circulation. It shows that
is a measure of the rotating effect of the fluid about the axis n. The curling effect

is greatest about the axis parallel to .
Finally, we mention that Stokes’ Theorem can be used to prove Theorem 16.5.4 (which

states that if on all of , then is conservative). From our pre vious work
(Theorems 16.3.3 and 16.3.4), we know that is conservative if for every
closed path . Given , suppose we can find an orientable surface whose boundary is 

. (This can be done, but the proof requires advanced techniques.) Then Stokes’ Theorem
gives

A curve that is not simple can be broken into a number of simple curves, and the integrals
around these simple curves are all 0. Adding these integrals, we obtain for
any closed curve .
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Imagine a tiny paddle wheel placed in the 
fluid at a point , as in Figure 6; the paddle
wheel rotates fastest when its axis is parallel 
to .curl v

P
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SECTION 16.8 STOKES’  THEOREM 1151

1. A hemisphere and a portion of a paraboloid are shown.
Suppose is a vector field on whose components have con-
tinuous partial derivatives. Explain why

2–6 Use Stokes’ Theorem to evaluate .

2. ,
is the hemisphere , , oriented 

upward

3. ,
is the part of the paraboloid that lies inside the

cylinder , oriented upward

4. ,
is the cone , , oriented in the direc-

tion of the positive -axis

5. ,
consists of the top and the four sides (but not the bottom) 

of the cube with vertices , oriented outward

6. ,
is the half of the ellipsoid that lies to

the right of the -plane, oriented in the direction of the
positive -axis

7–10 Use Stokes’ Theorem to evaluate . In each case is
oriented counterclockwise as viewed from above.

7. ,  
is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)

8. ,  
is the boundary of the part of the plane 

in the first octant

9. ,
is the circle 

H P
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yy
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curl F � dS � yy
P

curl F � dS

H

4

z

x y22

P

4
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x y22

xx
S

curl F � dS

F�x, y, z� � 2y cos z i � e x sin z j � xe y k
S x 2 � y 2 � z2 � 9 z � 0

F�x, y, z� � x 2z2 i � y2z2 j � xyz k
S z � x 2 � y2

x 2 � y2 � 4

F�x, y, z� � tan�1�x 2 yz2� i � x 2y j � x 2z2 k
S x � sy 2 � z2 0 � x � 2

x

F�x, y, z� � xyz i � xy j � x 2 yz k
S

��1, �1, �1�

F�x, y, z� � e xy i � e xz j � x 2z k
S 4x 2 � y 2 � 4z 2 � 4

xz

xC
F � dr C

F�x, y, z� � �x � y 2 � i � �y � z2 � j � �z � x 2 � k
C

F�x, y, z� � i � �x � yz� j � (xy � sz ) k
C 3x � 2y � z � 1

F�x, y, z� � yz i � 2xz j � e xy k
C x 2 � y 2 � 16, z � 5

y

10. ,  is the curve of intersec-
tion of the plane and the cylinder 

11. (a) Use Stokes’ Theorem to evaluate , where

and is the curve of intersection of the plane
and the cylinder oriented

counterclockwise as viewed from above.

; (b) Graph both the plane and the cylinder with domains 
chosen so that you can see the curve and the surface 
that you used in part (a).

; (c) Find parametric equations for and use them to graph .

12. (a) Use Stokes’ Theorem to evaluate , where
and is the curve of

intersection of the hyperbolic paraboloid and
the cylinder oriented counterclockwise as
viewed from above.

; (b) Graph both the hyperbolic paraboloid and the cylinder
with domains chosen so that you can see the curve and
the surface that you used in part (a).

; (c) Find parametric equations for and use them to graph .

13–15 Verify that Stokes’ Theorem is true for the given vector 
field and surface .

13. ,
is the cone , , oriented downward

14. ,
is the part of the paraboloid that lies

above the plane , oriented upward

15. ,
is the hemisphere , , oriented in the

direction of the positive -axis

16. Let be a simple closed smooth curve that lies in the plane
. Show that the line integral

depends only on the area of the region enclosed by and not
on the shape of or its location in the plane.

17. A particle moves along line segments from the origin to the
points , , , and back to the origin
under the influence of the force field 

Find the work done.

F�x, y, z� � xy i � 2z j � 3y k C
x � z � 5 x 2 � y 2 � 9

x
C

F � dr

F�x, y, z� � x 2z i � xy 2 j � z2 k

C
x 2 � y 2 � 9x � y � z � 1

C

CC

xC F � dr
CF�x, y, z� � x 2 y i �

1
3 x 3 j � xy k

z � y 2 � x 2

x 2 � y 2 � 1

C

CC

SF

F�x, y, z� � �y i � x j � 2 k
0 � z � 4z 2 � x 2 � y2S

F�x, y, z� � �2yz i � y j � 3x k
z � 5 � x 2 � y 2S

z � 1

F�x, y, z� � y i � z j � x k
y � 0x 2 � y 2 � z 2 � 1S

y

C
x � y � z � 1

xC z dx � 2x dy � 3y dz

C
C

�0, 2, 1��1, 2, 1��1, 0, 0�

F�x, y, z� � z 2 i � 2xy j � 4y 2 k

16.8 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

97817_16_ch16_p1148-1157.qk_97817_16_ch16_p1148-1157  11/9/10  9:26 AM  Page 1151

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



1152 CHAPTER 16 VECTOR CALCULUS

18. Evaluate 

where is the curve , .
[Hint: Observe that lies on the surface .]

19. If is a sphere and satisfies the hypotheses of Stokes’ 
Theorem, show that .

xC
�y � sin x� dx � �z2 � cos y� dy � x 3 dz

0 � t � 2�r�t� � 
sin t, cos t, sin 2t �C
z � 2xyC

FS
xx

S
curl F � dS � 0

20. Suppose and satisfy the hypotheses of Stokes’ Theorem
and , have continuous second-order partial derivatives. Use
Exercises 24 and 26 in Section 16.5 to show the following.

(a)

(b)

(c)

S C
f t

x
C

� f t� � dr � xx
S

� f � t� � dS

x
C

� f  f � � dr � 0

x
C

� f t � t f � � dr � 0

W R I T I N G  P R O J E C T THREE MEN AND TWO THEOREMS

Although two of the most important theorems in vector calculus are named after George Green 
and George Stokes, a third man, William Thomson (also known as Lord Kelvin), played a large
role in the formulation, dissemination, and application of both of these results. All three men 
were interested in how the two theorems could help to explain and predict physical phenomena 
in electricity and magnetism and fluid flow. The basic facts of the story are given in the margin
notes on pages 1109 and 1147.

Write a report on the historical origins of Green’s Theorem and Stokes’ Theorem. Explain the
similarities and relationship between the theorems. Discuss the roles that Green, Thomson, and
Stokes played in discovering these theorems and making them widely known. Show how both
theorems arose from the investigation of electricity and magnetism and were later used to study a
variety of physical problems.

The dictionary edited by Gillispie [2] is a good source for both biographical and scientific 
information. The book by Hutchinson [5] gives an account of Stokes’ life and the book by 
Thompson [8] is a biography of Lord Kelvin. The articles by Grattan-Guinness [3] and Gray [4]
and the book by Cannell [1] give background on the extraordinary life and works of Green. 
Additional historical and mathematical information is found in the books by Katz [6] and 
Kline [7].

1. D. M. Cannell, George Green, Mathematician and Physicist 1793–1841: The Background to
His Life and Work (Philadelphia: Society for Industrial and Applied Mathematics, 2001).

2. C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974). See the
article on Green by P. J. Wallis in Volume XV and the articles on Thomson by Jed Buchwald
and on Stokes by E. M. Parkinson in Volume XIII.

3. I. Grattan-Guinness, “Why did George Green write his essay of 1828 on electricity and 
magnetism?” Amer. Math. Monthly, Vol. 102 (1995), pp. 387–96.

4. J. Gray, “There was a jolly miller.” The New Scientist, Vol. 139 (1993), pp. 24–27.

5. G. E. Hutchinson, The Enchanted Voyage and Other Studies (Westport, CT : Greenwood 
Press, 1978).

6. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993), 
pp. 678–80.

7. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford 
University Press, 1972), pp. 683–85.
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In Section 16.5 we rewrote Green’s Theorem in a vector version as

where is the positively oriented boundary curve of the plane region . If we were seek-

y
C

F � n ds � yy
D

div F�x, y� dA

C D

16.9 The Divergence Theorem
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SECTION 16.9 THE DIVERGENCE THEOREM 1153

ing to extend this theorem to vector fields on , we might make the guess that

where is the boundary surface of the solid region . It turns out that Equation 1 is true,
under appropriate hypotheses, and is called the Divergence Theorem. Notice its similarity
to Green’s Theorem and Stokes’ Theorem in that it relates the integral of a derivative of a
function ( in this case) over a region to the integral of the original function over the
boundary of the region.

At this stage you may wish to review the various types of regions over which we were
able to evaluate triple integrals in Section 15.7. We state and prove the Diver gence Theo-
rem for regions that are simultaneously of types 1, 2, and 3 and we call such regions 
simple solid regions. (For instance, regions bounded by ellipsoids or rectangular boxes
are simple solid regions.) The boundary of is a closed surface, and we use the conven-
tion, introduced in Section 16.7, that the positive orientation is outward; that is, the unit
normal vector is directed outward from .

The Divergence Theorem Let be a simple solid region and let S be the boundary
surface of E, given with positive (outward) orientation. Let be a vector field
whose component functions have continuous partial derivatives on an open region
that contains . Then

Thus the Divergence Theorem states that, under the given conditions, the flux of
across the boundary surface of is equal to the triple integral of the divergence of 
over .

PROOF Let . Then

so

If is the unit outward normal of , then the surface integral on the left side of the Diver-
gence Theorem is

Therefore, to prove the Divergence Theorem, it suffices to prove the following three 

� 3

1 yy
S

F � n dS � yyy
E

div F�x, y, z� dV

S E

div F F

E

E

n E

E
F

E

yy
S

F � dS � yyy
E

div F dV

F
E F

E

F � P i � Q j � R k

div F �
�P

�x
�

�Q

�y
�

�R

�z

yyy
E

div F dV � yyy
E

�P

�x
dV � yyy

E

�Q

�y
dV � yyy

E

�R

�z
dV

n S

yy
S

F � dS � yy
S

F � n dS � yy
S

�P i � Q j � R k� � n dS

� yy
S

P i � n dS � yy
S

Q j � n dS � yy
S

R k � n dS

The Divergence Theorem is sometimes called
Gauss’s Theorem after the great German mathe-
matician Karl Friedrich Gauss (1777–1855), who
discovered this theorem during his investigation
of electrostatics. In Eastern Europe the Diver-
gence Theorem is known as Ostrogradsky’s 
Theorem after the Russian mathe  matician
Mikhail Ostrogradsky (1801–1862), who pub-
lished this result in 1826.
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1154 CHAPTER 16 VECTOR CALCULUS

equations:

To prove Equation 4 we use the fact that is a type 1 region:

where is the projection of onto the -plane. By Equation 15.7.6, we have

and therefore, by the Fundamental Theorem of Calculus,

The boundary surface consists of three pieces: the bottom surface , the top surface
, and possibly a vertical surface , which lies above the boundary curve of D. (See

Figure 1. It might happen that doesn’t appear, as in the case of a sphere.) Notice that on
we have , because k is vertical and n is horizontal, and so

Thus, regardless of whether there is a vertical surface, we can write

The equation of is , , and the outward normal points
upward, so from Equation 16.7.10 (with replaced by ) we have

On we have , but here the outward normal points downward, so we mul-
tiply by :

Therefore Equation 6 gives

yy
S

P i � n dS � yyy
E

�P

�x
dV2

yy
S

Q j � n dS � yyy
E

�Q

�y
dV3

yy
S

R k � n dS � yyy
E

�R

�z
dV4

E

E � ��x, y, z� � �x, y� � D, u1�x, y� � z � u2�x, y�
xyED

yyy
E

�R

�z
dV � yy

D

�y
u2�x, y�

u1�x, y�

�R

�z
�x, y, z� dz� dA

yyy
E

�R

�z
dV � yy

D

[R(x, y, u2�x, y�) � R(x, y, u1�x, y�)] dA5

S1S
S3S2

S3

k � n � 0S3

yy
S3

R k � n dS � yy
S3

0 dS � 0

yy
S

R k � n dS � yy
S1

R k � n dS � yy
S2

R k � n dS6

n�x, y� � Dz � u2�x, y�S2

R kF

yy
S2

R k � n dS � yy
D

R(x, y, u2�x, y�) dA

nz � u1�x, y�S1

�1

yy
S1

R k � n dS � �yy
D

R(x, y, u1�x, y�) dA

yy
S

R k � n dS � yy
D

[R(x, y, u2�x, y�) � R(x, y, u1�x, y�)] dA

FIGURE 1
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SECTION 16.9 THE DIVERGENCE THEOREM 1155

Comparison with Equation 5 shows that

Equations 2 and 3 are proved in a similar manner using the expressions for as a type 2
or type 3 region, respectively.

Find the flux of the vector field over the unit
sphere .

SOLUTION First we compute the divergence of :

The unit sphere is the boundary of the unit ball given by . Thus the
Divergence Theorem gives the flux as

Evaluate , where

and is the surface of the region bounded by the parabolic cylinder and
the planes , , and . (See Figure 2.)

SOLUTION It would be extremely difficult to evaluate the given surface integral directly.
(We would have to evaluate four surface integrals corresponding to the four pieces of .)
Furthermore, the divergence of is much less complicated than itself:

Therefore we use the Divergence Theorem to transform the given surface integral into a
triple integral. The easiest way to evaluate the triple integral is to express as a type 3
region:

Then we have

yy
S

R k � n dS � yyy
E

�R

�z
dV

E

F�x, y, z� � z i � y j � x kEXAMPLE 1v
x 2 � y 2 � z2 � 1

F

div F �
�

�x
�z� �

�

�y
�y� �

�

�z
�x� � 1

x 2 � y 2 � z2 � 1BS

� V�B� � 4
3 � �1�3 �

4�

3yy
S

F � dS � yyy
B

div F dV � yyy
B

1 dV

xx
S

F � dSEXAMPLE 2v

F�x, y, z� � xy i � (y 2 � exz2) j � sin�xy� k

z � 1 � x 2ES
y � z � 2y � 0z � 0

S
FF

� y � 2y � 3ydiv F �
�

�x
�xy� �

�

�y
(y 2 � exz2) �

�

�z
�sin xy�

E

E � ��x, y, z� � �1 � x � 1, 0 � z � 1 � x 2, 0 � y � 2 � z

yy
S

F � dS � yyy
E

div F dV � yyy
E

3y dV

� 3 y
1

�1
y

1�x2

0

�2 � z�2

2
 dz dx� 3 y

1

�1
y

1�x2

0
y

2�z

0
y dy dz dx

� �
1
2 y

1

�1
��x 2 � 1�3 � 8� dx�

3

2
 y

1

�1
��

�2 � z�3

3 �
0

1�x2

dx

� �y
1

0
�x 6 � 3x 4 � 3x 2 � 7� dx �

184

35

Notice that the method of proof of the 
Divergence Theorem is very similar to that 
of Green’s Theorem.

The solution in Example 1 should be compared
with the solution in Exam ple 4 in Section 16.7.

FIGURE 2
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1156 CHAPTER 16 VECTOR CALCULUS

Although we have proved the Divergence Theorem only for simple solid regions, it can
be proved for regions that are finite unions of simple solid regions. (The procedure is sim-
ilar to the one we used in Section 16.4 to extend Green’s Theorem.)

For example, let’s consider the region that lies between the closed surfaces and ,
where lies inside . Let and be outward normals of and . Then the boundary
surface of is and its normal is given by on and on
(See Figure 3.) Applying the Divergence Theorem to , we get

In Example 5 in Section 16.1 we considered the electric field

where the electric charge is located at the origin and is a position vector.
Use the Divergence Theorem to show that the electric flux of through any closed sur-
face that encloses the origin is

SOLUTION The difficulty is that we don’t have an explicit equation for because it is
any closed surface enclosing the origin. The simplest such surface would be a sphere, so
we let be a small sphere with radius and center the origin. You can verify that

. (See Exercise 23.) Therefore Equation 7 gives

The point of this calculation is that we can compute the surface integral over because
is a sphere. The normal vector at is . Therefore

since the equation of is . Thus we have

This shows that the electric flux of is through any closed surface that con-
tains the origin. [This is a special case of Gauss’s Law (Equation 16.7.11) for a single
charge. The relationship between and is .]

S2S1E
S2S1n2n1S2S1

S2.n � n2S1n � �n1nS � S1 � S2E
S

yyy
E

div F dV � yy
S

F � dS � yy
S

F � n dS7

� yy
S1

F � ��n1� dS � yy
S2

F � n2  dS

� �yy
S1

F � dS � yy
S2

F � dS

EXAMPLE 3

E�x� �
�Q

� x �3 x

x � 
x, y, z �Q
E

S2

yy
S2

E � dS � 4��Q

S2

aS1

div E � 0

� yy
S1

E � dS � yy
S1

E � n dSyy
S2

E � dS � yy
S1

E � dS � yyy
E

div E dV

S1

x�� x �xS1

�
�Q

� x �2 �
�Q

a 2E � n �
�Q

� x �3 x � � x

� x � � �
�Q

� x �4 x � x

� x � � aS1

�
�Q

a 2 4�a 2 � 4��Q�
�Q

a 2 A�S1��
�Q

a 2 yy
S1

dSyy
S2

E � dS � yy
S1

E � n dS

S24��QE

� � 1��4��0 ��0�

FIGURE 3
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SECTION 16.9 THE DIVERGENCE THEOREM 1157

Another application of the Divergence Theorem occurs in fluid flow. Let be
the velocity field of a fluid with constant density . Then is the rate of flow per
unit area. If is a point in the fluid and is a ball with center and very small
radius , then for all points in since is continuous. We approx-
imate the flux over the boundary sphere as follows:

This approximation becomes better as and suggests that

Equation 8 says that is the net rate of outward flux per unit volume at . (This
is the reason for the name divergence.) If , the net flow is outward near and

is called a source. If , the net flow is inward near and is called a sink.
For the vector field in Figure 4, it appears that the vectors that end near are shorter

than the vectors that start near Thus the net flow is outward near so
and is a source. Near on the other hand, the incoming arrows are longer than the 
outgoing arrows. Here the net flow is inward, so and is a sink. We 
can use the formula for F to confirm this impression. Since , we have

, which is positive when . So the points above the line 
are sources and those below are sinks.

yy
Sa

F � dS � yyy
Ba

div F dV 	 yyy
Ba

div F�P0 � dV � div F�P0 �V�Ba �

a l 0

8 div F�P0 � � lim
a l 0

1

V�Ba � yy
Sa

F � dS

div F�P0� P0

div F�P� � 0 P
P div F�P� � 0 P P

P1

P1. P1, div F�P1� � 0
P1 P2,

div F�P2� � 0 P2

F � x 2 i � y 2 j
div F � 2x � 2y y � �x y � �x

Sa

� F � �v
P0�x0, y0, z0� Ba P0

a div F�P� 	 div F�P0 � Ba div F

v�x, y, z�

1–4 Verify that the Divergence Theorem is true for the vector field
on the region .

1. ,
is the cube bounded by the planes , , ,

, , and 

2. ,
is the solid bounded by the paraboloid 

and the -plane

3. ,
is the solid ball 

4. ,
is the solid cylinder , 

5–15 Use the Divergence Theorem to calculate the surface integral
; that is, calculate the flux of across .

5. ,
is the surface of the box bounded by the coordinate planes

and the planes , , and 

6. ,
is the surface of the box enclosed by the planes , 

, , , , and , where , , and are
positive numbers

F E

F�x, y, z� � 3x i � xy j � 2xz k
E x � 0 x � 1 y � 0
y � 1 z � 0 z � 1

F�x, y, z� � x 2 i � xy j � z k
E z � 4 � x 2 � y 2

xy

F�x, y, z� � 
z, y, x �
E x 2 � y 2 � z 2 � 16

F�x, y, z� � 
x 2, �y, z�
E y 2 � z2 � 9 0 � x � 2

SFxx
S F � dS

F�x, y, z� � xyez i � xy 2z3 j � yez k
S

z � 1y � 2x � 3

F�x, y, z� � x 2yz i � xy 2z j � xyz2 k
x � 0S

cbaz � cz � 0y � by � 0x � a

7. ,
is the surface of the solid bounded by the cylinder

and the planes and 

8. ,
is the sphere with center the origin and radius 2

9. ,
is the “fat sphere” 

10. ,
is the surface of the tetrahedron enclosed by the coordinate

planes and the plane

where , , and are positive numbers

11. ,
is the surface of the solid bounded by the paraboloid

and the plane 

12. ,
is the surface of the solid bounded by the cylinder

and the planes and 

13. , where ,
consists of the hemisphere and the disk

in the -plane

F�x, y, z� � 3xy 2 i � xe z j � z3 k
S
y 2 � z2 � 1 x � �1 x � 2

F�x, y, z� � �x 3 � y 3� i � �y 3 � z3� j � �z3 � x 3� k
S

F�x, y, z� � x 2sin y i � x cos y j � xz sin y k
S x 8 � y 8 � z8 � 8

F�x, y, z� � z i � y j � zx k
S

x

a
�

y

b
�

z

c
� 1

a b c

F�x, y, z� � �cos z � xy 2� i � xe�z j � �sin y � x 2z� k
S
z � x 2 � y 2 z � 4

F�x, y, z� � x 4 i � x 3z 2 j � 4xy 2z k
S
x 2 � y 2 � 1 z � x � 2 z � 0

F � � r � r r � x i � y j � z k
S z � s1 � x 2 � y 2 

x 2 � y 2 � 1 xy

16.9 Exercises

Computer algebra system required 1. Homework Hints available at stewartcalculus.comCAS

FIGURE 4
The vector field F=≈ i+¥ j

P¡

P™

y

x
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1158 CHAPTER 16 VECTOR CALCULUS

14. , where , 
is the sphere with radius and center the origin

15. ,
is the surface of the solid that lies above the -plane 

and below the surface ,

16. Use a computer algebra system to plot the vector field

in the cube cut from the first octant by the planes ,
, and . Then compute the flux across the 

surface of the cube.

17. Use the Divergence Theorem to evaluate , where 

and is the top half of the sphere . 
[Hint: Note that is not a closed surface. First compute 
integrals over and , where is the disk ,
oriented downward, and .]

18. Let . 
Find the flux of across the part of the paraboloid

that lies above the plane and is 
oriented upward.

19. A vector field is shown. Use the interpretation of diver-
gence derived in this section to determine whether 
is positive or negative at and at 

20. (a) Are the points and sources or sinks for the vector
field shown in the figure? Give an explanation based
solely on the picture.

(b) Given that , use the definition of diver-
gence to verify your answer to part (a).

21–22 Plot the vector field and guess where and
where . Then calculate to check your guess.

21. 22.

r � x i � y j � z kF � � r �2 r
RS

F�x, y, z� � e y tan z i � ys3 � x 2 j � x sin y kCAS

xyS
�1 � x � 1,z � 2 � x 4 � y 4

�1 � y � 1

CAS

F�x, y, z� � sin x cos2 y i � sin3y cos4z j � sin5z cos6x k
x � ��2

z � ��2y � ��2

xxS
F � dS

F�x, y, z� � z2x i � ( 1
3 y 3 � tan z) j � �x 2z � y 2 � k

x 2 � y 2 � z2 � 1S
S

x 2 � y 2 � 1S1S2S1

S2 � S � S1

F�x, y, z� � z tan�1�y 2 � i � z3 ln�x 2 � 1� j � z k
F

z � 1x 2 � y 2 � z � 2

F
div F

P2.P1

2

_2

_2 2

P¡

P™

P2P1

F

F�x, y� � �x, y 2�

2

_2

_2 2

P¡

P™

div F � 0CAS

div Fdiv F � 0

F�x, y� � �x 2, y 2�F�x, y� � �xy, x � y 2 �

23. Verify that for the electric field .

24.  Use the Divergence Theorem to evaluate

where is the sphere 

25–30 Prove each identity, assuming that and satisfy the
conditions of the Divergence Theorem and the scalar functions
and components of the vector fields have continuous second-
order partial derivatives.

25. , where is a constant vector

26. , where 

27. 28.

29.

30.

31. Suppose and satisfy the conditions of the Divergence
Theorem and is a scalar function with continuous partial
derivatives. Prove that

These surface and triple integrals of vector functions are 
vectors defined by integrating each component function.
[Hint: Start by applying the Divergence Theorem to ,
where is an arbitrary constant vector.]

32. A solid occupies a region with surface and is immersed
in a liquid with constant density . We set up a coordinate
system so that the -plane coincides with the surface of the
liquid, and positive values of are measured downward into
the liquid. Then the pressure at depth is , where
is the acceleration due to gravity (see Section 8.3). The total
buoyant force on the solid due to the pressure distribution is
given by the surface integral

where is the outer unit normal. Use the result of Exer -
cise 31 to show that , where is the weight of
the liquid displaced by the solid. (Note that is directed
upward because is directed downward.) The result is
Archimedes’ Principle: The buoyant force on an object
equals the weight of the dis placed liquid.

S x 2 � y 2 � z2 � 1.

ES

ayy
S

a � n dS � 0

F�x, y, z� � x i � y j � z kV�E � � 1
3 yy

S

F � dS

yy
S

curl F � dS � 0 yy
S

Dn f dS � yyy
E

� 2f dV

yy
S

� f �t� � n dS � yyy
E

� f � 2
t � � f � �t� dV

yy
S

� f �t � t� f � � n dS � yyy
E

� f � 2
t � t� 2f � dV

ES
f

yy
S

f n dS � yyy
E

� f dV

F � f c
c

SE
	

xy
z

tp � 	tzz

F � �yy
S

pn dS

n
WF � �Wk

F
z

E�x� �

Q

� x �3 xdiv E � 0

yy
S

�2x � 2y � z 2� dS
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SECTION 16.10 SUMMARY 1159

The main results of this chapter are all higher-dimensional versions of the Funda mental
Theorem of Calculus. To help you remember them, we collect them together here (with-
out hypotheses) so that you can see more easily their essential similarity. Notice that in
each case we have an integral of a “derivative” over a region on the left side, and the right
side involves the values of the original function only on the boundary of the region.

Fundamental Theorem of Calculus

Fundamental Theorem for Line Integrals

Green’s Theorem

Stokes’ Theorem

Divergence Theorem

y
b

a
F��x� dx � F�b� � F�a�

a b 

y
C

� f � dr � f �r�b�� � f �r�a��

r (a) 

r (b) 

C 

yy
D

� �Q

�x
�

�P

�y 	 dA � y
C

P dx � Q dy

C 

D 

yy
S

curl F � dS � y
C

F � dr

C 

S 

n 

yyy
E

div F dV � yy
S

F � dS E 

S 

n 

n 

16.10 Summary
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1160 CHAPTER 16 VECTOR CALCULUS

1. What is a vector field? Give three examples that have physical
meaning.

2. (a) What is a conservative vector field?
(b) What is a potential function?

3. (a) Write the definition of the line integral of a scalar function
along a smooth curve with respect to arc length.

(b) How do you evaluate such a line integral?
(c) Write expressions for the mass and center of mass of a thin

wire shaped like a curve if the wire has linear density
function .

(d) Write the definitions of the line integrals along of a scalar
function with respect to , , and .

(e) How do you evaluate these line integrals?

4. (a) Define the line integral of a vector field along a smooth
curve given by a vector function .

(b) If is a force field, what does this line integral represent?
(c) If , what is the connection between the line

integral of and the line integrals of the component func-
tions , , and ?

5. State the Fundamental Theorem for Line Integrals.

6. (a) What does it mean to say that is independent 
of path?

(b) If you know that is independent of path, what can
you say about ?

7. State Green’s Theorem.

8. Write expressions for the area enclosed by a curve in terms
of line integrals around .

9. Suppose is a vector field on .
(a) Define curl . (b) Define div .

Cf

C
	�x, y�

C
zyxf

F
r�t�C

F
F � �P, Q, R �

F
RQP

x
C

F � dr

xC F � dr
F

C
C

�3F
FF

(c) If is a velocity field in fluid flow, what are the physical
interpretations of curl and div ?

10. If , how do you test to determine whether is
conservative? What if is a vector field on ?

11. (a) What is a parametric surface? What are its grid curves?
(b) Write an expression for the area of a parametric surface.
(c) What is the area of a surface given by an equation

?

12. (a) Write the definition of the surface integral of a scalar func-
tion over a surface .

(b) How do you evaluate such an integral if is a para metric
surface given by a vector function ?

(c) What if is given by an equation ?
(d) If a thin sheet has the shape of a surface , and the density

at is , write expressions for the mass and
center of mass of the sheet.

13. (a) What is an oriented surface? Give an example of a non-
orientable surface.

(b) Define the surface integral (or flux) of a vector field F over
an oriented surface S with unit normal vector n.

(c) How do you evaluate such an integral if S is a parametric
surface given by a vector function ?

(d) What if S is given by an equation ?

14. State Stokes’ Theorem.

15. State the Divergence Theorem.

16. In what ways are the Fundamental Theorem for Line Integrals,
Green’s Theorem, Stokes’ Theorem, and the Divergence 
Theorem similar?

F F

F � P i � Q j F
F �3

z � t�x, y�

f S
S

r�u, v�
S z � t�x, y�

S
�x, y, z� 	�x, y, z�

r�u, v�
z � t�x, y�

F

Concept Check

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. If is a vector field, then div is a vector field.

2. If is a vector field, then curl is a vector field.

3. If has continuous partial derivatives of all orders on , then
.

4. If has continuous partial derivatives on and is any 
circle, then .

5. If and in an open region , then is
conservative.

6.

7. If and are vector fields and , then .

FF

FF

� 3f
� f � � 0div�curl

C� 3f
xC � f � dr � 0

FDPy � QxF � P i � Q j

x
�C f �x, y� ds � �xC f �x, y� ds

F G divF � divG F � G

8. The work done by a conservative force field in moving a par-
ticle around a closed path is zero.

9. If and are vector fields, then

10. If and are vector fields, then

11. If is a sphere and is a constant vector field, then
.

12. There is a vector field such that

F G

curl�F � G� � curl F � curl G

F G

curl�F � G� � curl F � curl G

S F
xx

S F � dS � 0

F

curl F � x i � y j � z k

True-False Quiz

16 Review
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CHAPTER 16 REVIEW 1161

; Graphing calculator or computer required Computer algebra system requiredCAS

1. A vector field , a curve , and a point are shown.
(a) Is positive, negative, or zero? Explain.
(b) Is positive, negative, or zero? Explain.

2–9 Evaluate the line integral.

2. ,
is the arc of the parabola from (0, 0) to (1, 1)

3. ,
: , , , 

4. ,  is the ellipse 
with counterclockwise orientation

5. ,  is the arc of the parabola
from to 

6. ,
is given by , 

7. ,
is the line segment from , to 

8. , where and is given by
, 

9. , where and 
is given by , 

10. Find the work done by the force field

in moving a particle from the point to the point
along

(a) a straight line
(b) the helix , , 

11–12 Show that is a conservative vector field. Then find a func-
tion such that .

11.

F C P
xC

F � dr
div F�P�

y

x

P

C

xC
x ds

C y � x 2

xC
yz cos x ds

C x � t y � 3 cos t z � 3 sin t 0 � t � �

xC y dx � �x � y 2� dy C 4x 2 � 9y 2 � 36

x
C

y 3 dx � x 2 dy C x � 1 � y 2

�0, �1� �0, 1�

x
C sxy dx � e y dy � xz dz

C r�t� � t 4 i � t 2 j � t 3 k 0 � t � 1

x
C xy dx � y 2 dy � yz dz

C �1, 0, �1� �3, 4, 2�

x
C F � dr F�x, y� � xy i � x 2 j C

r�t� � sin t i � �1 � t� j 0 � t � �

x
C

F � dr F�x, y, z� � e z i � xz j � �x � y� k
C r�t� � t 2 i � t 3 j � t k 0 � t � 1

F�x, y, z� � z i � x j � y k

�3, 0, 0�
�0, ��2, 3�

x � 3 cos t y � t z � 3 sin t

F
f F � ∇ f

F�x, y� � �1 � xy�e xy i � �e y � x 2e xy � j

12.

13–14 Show that is conservative and use this fact to evaluate
along the given curve.

13. ,
: , 

14. ,
is the line segment from to 

15. Verify that Green’s Theorem is true for the line integral
, where consists of the parabola

from to and the line segment from 
to .

16. Use Green’s Theorem to evaluate

where is the triangle with vertices , , and 

17. Use Green’s Theorem to evaluate , 
where is the circle with counterclockwise 
orientation.

18. Find curl and div if

19. Show that there is no vector field such that

20. Show that, under conditions to be stated on the vector fields 
and ,

21. If is any piecewise-smooth simple closed plane curve 
and and are differentiable functions, show that

.

22. If and are twice differentiable functions, show that

23. If is a harmonic function, that is, , show that the line
integral is independent of path in any simple
region .

24. (a) Sketch the curve with parametric equations

(b) Find .

F�x, y, z� � sin y i � x cos y j � sin z k

F
xC F � dr

F�x, y� � �4x 3y 2 � 2xy 3� i � �2x 4 y � 3x 2y 2 � 4y 3� j
C r�t� � �t � sin � t� i � �2t � cos � t� j 0 � t � 1

F�x, y, z� � e y i � �xe y � e z� j � ye z k
C �0, 2, 0� �4, 0, 3�

xC
xy 2 dx � x 2 y dy C y � x 2

��1, 1� �1, 1� �1, 1�
��1, 1�

y
C

s1 � x 3 dx � 2xy dy

C �0, 0� �1, 0� �1, 3�.

x
C

x 2 y dx � xy 2 dy
C x 2 � y 2 � 4

F F

F�x, y, z� � e�x sin y i � e�y sin z j � e�z sin x k

G

curl G � 2x i � 3yz j � xz2 k

F G

curl�F  G� � F div G � G div F � �G � � �F � �F � � �G

C
f t

x
C

f �x� dx � t�y� dy � 0

f t

� 2� ft� � f � 2
t � t� 2f � 2� f � �t

f � 2 f � 0
x fy dx � fx dy

D

C

x � cos t y � sin t z � sin t 0 � t � 2�

x
C

2xe 2y dx � �2x 2e 2y � 2y cot z� dy � y 2 csc2z dz

Exercises
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1162 CHAPTER 16 VECTOR CALCULUS

25. Find the area of the part of the surface that lies
above the triangle with vertices , , and .

26. (a) Find an equation of the tangent plane at the point
to the parametric surface S given by

, 

; (b) Use a computer to graph the surface and the tangent
plane found in part (a).

(c) Set up, but do not evaluate, an integral for the surface
area of .

(d) If

find correct to four decimal places.

27–30 Evaluate the surface integral.

27. , where is the part of the paraboloid
that lies under the plane 

28. , where is the part of the plane
that lies inside the cylinder 

29. , where and is
the sphere with outward orientation

30. , where and is the
part of the paraboloid below the plane
with upward orientation 

31. Verify that Stokes’ Theorem is true for the vector field
, where is the part of the

paraboloid that lies above the -plane and
has upward orientation.

32. Use Stokes’ Theorem to evaluate , where
, is the part of the

sphere that lies above the plane ,
and is oriented upward.

33. Use Stokes’ Theorem to evaluate , where
, and is the triangle with

vertices , , and , oriented counter -
clockwise as viewed from above.

34. Use the Divergence Theorem to calculate the surface
integral , where and

is the surface of the solid bounded by the cylinder
and the planes and .

35. Verify that the Divergence Theorem is true for the vector 
field , where is the unit ball

.

36. Compute the outward flux of

through the ellipsoid .

�0, 0� �1, 0� �1, 2�

�4, �2, 1�

r�u, v� � v2 i � uv j � u 2 k 0 � u � 3 �3 � v � 3

z � x 2 � 2y

S

S

F�x, y, z� �
z2

1 � x 2 i �
x 2

1 � y 2 j �
y 2

1 � z2 k

xx
S

F � dS

CAS

z � x 2 � y 2Sxx
S

z dS
z � 4

SxxS
�x 2z � y 2z� dS

x 2 � y 2 � 4z � 4 � x � y

SF�x, y, z� � xz i � 2y j � 3x kxxS
F � dS

x 2 � y 2 � z2 � 4

SF�x, y, z� � x 2 i � xy j � z kxx
S

F � dS
z � 1z � x 2 � y 2

SF�x, y, z� � x 2 i � y 2 j � z2 k
xyz � 1 � x 2 � y 2

S

xxS curl F � dS
SF�x, y, z� � x 2 yz i � yz2 j � z3e xy k

z � 1x 2 � y 2 � z2 � 5
S

xC F � dr
CF�x, y, z� � xy i � yz j � zx k

�0, 0, 1��0, 1, 0��1, 0, 0�

F�x, y, z� � x 3 i � y 3 j � z3 kxxS F � dS
S

z � 2z � 0x 2 � y 2 � 1

EF�x, y, z� � x i � y j � z k
x 2 � y 2 � z2 � 1

F�x, y, z� �
x i � y j � z k

�x 2 � y 2 � z2 �3�2

4x 2 � 9y 2 � 6z2 � 36

37. Let

Evaluate , where is the curve with initial point
and terminal point shown in the figure.

38. Let

Evaluate , where is shown in the figure.

39. Find , where and is
the outwardly oriented surface shown in the figure (the bound-
ary surface of a cube with a unit corner cube removed).

40. If the components of have continuous second partial
derivatives and is the boundary surface of a simple solid
region, show that .

41. If is a constant vector, , and is an
oriented, smooth surface with a simple, closed, smooth, pos-
itively oriented boundary curve , show that

F�x, y, z� � �3x 2 yz � 3y� i � �x 3z � 3x� j � �x 3 y � 2z� k

x
C

F � dr C
�0, 0, 2� �0, 3, 0�

0

(0, 0, 2)

(0, 3, 0)

(1, 1, 0)

(3, 0, 0)

z

x

y

F�x, y� �
�2x 3 � 2xy 2 � 2y� i � �2y 3 � 2x 2 y � 2x� j

x 2 � y 2

�x
C F � dr C

0 x

y

C

xx
S

F � n dS F�x, y, z� � x i � y j � z k S

(0, 2, 2)

(2, 0, 2)

(2, 2, 0)S

y

z

x

1

1
1

F
S

xxS
curl F � dS � 0

a r � x i � y j � z k S

C

yy
S

2a � dS � y
C

�a  r� � dr
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1. Let be a smooth parametric surface and let be a point such that each line that starts 
at intersects at most once. The solid angle subtended by at is the set of lines
starting at and passing through . Let be the intersection of with the surface of
the sphere with center and radius . Then the measure of the solid angle (in steradians) is
defined to be

Apply the Divergence Theorem to the part of between and to show that

where is the radius vector from to any point on , , and the unit normal vector
is directed away from .

This shows that the definition of the measure of a solid angle is independent of the radius
of the sphere. Thus the measure of the solid angle is equal to the area subtended on a unit
sphere. (Note the analogy with the definition of radian measure.) The total solid angle sub-
tended by a sphere at its center is thus steradians.

2. Find the positively oriented simple closed curve for which the value of the line integral

is a maximum.

3. Let be a simple closed piecewise-smooth space curve that lies in a plane with unit normal
vector and has positive orientation with respect to . Show that the plane area
enclosed by is

; 4. Investigate the shape of the surface with parametric equations , ,
. Start by graphing the surface from several points of view. Explain the 

appearance of the graphs by determining the traces in the horizontal planes , ,
and .

5. Prove the following identity:

PS
PS��S �SP

��S �S�a�SP
aP

� ��S � � �
area of S�a�

a2

SS�a���S �

� ��S � � � yy
S

r � n
r 3 dS

nr � � r �SPr
P

a

4�

P 

S 

S(a) 

a 

��F � G� � �F � ��G � �G � ��F � F  curl G � G  curl F

C

y
C

�y 3 � y� dx � 2x 3 dy

C
n � �a, b, c � n

C

1
2 y

C
�bz � cy� dx � �cx � az� dy � �ay � bx� dz

x � sin u y � sin v
z � sin�u � v�

z � 0 z � �1
z � �

1
2

Problems Plus
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6. The figure depicts the sequence of events in each cylinder of a four-cylinder internal combus-
tion engine. Each piston moves up and down and is connected by a pivoted arm to a rotating
crankshaft. Let and be the pressure and volume within a cylinder at time , where

gives the time required for a complete cycle. The graph shows how and vary
through one cycle of a four-stroke engine.

During the intake stroke (from ① to ②) a mixture of air and gasoline at atmospheric pres-
sure is drawn into a cylinder through the intake valve as the piston moves downward. Then
the piston rapidly compresses the mix with the valves closed in the compression stroke (from
② to ③) during which the pressure rises and the volume decreases. At ③ the sparkplug ignites
the fuel, raising the temperature and pressure at almost constant volume to ④. Then, with
valves closed, the rapid expansion forces the piston downward during the power stroke (from
④ to ⑤). The exhaust valve opens, temperature and pressure drop, and mechanical energy
stored in a rotating flywheel pushes the piston upward, forcing the waste products out of the
exhaust valve in the exhaust stroke. The exhaust valve closes and the intake valve opens.
We’re now back at ① and the cycle starts again.
(a) Show that the work done on the piston during one cycle of a four-stroke engine is

, where is the curve in the -plane shown in the figure.
[Hint: Let be the distance from the piston to the top of the cylinder and note that

the force on the piston is , where is the area of the top of the piston. Then
, where is given by . An alternative approach is

to work directly with Riemann sums.]
(b) Use Formula 16.4.5 to show that the work is the difference of the areas enclosed by the

two loops of .

P�t� V�t� t
a � t � b P V

P

V0

C

! @

#

$

%
In

ta
ke

C
om

pr
es

si
on

Ex
pl

os
io

n

Ex
ha

us
tio

n

Flywheel

Crankshaft
Connecting rod

Water

W � xC P dV C PV
x�t�

F � AP�t� i A
W � x

C 1
F � dr C1 r�t� � x�t� i, a � t � b

C
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Second-Order 
Differential Equations17

The basic ideas of differential equations were explained in Chapter 9; there we concentrated on first-order
equations. In this chapter we study second-order linear differential equations and learn how they can be
applied to solve problems concerning the vibrations of springs and the analysis of electric circuits. We
will also see how infinite series can be used to solve differential equations.

1165

© Christoff / Shutterstock

The motion of a shock absorber in a car
is described by the differential equations
that we solve in Section 17.3.
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1166 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

17.1 Second-Order Linear Equations

A second-order linear differential equation has the form

where , , , and are continuous functions. We saw in Section 9.1 that equations of
this type arise in the study of the motion of a spring. In Section 17.3 we will further pur-
sue this application as well as the application to electric circuits.

In this section we study the case where , for all , in Equation 1. Such equa-
tions are called homogeneous linear equations. Thus the form of a second-order linear homo-
geneous differential equation is

If for some , Equation 1 is nonhomogeneous and is discussed in Section 17.2.
Two basic facts enable us to solve homogeneous linear equations. The first of these says

that if we know two solutions and of such an equation, then the linear combination
is also a solution.

Theorem If and are both solutions of the linear homogeneous 
equation and and are any constants, then the function

is also a solution of Equation 2.

PROOF Since and are solutions of Equation 2, we have

and

Therefore, using the basic rules for differentiation, we have

Thus is a solution of Equation 2.

P�x�
d 2y

dx 2 � Q�x�
dy

dx
� R�x�y � G�x�

GRQP

xG�x� � 0

P�x�
d 2y

dx 2 � Q�x�
dy

dx
� R�x�y � 0

xG�x� � 0

y2y1

y � c1y1 � c2y2

y2�x�y1�x�
c2c1

y�x� � c1y1�x� � c2y2�x�

y2y1

P�x�y1� � Q�x�y1� � R�x�y1 � 0

P�x�y2� � Q�x�y2� � R�x�y2 � 0

P�x�y� � Q�x�y� � R�x�y

� P�x��c1y1 � c2y2�� � Q�x��c1y1 � c2y2�� � R�x��c1y1 � c2y2�

� P�x��c1y1� � c2y2�� � Q�x��c1y1� � c2y2�� � R�x��c1y1 � c2y2�

� c1�P�x�y1� � Q�x�y1� � R�x�y1� � c2 �P�x�y2� � Q�x�y2� � R�x�y2�

� c1�0� � c2�0� � 0

y � c1y1 � c2y2

1

2

3
2
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SECTION 17.1 SECOND-ORDER LINEAR EQUATIONS 1167

The other fact we need is given by the following theorem, which is proved in more
advanced courses. It says that the general solution is a linear combination of two linearly
independent solutions and This means that neither nor is a constant multiple of
the other. For instance, the functions and are linearly dependent, but

and are linearly independent.

Theorem If and are linearly independent solutions of Equation 2 on an
interval, and is never 0, then the general solution is given by

where and are arbitrary constants.

Theorem 4 is very useful because it says that if we know two particular linearly inde-
pendent solutions, then we know every solution.

In general, it’s not easy to discover particular solutions to a second-order linear equa-
tion. But it is always possible to do so if the coefficient functions , , and are constant
functions, that is, if the differential equation has the form

where , , and are constants and .
It’s not hard to think of some likely candidates for particular solutions of Equation 5 if

we state the equation verbally. We are looking for a function such that a constant times
its second derivative plus another constant times plus a third constant times is equal
to 0. We know that the exponential function (where is a constant) has the prop-
erty that its derivative is a constant multiple of itself: . Furthermore, .
If we substitute these expressions into Equation 5, we see that is a solution if

or

But is never 0. Thus is a solution of Equation 5 if is a root of the equation

Equation 6 is called the auxiliary equation (or characteristic equation) of the differen-
tial equation . Notice that it is an algebraic equation that is obtained
from the differential equation by replacing by , by , and by .

Sometimes the roots and of the auxiliary equation can be found by factoring. In
other cases they are found by using the quadratic formula:

We distinguish three cases according to the sign of the discriminant .

y2y1y2.y1

t�x� � 5x 2f �x� � x 2

t�x� � xexf �x� � ex

y2y14
P�x�

y�x� � c1y1�x� � c2y2�x�

c2c1

RQP

ay� � by� � cy � 05

a � 0cba

y
yy�y�

ry � e rx

y� � r 2erxy� � re rx

y � erx

ar 2erx � bre rx � ce rx � 0

�ar 2 � br � c�erx � 0

ry � erxe rx

ar 2 � br � c � 06

ay� � by� � cy � 0
1yry�r 2y�

r2r1

r2 �
�b � sb 2 � 4ac

2a
r1 �

�b � sb 2 � 4ac

2a
7

b 2 � 4ac
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1168 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

8

_5

_1 1

5f+g
f+5g

f g

f-g
g-f

f+g

FIGURE 1

In Figure 1 the graphs of the basic solutions
and of the differential

equation in Example 1 are shown in blue and
red, respec tively. Some of the other solutions, 
linear combinations of and , are shown 
in black.

tf

t�x� � e�3xf �x� � e 2x

CASE I

In this case the roots and of the auxiliary equation are real and distinct, so
and are two linearly independent solutions of Equation 5. (Note that is not a
constant multiple of .) Therefore, by Theorem 4, we have the following fact.

If the roots and of the auxiliary equation are real and
unequal, then the general solution of is

Solve the equation .

SOLUTION The auxiliary equation is

whose roots are , . Therefore, by , the general solution of the given differen-
tial equation is

We could verify that this is indeed a solution by differentiating and substituting into the
differential equation.

Solve .

SOLUTION To solve the auxiliary equation , we use the quadratic 
formula:

Since the roots are real and distinct, the general solution is

CASE II

In this case ; that is, the roots of the auxiliary equation are real and equal. Let’s
denote by the common value of and Then, from Equations 7, we have

We know that is one solution of Equation 5. We now verify that is also
a solution:

b2 � 4ac � 0
y1 � er1xr2r1

er2 xy2 � er2 x

e r1x

ar 2 � br � c � 0r2r18
ay� � by� � cy � 0

y � c1er1x � c2 er2 x

y� � y� � 6y � 0EXAMPLE 1

r 2 � r � 6 � �r � 2��r � 3� � 0

8�3r � 2

y � c1e 2x � c2 e�3x

3
d 2y

dx 2 �
dy

dx
� y � 0EXAMPLE 2

3r 2 � r � 1 � 0

r �
�1 � s13

6

y � c1e (�1�s13 )x�6 � c2 e (�1�s13 )x�6

b 2 � 4ac � 0
r1 � r2

r2.r1r

2ar � b � 0sor � �
b

2a
9

y2 � xerxy1 � erx

ay2� � by2� � cy2 � a�2re rx � r 2xe rx� � b�e rx � rxe rx � � cxerx

� �2ar � b�erx � �ar 2 � br � c�xerx

� 0�erx � � 0�xerx � � 0
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SECTION 17.1 SECOND-ORDER LINEAR EQUATIONS 1169

The first term is 0 by Equations 9; the second term is 0 because is a root of the auxiliary
equation. Since and are linearly independent solutions, Theorem 4 pro-
vides us with the general solution.

If the auxiliary equation has only one real root , then the
general solution of is

Solve the equation .

SOLUTION The auxiliary equation can be factored as

so the only root is . By , the general solution is

CASE III

In this case the roots and of the auxiliary equation are complex numbers. (See Appen-
 dix H for information about complex numbers.) We can write

where and are real numbers. [In fact, , .] Then,
using Euler’s equation

from Appendix H, we write the solution of the differential equation as

where , . This gives all solutions (real or complex) of the dif-
ferential equation. The solutions are real when the constants and are real. We sum-
marize the discussion as follows.

If the roots of the auxiliary equation are the complex num-
bers , , then the general solution of
is

r
y2 � xerxy1 � erx

rar 2 � br � c � 010
ay� � by� � cy � 0

y � c1erx � c2 xerx

4y� � 12y� � 9y � 0EXAMPLE 3v

4r 2 � 12r � 9 � 0

�2r � 3�2 � 0

10r � �
3
2

y � c1e�3x�2 � c2 xe�3x�2

b 2 � 4ac � 0
r2r1

r2 � 	 � i
r1 � 	 � i



 � s4ac � b 2 ��2a�	 � �b��2a�
	

e i� � cos � � i sin �

y � C1er1x � C2er2 x � C1e �	�i
�x � C2e �	�i
�x

� C1e	 x�cos 
x � i sin 
x� � C2e 	 x�cos 
x � i sin 
x�

� e 	 x��C1 � C2� cos 
x � i�C1 � C2 � sin 
x�

� e	 x�c1 cos 
x � c2 sin 
x�

c2 � i�C1 � C2�c1 � C1 � C2

c2c1

ar 2 � br � c � 011
ay� � by� � cy � 0r2 � 	 � i
r1 � 	 � i


y � e	 x�c1 cos 
x � c2 sin 
x�

Figure 2 shows the basic solutions
and in 

Exam ple 3 and some other members of the 
family of solutions. Notice that all of them
approach 0 as .x l �

t�x� � xe�3x�2f �x� � e�3x�2

FIGURE 2

8

_5

_2 2

5f+g
f+5g

f

g

f-g

g-ff+g
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1170 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

Solve the equation .

SOLUTION The auxiliary equation is . By the quadratic formula, the
roots are

By , the general solution of the differential equation is

Initial-Value and Boundary-Value Problems
An initial-value problem for the second-order Equation 1 or 2 consists of finding a solu-
tion of the differential equation that also satisfies initial conditions of the form

where and are given constants. If , , , and are continuous on an interval and
there, then a theorem found in more advanced books guarantees the existence

and uniqueness of a solution to this initial-value problem. Examples 5 and 6 illustrate the
technique for solving such a problem.

Solve the initial-value problem

SOLUTION From Example 1 we know that the general solution of the differential equa-
tion is

Differentiating this solution, we get

To satisfy the initial conditions we require that

From , we have and so gives

Thus the required solution of the initial-value problem is

Solve the initial-value problem

SOLUTION The auxiliary equation is , or , whose roots are . Thus
, , and since , the general solution is

Since

y� � 6y� � 13y � 0

r 2 � 6r � 13 � 0

r �
6 � s36 � 52

2
�

6 � s�16

2
� 3 � 2i

y � e 3x�c1 cos 2x � c2 sin 2x�

y

y�x0� � y0 y��x0 � � y1

y0 y1 P Q R G
P�x� � 0

y� � y� � 6y � 0 y�0� � 1 y��0� � 0

y�x� � c1e 2x � c2 e�3x

y��x� � 2c1e 2x � 3c2 e�3x

y�0� � c1 � c2 � 1

y��0� � 2c1 � 3c2 � 0

c2 � 2
3 c1

c1 �
2
3 c1 � 1 c1 � 3

5 c2 � 2
5

y � 3
5 e 2x �

2
5 e�3x

y� � y � 0 y�0� � 2 y��0� � 3

r 2 � 1 � 0 r 2 � �1 �i
	 � 0 
 � 1 e0x � 1

y�x� � c1 cos x � c2 sin x

y��x� � �c1 sin x � c2 cos x

EXAMPLE 4v

11

EXAMPLE 5

12

13

13 12

EXAMPLE 6

Figure 3 shows the graphs of the solutions 
in Example 4, and

, together with some linear
combina tions. All solutions approach 0 
as .x l ��

t�x� � e 3x sin 2x
f �x� � e 3x cos 2x

FIGURE 3

3

_3

_3 2

f

g

f-g

f+g

Figure 4 shows the graph of the solution of the
initial-value problem in Example 5. Compare with
Figure 1.

FIGURE 4

20

0
_2 2
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SECTION 17.1 SECOND-ORDER LINEAR EQUATIONS 1171

the initial conditions become

Therefore the solution of the initial-value problem is

A boundary-value problem for Equation 1 or 2 consists of finding a solution of the
differential equation that also satisfies boundary conditions of the form

In contrast with the situation for initial-value problems, a boundary-value problem does
not always have a solution. The method is illustrated in Example 7.

Solve the boundary-value problem

SOLUTION The auxiliary equation is

whose only root is . Therefore the general solution is

The boundary conditions are satisfied if

The first condition gives , so the second condition becomes

Solving this equation for by first multiplying through by , we get

so    

Thus the solution of the boundary-value problem is

Summary: Solutions of ay�� � by� � c  0

y�0� � c1 � 2 y��0� � c2 � 3

y�x� � 2 cos x � 3 sin x

y

y�x0 � � y0 y�x1� � y1

y� � 2y� � y � 0 y�0� � 1 y�1� � 3

r 2 � 2r � 1 � 0 or �r � 1�2 � 0

r � �1

y�x� � c1e�x � c2 xe�x

y�0� � c1 � 1

y�1� � c1e�1 � c2 e�1 � 3

c1 � 1

e�1 � c2e�1 � 3

c2 e

1 � c2 � 3e c2 � 3e � 1

y � e�x � �3e � 1�xe�x

v EXAMPLE 7

Roots of General solution

r1, r2 complex: 	 � i


y � c1erx � c2 xerxr1 � r2 � r

y � c1er1x � c2er2 xr1, r2 real and distinct

y � e	 x�c1 cos 
x � c2 sin 
x�

ar 2 � br � c � 0

The solution to Example 6 is graphed in 
Figure 5. It appears to be a shifted sine curve
and, indeed, you can verify that another way of
writing the solu tion is

where tan � � 2
3y � s13 sin�x � ��

FIGURE 5

5

_5

_2π 2π

Figure 6 shows the graph of the solution of 
the boundary-value problem in Example 7.

FIGURE 6

5

_5

_1 5
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1172 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

1–13 Solve the differential equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12.

13.

; 14–16 Graph the two basic solutions of the differential equation
and several other solutions. What features do the solutions have
in common?

14.

15.

16.

17–24 Solve the initial-value problem.

17. ,  ,  

18. ,  ,  

19. ,  ,  

20. ,  ,  

21. ,  ,  

y� � y� � 6y � 0 y� � 4y� � 4y � 0

y� � 16y � 0 y� � 8y� � 12y � 0

9y� � 12y� � 4y � 0 25y� � 9y � 0

y� � 2y� y� � 4y� � y � 0

y� � 4y� � 13y � 0 y� � 3y� � 0

2
d 2y

dt 2 � 2 
dy

dt
� y � 0

8
d 2y

dt 2 � 12 
dy

dt
� 5y � 0

100 
d 2P

dt 2 � 200 
dP

dt
� 101P � 0

d 2y

dx 2 � 4 
dy

dx
� 20y � 0

5
d 2y

dx 2 � 2 
dy

dx
� 3y � 0

9
d 2y

dx 2 � 6 
dy

dx
� y � 0

y� � 6y� � 8y � 0 y�0� � 2 y��0� � 2

y� � 4y � 0 y��� � 5 y���� � �4

y��0� � 0y�0� � 19y� � 12y� � 4y � 0

y��0� � 3y�0� � 32y� � y� � y � 0

y��0� � 3y�0� � 2y� � 6y� � 10y � 0

22. ,  ,  

23. ,  ,  

24. ,  ,  

25–32 Solve the boundary-value problem, if possible.

25. ,  ,  

26. ,  ,  

27. ,  ,  

28. ,  ,  

29. ,  ,  

30. ,  ,  

31. ,  ,  

32. ,  ,  

33. Let be a nonzero real number.
(a) Show that the boundary-value problem ,

, has only the trivial solution for
the cases and .

(b) For the case , find the values of for which this
prob lem has a nontrivial solution and give the corre-
sponding solution.

34. If , , and are all positive constants and is a solution 
of the differential equation , show that

.

35. Consider the boundary-value problem ,
, .

(a) If this problem has a unique solution, how are and
related?

(b) If this problem has no solution, how are , , , and
related?

(c) If this problem has infinitely many solutions, how are 
, , , and related?

y� � y� y�0� � 1 y�1� � 2

4y� � 4y� � y � 0 y�0� � 4 y�2� � 0

y� � 4y� � 20y � 0 y�0� � 1 y�� � � 2

y� � 4y� � 20y � 0 y�0� � 1 y��� � e�2�

L
y� � �y � 0

y�0� � 0 y�L� � 0 y � 0
� � 0 � � 0

� � 0 �

a b c y�x�
ay� � by� � cy � 0

lim x l � y�x� � 0

y� � 2y� � 2y � 0
y�a� � c y�b� � d

y� � y� � 12y � 0 y�1� � 0 y��1� � 1

4y� � 4y� � 3y � 0 y�0� � 0 y��0� � 1

y� � 4y � 0 y�0� � 5 y���4� � 3

y� � 4y y�0� � 1 y�1� � 0

y� � 4y� � 4y � 0 y�0� � 2 y�1� � 0

y� � 8y� � 17y � 0 y�0� � 3 y��� � 2

y��0� � �3y�0� � 24y� � 20y� � 25y � 0

a b

a b c d

a b c d

17.1 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

In this section we learn how to solve second-order nonhomogeneous linear differential
equa tions with constant coefficients, that is, equations of the form

where , , and are constants and is a continuous function. The related homogeneous
equation

ay� � by� � cy � G�x�

a b c G

ay� � by� � cy � 0

1

2

17.2 Nonhomogeneous Linear Equations
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SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS 1173

is called the complementary equation and plays an important role in the solution of the
original nonhomogeneous equation .

Theorem The general solution of the nonhomogeneous differential equa-
tion can be written as

where is a particular solution of Equation 1 and is the general solution of the
complementary Equation 2.

PROOF We verify that if is any solution of Equation 1, then is a solution of the
complementary Equation 2. Indeed

This shows that every solution is of the form . It is easy to check
that every function of this form is a solution.

We know from Section 17.1 how to solve the complementary equation. (Recall that the
solution is , where and are linearly independent solutions of Equa-
 tion 2.) Therefore Theorem 3 says that we know the general solution of the nonhomoge-
neous equation as soon as we know a particular solution . There are two methods for
finding a particular solution: The method of undetermined coefficients is straightforward
but works only for a restricted class of functions . The method of variation of parameters
works for every function but is usually more difficult to apply in practice.

The Method of Undetermined Coefficients
We first illustrate the method of undetermined coefficients for the equation

where ) is a polynomial. It is reasonable to guess that there is a particular solution 
that is a polynomial of the same degree as because if is a polynomial, then

is also a polynomial. We therefore substitute a polynomial (of the
same degree as ) into the differential equation and determine the coefficients.

Solve the equation .

SOLUTION The auxiliary equation of is

with roots , . So the solution of the complementary equation is

Since is a polynomial of degree 2, we seek a particular solution of the form

1

y�x� � yp�x� � yc�x�

yp yc

y y � yp

a�y � yp�� � b�y � yp �� � c�y � yp � � ay� � ayp� � by� � byp� � cy � cyp

� �ay� � by� � cy� � �ayp� � byp� � cyp �

� G�x� � G�x� � 0

yc � c1y1 � c2y2 y1 y2

yp

G
G

ay� � by� � cy � G�x�

G�x
yp G y
ay� � by� � cy yp�x� �

G

y� � y� � 2y � x 2

y� � y� � 2y � 0

r 2 � r � 2 � �r � 1��r � 2� � 0

r � 1 �2

yc � c1ex � c2e�2x

G�x� � x 2

3
1

y�x� � yp�x� � yc�x�

v EXAMPLE 1

yp�x� � Ax 2 � Bx � C
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1174 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

Then and so, substituting into the given differential equation,
we have

or

Polynomials are equal when their coefficients are equal. Thus

The solution of this system of equations is

A particular solution is therefore

and, by Theorem 3, the general solution is

If (the right side of Equation 1) is of the form , where and are constants,
then we take as a trial solution a function of the same form, , because the
derivatives of are constant multiples of .

Solve .

SOLUTION The auxiliary equation is with roots , so the solution of the
complementary equation is

For a particular solution we try . Then and . Substi-
tuting into the differential equation, we have

so and . Thus a particular solution is

and the general solution is

If is either or , then, because of the rules for differentiating the
sine and cosine functions, we take as a trial particular solution a function of the form 

Solve .

SOLUTION We try a particular solution

yp� � 2Ayp� � 2Ax � B

�2A� � �2Ax � B� � 2�Ax 2 � Bx � C � � x 2

�2Ax 2 � �2A � 2B�x � �2A � B � 2C � � x 2

2A � B � 2C � 02A � 2B � 0�2A � 1

C � �
3
4B � �

1
2A � �

1
2

yp�x� � �
1
2 x 2 �

1
2 x �

3
4

y � yc � yp � c1e x � c2 e�2x �
1
2 x 2 �

1
2 x �

3
4

kCCek xG�x�
yp�x� � Aek x

e k xe k x

y� � 4y � e 3xEXAMPLE 2

�2ir 2 � 4 � 0

yc�x� � c1 cos 2x � c2 sin 2x

yp� � 9Ae 3xyp� � 3Ae 3xyp�x� � Ae 3x

9Ae 3x � 4�Ae 3x� � e 3x

A � 1
1313Ae 3x � e 3x

yp�x� � 1
13 e 3x

y�x� � c1 cos 2x � c2 sin 2x �
1
13 e 3x

C sin kxC cos kxG�x�

yp�x� � A cos kx � B sin kx

y� � y� � 2y � sin xEXAMPLE 3v

yp�x� � A cos x � B sin x

Figure 1 shows four solutions of the differential
equation in Example 1 in terms of the particular
solution and the functions 
and .t�x� � e�2x

f �x� � e xyp

Figure 2 shows solutions of the differential 
equation in Example 2 in terms of and the
functions and .
Notice that all solutions approach as 
and all solutions (except ) resemble sine 
func tions when is negative.

yp

x

x l ��

t�x� � sin 2xf �x� � cos 2x
yp

FIGURE 2

4

_2

_4 2
yp

yp+g

yp+f

yp+f+g

FIGURE 1

8

_5

_3 3
yp

yp+3g
yp+2f

yp+2f+3g
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SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS 1175

Then

so substitution in the differential equation gives

or

This is true if

The solution of this system is

so a particular solution is

In Example 1 we determined that the solution of the complementary equation is
. Thus the general solution of the given equation is

If is a product of functions of the preceding types, then we take the trial solu-
tion to be a product of functions of the same type. For instance, in solving the differential
equation

we would try

If is a sum of functions of these types, we use the easily verified principle of super-
position, which says that if and are solutions of

respectively, then is a solution of

Solve .

SOLUTION The auxiliary equation is with roots , so the solution of the com-
plementary equation is . For the equation we try

Then , , so substitution in the equation
gives

or

yp� � �A sin x � B cos x yp� � �A cos x � B sin x

��A cos x � B sin x� � ��A sin x � B cos x� � 2�A cos x � B sin x� � sin x

��3A � B� cos x � ��A � 3B� sin x � sin x

�3A � B � 0 and �A � 3B � 1

A � �
1
10 B � �

3
10

yp�x� � �
1
10 cos x �

3
10 sin x

yc � c1ex � c2e�2x

y�x� � c1ex � c2 e�2x �
1
10 �cos x � 3 sin x�

G�x�

y� � 2y� � 4y � x cos 3x

yp�x� � �Ax � B� cos 3x � �Cx � D� sin 3x

G�x�
yp1

yp2

ay� � by� � cy � G1�x� ay� � by� � cy � G2�x�

yp1 � yp2

ay� � by� � cy � G1�x� � G2�x�

y� � 4y � xex � cos 2x

r 2 � 4 � 0 �2
yc�x� � c1e 2x � c2 e�2x y� � 4y � xex

yp1�x� � �Ax � B�ex

yp1� � �Ax � A � B�ex yp1� � �Ax � 2A � B�ex

�Ax � 2A � B�ex � 4�Ax � B�ex � xex

��3Ax � 2A � 3B�ex � xex

v EXAMPLE 4
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1176 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

Thus and , so , , and

For the equation , we try

Substitution gives

or

Therefore , , and

By the superposition principle, the general solution is

Finally we note that the recommended trial solution sometimes turns out to be a solu-
tion of the complementary equation and therefore can’t be a solution of the nonhomoge-
neous equation. In such cases we multiply the recommended trial solution by (or by
if necessary) so that no term in is a solution of the complementary equation.

Solve .

SOLUTION The auxiliary equation is with roots , so the solution of the
complementary equation is

Ordinarily, we would use the trial solution

but we observe that it is a solution of the complementary equation, so instead we try

Then

Substitution in the differential equation gives

�3A � 1 2A � 3B � 0 A � �
1
3 B � �

2
9

yp1
�x� � (� 1

3 x �
2
9 )ex

y� � 4y � cos 2x

yp2
�x� � C cos 2x � D sin 2x

�4C cos 2x � 4D sin 2x � 4�C cos 2x � D sin 2x� � cos 2x

�8C cos 2x � 8D sin 2x � cos 2x

�8C � 1 �8D � 0

yp2
�x� � �

1
8 cos 2x

y � yc � yp1 � yp2 � c1e 2x � c2e�2x � ( 1
3 x �

2
9 )ex �

1
8 cos 2x

yp

x x 2

yp�x�

y� � y � sin x

r 2 � 1 � 0 �i

yc�x� � c1 cos x � c2 sin x

yp�x� � A cos x � B sin x

yp�x� � Ax cos x � Bx sin x

yp��x� � A cos x � Ax sin x � B sin x � Bx cos x

yp��x� � �2A sin x � Ax cos x � 2B cos x � Bx sin x

yp� � yp � �2A sin x � 2B cos x � sin x

EXAMPLE 5

In Figure 3 we show the particular solution
of the differential equation in

Example 4. The other solutions are given in
terms of and .t�x� � e�2xf �x� � e 2x

yp � yp1
� yp2

FIGURE 3

5

_2

_4 1
yp

yp+g

yp+f

yp+2f+g
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SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS 1177

so , , and

The general solution is

We summarize the method of undetermined coefficients as follows:

Summary of the Method of Undetermined Coefficients

1. If , where is a polynomial of degree , then try ,
where is an th-degree polynomial (whose coefficients are determined by 
substituting in the differential equation).

2. If or , where is an th-degree 
polynomial, then try

where and are th-degree polynomials.

Modification: If any term of is a solution of the complementary equation, 
multiply by (or by if necessary).

Determine the form of the trial solution for the differential equation
.

SOLUTION Here has the form of part 2 of the summary, where , , and
. So, at first glance, the form of the trial solution would be

But the auxiliary equation is , with roots , so the solution
of the complementary equation is

This means that we have to multiply the suggested trial solution by . So, instead, we
use

The Method of Variation of Parameters
Suppose we have already solved the homogeneous equation and writ-
ten the solution as

where and are linearly independent solutions. Let’s replace the constants (or param-
eters) and in Equation 4 by arbitrary functions and . We look for a particu-

A � �
1
2 B � 0

yp�x� � �
1
2 x cos x

y�x� � c1 cos x � c2 sin x �
1
2 x cos x

G�x� � ekxP�x� P n yp�x� � ekxQ�x�
Q�x� n

G�x� � ekxP�x� cos mx G�x� � ekxP�x� sin mx P n

yp�x� � ekxQ�x� cos mx � ekxR�x� sin mx

Q R n

yp

yp x x 2

y � � 4y� � 13y � e 2x cos 3x
EXAMPLE 6

m � 3k � 2G�x�
P�x� � 1

yp�x� � e 2x�A cos 3x � B sin 3x�

r � 2 � 3ir 2 � 4r � 13 � 0

yc�x� � e 2x�c1 cos 3x � c2 sin 3x�

x

yp�x� � xe 2x�A cos 3x � B sin 3x�

ay� � by� � cy � 0

y�x� � c1y1�x� � c2y2�x�4

y2y1

u2�x�u1�x�c2c1

FIGURE 4

4

_4

_2π 2π

yp

The graphs of four solutions of the differential
equation in Example 5 are shown in Figure 4.
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1178 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

lar solution of the nonhomogeneous equation of the form

(This method is called variation of parameters because we have varied the parameters
and to make them functions.) Differentiating Equation 5, we get

Since and are arbitrary functions, we can impose two conditions on them. One con-
dition is that is a solution of the differential equation; we can choose the other condition
so as to simplify our calculations. In view of the expression in Equation 6, let’s impose the
condition that

Then

Substituting in the differential equation, we get

or

But and are solutions of the complementary equation, so

and Equation 8 simplifies to

Equations 7 and 9 form a system of two equations in the unknown functions and .
After solving this system we may be able to integrate to find and and then the par-
ticular solution is given by Equation 5.

Solve the equation , .

SOLUTION The auxiliary equation is with roots , so the solution of
is . Using variation of parameters, we seek a 

solution of the form

Then

Set

ay� � by� � cy � G�x�

yp�x� � u1�x� y1�x� � u2�x� y2�x�

c1

c2

yp� � �u1�y1 � u2�y2 � � �u1y1� � u2y2� �

u1 u2

yp

u1�y1 � u2�y2 � 0

yp� � u1�y1� � u2�y2� � u1y1� � u2y2�

a�u1�y1� � u2�y2� � u1y1� � u2y2� � � b�u1y1� � u2y2� � � c�u1y1 � u2y2� � G

u1�ay1� � by1� � cy1� � u2�ay2� � by2� � cy2� � a�u1�y1� � u2�y2� � � G

y1 y2

ay1� � by1� � cy1 � 0 and ay2� � by2� � cy2 � 0

a�u1�y1� � u2�y2� � � G

u1� u2�
u1 u2

y� � y � tan x 0 � x � ��2

r 2 � 1 � 0 �i
y� � y � 0 y�x� � c1 sin x � c2 cos x

yp�x� � u1�x� sin x � u2�x� cos x

yp� � �u1� sin x � u2� cos x� � �u1 cos x � u2 sin x�

u1� sin x � u2� cos x � 0

5

6

7

8

EXAMPLE 7

9

10
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SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS 1179

1–10 Solve the differential equation or initial-value problem using
the method of undetermined coefficients.

1.

2.

3.

4.

5.

6.

7. ,  ,  

8. ,  ,  

9. ,  ,  

10. ,  ,  

y� � 2y� � 3y � cos 2x

y� � y � x 3 � x

y� � 9y � e�2x

y� � 2y� � 5y � 1 � e x

y� � 4y� � 5y � e�x

y� � 4y� � 4y � x � sin x

y� � y � e x � x 3 y�0� � 2 y��0� � 0

y� � 4y � e x cos x y�0� � 1 y��0� � 2

y� � y� � xe x y�0� � 2 y��0� � 1

y� � y� � 2y � x � sin 2x y �0� � 1 y��0� � 0

; 11–12 Graph the particular solution and several other solutions.
What characteristics do these solutions have in common?

11. 12.

13–18 Write a trial solution for the method of undetermined coef-
ficients. Do not determine the coefficients.

13.

14.

15.

16.

17.

18.

y� � 3y� � 2y � cos x y� � 4y � e�x

y� � y� � 2y � xe x cos x

y� � 4y � cos 4x � cos 2x

y� � 3y� � 2y � e x � sin x

y� � 3y� � 4y � �x 3 � x�e x

y� � 2y� � 10y � x 2e�x cos 3x

y� � 4y � e 3x � x sin 2x

17.2 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

Then

For to be a solution we must have

Solving Equations 10 and 11, we get

(We seek a particular solution, so we don’t need a constant of integration here.) Then,
from Equation 10, we obtain

So

(Note that for .) Therefore

and the general solution is

yp� � u1� cos x � u2� sin x � u1 sin x � u2 cos x

yp

yp� � yp � u1� cos x � u2� sin x � tan x

u1��sin2x � cos2x� � cos x tan x

u1� � sin x u1�x� � �cos x

u2� � �
sin x

cos x
u1� � �

sin2x

cos x
�

cos2x � 1

cos x
� cos x � sec x

u2�x� � sin x � ln�sec x � tan x�

sec x � tan x 	 0 0 � x � ��2

yp�x� � �cos x sin x � �sin x � ln�sec x � tan x�� cos x

� �cos x ln�sec x � tan x�

y�x� � c1 sin x � c2 cos x � cos x ln�sec x � tan x�

11

FIGURE 5

π
2

2.5

_1

0
yp

Figure 5 shows four solutions of the 
differential equation in Example 7.
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1180 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

19–22 Solve the differential equation using (a) undetermined coef-
ficients and (b) variation of parameters.

19. 20.

21.

22.

23–28 Solve the differential equation using the method of variation
of parameters.

23. , 

4y� � y � cos x y� � 2y� � 3y � x � 2

y� � 2y� � y � e2x

y� � y� � e x

y� � y � sec2x 0 � x � ��2

24. , 

25.

26.

27.

28.

y� � y � sec3x 0 � x � ��2

y� � 3y� � 2y �
1

1 � e�x

y� � 3y� � 2y � sin�e x �

y� � 2y� � y �
e x

1 � x 2

y� � 4y� � 4y �
e�2x

x 3

Second-order linear differential equations have a variety of applications in science and
engineering. In this section we explore two of them: the vibration of springs and electric
circuits.

Vibrating Springs
We consider the motion of an object with mass at the end of a spring that is either ver-
tical (as in Figure 1) or horizontal on a level surface (as in Figure 2).

In Section 5.4 we discussed Hooke’s Law, which says that if the spring is stretched (or
compressed) units from its natural length, then it exerts a force that is proportional to :

where is a positive constant (called the spring constant). If we ignore any external
resisting forces (due to air resistance or friction) then, by Newton’s Second Law (force
equals mass times acceleration), we have

This is a second-order linear differential equation. Its auxiliary equation is
with roots , where . Thus the general solution is

which can also be written as

where (frequency)

(amplitude)

(See Exercise 17.) This type of motion is called simple harmonic motion.

m

x x

restoring force � �kx

k

1 m
d 2x

dt 2 � �kx or m
d 2x

dt 2 � kx � 0

mr 2 � k � 0
r � �
i 
 � sk�m

x�t� � c1 cos 
t � c2 sin 
t

x�t� � A cos�
t � ��


 � sk�m

A � sc1
2 � c2

2 

cos � �
c1

A
sin � � �

c2

A
�� is the phase angle�

17.3 Applications of Second-Order Differential Equations

FIGURE 2

FIGURE 1

x0 x

equilibrium position

m

m

x

0

x m

equilibrium
position
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SECTION 17.3 APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS 1181

A spring with a mass of 2 kg has natural length m. A force of N
is required to maintain it stretched to a length of m. If the spring is stretched to a
length of m and then released with initial velocity 0, find the position of the mass at
any time .

SOLUTION From Hooke’s Law, the force required to stretch the spring is

so . Using this value of the spring constant , together with
in Equation 1, we have

As in the earlier general discussion, the solution of this equation is

We are given the initial condition that . But, from Equation 2,
Therefore . Differentiating Equation 2, we get

Since the initial velocity is given as , we have and so the solution is

Damped Vibrations
We next consider the motion of a spring that is subject to a frictional force (in the case of
the horizontal spring of Figure 2) or a damping force (in the case where a vertical spring
moves through a fluid as in Figure 3). An example is the damping force supplied by a
shock absorber in a car or a bicycle.

We assume that the damping force is proportional to the velocity of the mass and acts
in the direction opposite to the motion. (This has been confirmed, at least approximately,
by some physical experiments.) Thus

where is a positive constant, called the damping constant. Thus, in this case, Newton’s
Second Law gives

or

25.60.5EXAMPLE 1v
0.7

0.7
t

k�0.2� � 25.6

m � 2kk � 25.6�0.2 � 128

2
d 2x

dt 2 � 128x � 0

x�t� � c1 cos 8t � c2 sin 8t2

x�0� � c1.x�0� � 0.2
c1 � 0.2

x��t� � �8c1 sin 8t � 8c2 cos 8t

c2 � 0x��0� � 0

x�t� � 1
5 cos 8t

damping force � �c
dx

dt

c

m
d 2x

dt 2 � restoring force � damping force � �kx � c
dx

dt

m
d 2x

dt 2 � c
dx

dt
� kx � 03Sc

hw
in

n 
Cy

cl
in

g 
an

d 
Fi

tn
es

s

FIGURE 3 

m
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1182 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

Equation 3 is a second-order linear differential equation and its auxiliary equation is
. The roots are

According to Section 17.1 we need to discuss three cases.

CASE I (overdamping)
In this case and are distinct real roots and

Since , , and are all positive, we have , so the roots and given
by Equations 4 must both be negative. This shows that as . Typical graphs of 

as a function of are shown in Figure 4. Notice that oscillations do not occur. (It’s pos-
sible for the mass to pass through the equilibrium position once, but only once.) This is
because means that there is a strong damping force (high-viscosity oil or grease)
compared with a weak spring or small mass.

CASE II (critical damping)
This case corresponds to equal roots

and the solution is given by

It is similar to Case I, and typical graphs resemble those in Figure 4 (see Exercise 12), but
the damping is just sufficient to suppress vibrations. Any decrease in the viscosity of the
fluid leads to the vibrations of the following case.

CASE III (underdamping)
Here the roots are complex:

where

The solution is given by

We see that there are oscillations that are damped by the factor . Since and
, we have so as . This implies that as

that is, the motion decays to 0 as time increases. A typical graph is shown in Figure 5.

mr 2 � cr � k � 0

r2 �
�c � sc 2 � 4mk

2m
r1 �

�c � sc 2 � 4mk

2m
4

c2 � 4mk 	 0
r2r1

x � c1er1 t � c2er2 t

r2r1sc 2 � 4mk � ckmc
t l �x l 0

tx

c 2 	 4mk

c2 � 4mk � 0

r1 � r2 � �
c

2m

x � �c1 � c2t�e��c�2m�t

c2 � 4mk � 0

r1

r2
� � �

c

2m
� 
i


 �
s4mk � c 2 

2m

x � e��c�2m�t�c1 cos 
t � c2 sin 
t�

c 	 0e��c�2m�t

t l �;x l 0t l �e��c�2m�t l 0��c�2m� � 0m 	 0

FIGURE 4
Overdamping

x

t0

x

t0

FIGURE 5 
Underdamping

x

t0

x=Ae–(c/2m)t

x=_Ae–(c/2m)t
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SECTION 17.3 APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS 1183

Suppose that the spring of Example 1 is immersed in a fluid with 
damping constant . Find the position of the mass at any time if it starts from the
equilibrium position and is given a push to start it with an initial velocity of m�s.

SOLUTION From Example 1, the mass is and the spring constant is , so
the differential equation becomes

or

The auxiliary equation is with roots and
, so the motion is overdamped and the solution is

We are given that , so . Differentiating, we get

so

Since , this gives or . Therefore

Forced Vibrations
Suppose that, in addition to the restoring force and the damping force, the motion of the
spring is affected by an external force . Then Newton’s Second Law gives

Thus, instead of the homogeneous equation , the motion of the spring is now governed
by the following nonhomogeneous differential equation:

The motion of the spring can be determined by the methods of Section 17.2.

EXAMPLE 2v
tc � 40

0.6

k � 128m � 2
3

2 
d 2x

dt 2 � 40 
dx

dt
� 128x � 0

d 2x

dt 2 � 20 
dx

dt
� 64x � 0

�4r 2 � 20r � 64 � �r � 4��r � 16� � 0
�16

x�t� � c1e�4t � c2e�16t

c1 � c2 � 0x�0� � 0

x��t� � �4c1e�4t � 16c2e�16t

x��0� � �4c1 � 16c2 � 0.6

c1 � 0.0512c1 � 0.6c2 � �c1

x � 0.05�e�4t � e�16t�

F�t�

m
d 2x

dt 2 � restoring force � damping force � external force

� �kx � c
dx

dt
� F�t�

m
d 2x

dt 2 � c
dx

dt
� kx � F�t�5

3

FIGURE 6 

0.03

0 1.5

Figure 6 shows the graph of the position func-
tion for the overdamped motion in Example 2.
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1184 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

A commonly occurring type of external force is a periodic force function

In this case, and in the absence of a damping force ( ), you are asked in Exercise 9 to
use the method of undetermined coefficients to show that

If , then the applied frequency reinforces the natural frequency and the result is
vibrations of large amplitude. This is the phenomenon of resonance (see Exercise 10).

Electric Circuits
In Sections 9.3 and 9.5 we were able to use first-order separable and linear equations to
analyze electric circuits that contain a resistor and inductor (see Figure 5 in Section 9.3 or 
Figure 4 in Section 9.5) or a resistor and capacitor (see Exercise 29 in Section 9.5). Now
that we know how to solve second-order linear equations, we are in a position to analyze
the circuit shown in Figure 7. It contains an electromotive force (supplied by a battery
or generator), a resistor , an inductor , and a capacitor , in series. If the charge on the
capacitor at time is , then the current is the rate of change of with respect 
to : . As in Section 9.5, it is known from physics that the voltage drops across
the resistor, inductor, and capacitor are

respectively. Kirchhoff’s voltage law says that the sum of these voltage drops is equal to the
supplied voltage:

Since , this equation becomes

which is a second-order linear differential equation with constant coefficients. If the charge
and the current are known at time 0, then we have the initial conditions

and the initial-value problem can be solved by the methods of Section 17.2.

where 
0 � 
 � sk�mF�t� � F0 cos 
0t

c � 0

x�t� � c1 cos 
t � c2 sin 
t �
F0

m�
2 � 
 0
2�

cos 
0t6


0 � 


E
CLR

QQ � Q�t�t
I � dQ�dtt

Q

C
L

dI

dt
RI

L
dI

dt
� RI �

Q

C
� E�t�

I � dQ�dt

L
d 2Q

dt 2 � R
dQ

dt
�

1

C
Q � E�t�7

I0Q0

Q��0� � I�0� � I0Q�0� � Q0

FIGURE 7

C

E

R

L

switch
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SECTION 17.3 APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS 1185

A differential equation for the current can be obtained by differentiating Equation 7
with respect to and remembering that :

Find the charge and current at time in the circuit of Figure 7 if
, H, F, , and the initial charge and

current are both 0.

SOLUTION With the given values of , , , and , Equation 7 becomes

The auxiliary equation is with roots

so the solution of the complementary equation is

For the method of undetermined coefficients we try the particular solution

Then

Substituting into Equation 8, we have

or

Equating coefficients, we have

or
or

The solution of this system is and , so a particular solution is

L
d 2I

dt 2 � R
dI

dt
�

1

C
I � E��t�

t
R � 40  L � 1 C � 16 � 10�4 E�t� � 100 cos 10t

L R C E�t�

d 2Q

dt 2 � 40 
dQ

dt
� 625Q � 100 cos 10t

r 2 � 40r � 625 � 0

r �
�40 � s�900

2
� �20 � 15i

Qc�t� � e�20t�c1 cos 15t � c2 sin 15t�

Qp�t� � A cos 10t � B sin 10t

Qp��t� � �10A sin 10t � 10B cos 10t

Qp��t� � �100A cos 10t � 100B sin 10t

��100A cos 10t � 100B sin 10t� � 40��10A sin 10t � 10B cos 10t�

� 625�A cos 10t � B sin 10t� � 100 cos 10t

�525A � 400B� cos 10t � ��400A � 525B� sin 10t � 100 cos 10t

525A � 400B � 100 21A � 16B � 4

�400A � 525B � 0 �16A � 21B � 0

A � 84
697 B � 64

697

Qp�t� � 1
697 �84 cos 10t � 64 sin 10t�

I � dQ�dtt

8

v EXAMPLE 3
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1186 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

and the general solution is

Imposing the initial condition , we get

To impose the other initial condition, we first differentiate to find the current:

Thus the formula for the charge is

and the expression for the current is

NOTE 1 In Example 3 the solution for consists of two parts. Since as
and both and are bounded functions,

So, for large values of ,

and, for this reason, is called the steady state solution. Figure 8 shows how the graph
of the steady state solution compares with the graph of in this case.

NOTE 2 Comparing Equations 5 and 7, we see that mathematically they are identical.
This suggests the analogies given in the following chart between physical situations that, at
first glance, are very different.

Q�0� � 0

Q�0� � c1 �
84
697 � 0 c1 � �

84
697

I �
dQ

dt
� e�20t���20c1 � 15c2� cos 15t � ��15c1 � 20c2� sin 15t�

�
40
697 ��21 sin 10t � 16 cos 10t�

I�0� � �20c1 � 15c2 �
640
697 � 0 c2 � �

464
2091

Q�t� �
4

697
 � e�20t

3
 ��63 cos 15t � 116 sin 15t� � �21 cos 10t � 16 sin 10t��

I�t� � 1
2091 �e�20t��1920 cos 15t � 13,060 sin 15t� � 120��21 sin 10t � 16 cos 10t��

Q�t� e�20t l 0
t l � cos 15t sin 15t

Qc�t� � 4
2091 e�20t��63 cos 15t � 116 sin 15t� l 0 as t l �

t

Q�t� � Qp�t� � 4
697 �21 cos 10t � 16 sin 10t�

Qp�t�
Q

Q�t� � Qc�t� � Qp�t�

� e�20t�c1 cos 15t � c2 sin 15t� �
4

697 �21 cos 10t � 16 sin 10t�

FIGURE 8

0.2

_0.2

0 1.2

Qp

Q

L
d 2Q

dt 2 � R
dQ

dt
�

1

C
Q � E�t�

m
d 2x

dt 2 � c
dx

dt
� kx � F�t�5

7

Spring system Electric circuit

x displacement Q charge
velocity current

m mass L inductance
c damping constant R resistance
k spring constant elastance

external force electromotive forceE�t�F�t�
1	C

I � dQ	dtdx	dt
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SECTION 17.3 APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS 1187

1. A spring has natural length and a mass. A force
of is needed to keep the spring stretched to a length of

. If the spring is stretched to a length of and then
released with velocity , find the position of the mass after 

seconds.

2. A spring with an mass is kept stretched beyond
its natural length by a force of . The spring starts at its
equilibrium position and is given an initial velocity of .
Find the position of the mass at any time .

3. A spring with a mass of 2 kg has damping constant 14, and 
a force of 6 N is required to keep the spring stretched m
beyond its natural length. The spring is stretched 1 m beyond
its natural length and then released with zero velocity. Find
the position of the mass at any time t.

4. A force of 13 N is needed to keep a spring with a 2-kg mass
stretched 0.25 m beyond its natural length. The damping con-
stant of the spring is .
(a) If the mass starts at the equilibrium position with a 

velocity of , find its position at time .

; (b) Graph the position function of the mass.

5. For the spring in Exercise 3, find the mass that would
produce critical damping.

6. For the spring in Exercise 4, find the damping constant that
would produce critical damping.

; 7. A spring has a mass of 1 kg and its spring constant is
. The spring is released at a point 0.1 m above its

equilibrium position. Graph the position function for the fol-
lowing values of the damping constant c: 10, 15, 20, 25, 30.
What type of damping occurs in each case?

; 8. A spring has a mass of 1 kg and its damping constant is
The spring starts from its equilibrium position with a

velocity of 1 m	s. Graph the position function for the follow-
ing values of the spring constant k: 10, 20, 25, 30, 40. What
type of damping occurs in each case?

9. Suppose a spring has mass and spring constant and let
. Suppose that the damping constant is so small 

that the damping force is negligible. If an external force
is applied, where , use the method 

of undetermined coefficients to show that the motion of the
mass is described by Equation 6.

0.75 m 5-kg
25 N

1 m 1.1 m
0

t

8-kg 0.4 m
32 N

1 m	s
t

0.5

c � 8

0.5 m	s t

k � 100

c � 10.

m k
� � sk	m

F�t� � F0 cos �0t �0 � �

10. As in Exercise 9, consider a spring with mass , spring con-
 stant , and damping constant , and let . 
If an external force is applied (the applied 
frequency equals the natural frequency), use the method of
undetermined coefficients to show that the motion of the
mass is given by

11. Show that if , but is a rational number, then the
motion described by Equation 6 is periodic.

12. Consider a spring subject to a frictional or damping force.
(a) In the critically damped case, the motion is given by

. Show that the graph of crosses the 
-axis whenever and have opposite signs.

(b) In the overdamped case, the motion is given by
, where . Determine a condition

on the relative magnitudes of and under which the
graph of crosses the -axis at a positive value of .

13. A series circuit consists of a resistor with , an
inductor with H, a capacitor with F, and a
12-V battery. If the initial charge and current are both 0, find
the charge and current at time t.

14. A series circuit contains a resistor with , an induc-
tor with H, a capacitor with F, and a 12-V
bat tery. The initial charge is C and the initial cur-
rent is 0.
(a) Find the charge and current at time t.

; (b) Graph the charge and current functions.

15. The battery in Exercise 13 is replaced by a generator pro-
ducing a voltage of . Find the charge at 
time t.

16. The battery in Exercise 14 is replaced by a generator pro duc-
ing a voltage of .
(a) Find the charge at time t.

; (b) Graph the charge function.

17. Verify that the solution to Equation 1 can be written in the
form .

x � c1ert � c2tert x
t c1 c2

x � c1er 1 t � c2er 2 t r1 � r2

c1 c2

x t t

R � 20 �
L � 1 C � 0.002

R � 24 �
L � 2 C � 0.005

Q � 0.001

E�t� � 12 sin 10t

E�t� � 12 sin 10t

x�t� � A cos��t � ��

m
k c � 0 � � sk	m

F�t� � F0 cos �t

x�t� � c1 cos �t � c2 sin �t �
F0

2m�
t sin �t

�0 � � �	�0

17.3 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

We can also transfer other ideas from one situation to the other. For instance, the steady
state solution discussed in Note 1 makes sense in the spring system. And the phenomenon
of resonance in the spring system can be usefully carried over to electric circuits as electri-
cal resonance.
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1188 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

Many differential equations can’t be solved explicitly in terms of finite combinations of
simple familiar functions. This is true even for a simple-looking equation like

But it is important to be able to solve equations such as Equation 1 because they arise from
physical problems and, in particular, in connection with the Schrödinger equation in quan-
tum mechanics. In such a case we use the method of power series; that is, we look for a solu-
tion of the form

The method is to substitute this expression into the differential equation and determine the
values of the coefficients This technique resembles the method of undeter-
mined coefficients discussed in Section 17.2.

Before using power series to solve Equation 1, we illustrate the method on the simpler
equation in Example 1. It’s true that we already know how to solve this equa-
tion by the techniques of Section 17.1, but it’s easier to understand the power series method
when it is applied to this simpler equation.

Use power series to solve the equation .

SOLUTION We assume there is a solution of the form

We can differentiate power series term by term, so

y	 � 2xy
 � y � 01

y � f �x� � 

�

n�0
cn xn � c0 � c1 x � c2 x 2 � c3 x 3 � � � �

c0, c1, c2, . . . .

y	 � y � 0

y	 � y � 0EXAMPLE 1v

y � c0 � c1 x � c2 x 2 � c3 x 3 � � � � � 

�

n�0
cn xn2

y
 � c1 � 2c2 x � 3c3 x 2 � � � � � 

�

n�1
ncn x n�1

y	 � 2c2 � 2 � 3c3 x � � � � � 

�

n�2
n�n � 1�cn x n�23

17.4 Series Solutions

18. The figure shows a pendulum with length L and the angle
from the vertical to the pendulum. It can be shown that , as a
function of time, satisfies the nonlinear differential equation

where is the acceleration due to gravity. For small values of 
we can use the linear approximation and then the

differential equation becomes linear.
(a) Find the equation of motion of a pendulum with length 1 m

if is initially 0.2 rad and the initial angular velocity is
.

d 2�

dt 2 �
t

L
sin � � 0

t

� sin � � �

�
�

�
d�	dt � 1 rad	s

(b) What is the maximum angle from the vertical?
(c) What is the period of the pendulum (that is, the time to

complete one back-and-forth swing)?
(d) When will the pendulum first be vertical?
(e) What is the angular velocity when the pendulum is 

vertical?

¨
L
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SECTION 17.4 SERIES SOLUTIONS 1189

In order to compare the expressions for and more easily, we rewrite as follows:

Substituting the expressions in Equations 2 and 4 into the differential equation, we
obtain

or

If two power series are equal, then the corresponding coefficients must be equal. There-
fore the coefficients of in Equation 5 must be 0:

Equation 6 is called a recursion relation. If and are known, this equation allows 
us to determine the remaining coefficients recursively by putting in 
succession.

By now we see the pattern:



�

n�0
�n � 2��n � 1�cn�2 xn � 


�

n�0
cn xn � 0



�

n�0
��n � 2��n � 1�cn�2 � cn �xn � 05

y y	 y	

y	 � 

�

n�0
�n � 2��n � 1�cn�2 xn4

xn

�n � 2��n � 1�cn�2 � cn � 0

n � 0, 1, 2, 3, . . .cn�2 � �
cn

�n � 1��n � 2�
6

c1c0

n � 0, 1, 2, 3, . . .

Put n � 0: c2 � �
c0

1 � 2

Put n � 1: c3 � �
c1

2 � 3

Put n � 2: c4 � �
c2

3 � 4
�

c0

1 � 2 � 3 � 4
�

c0

4!

Put n � 3: c5 � �
c3

4 � 5
�

c1

2 � 3 � 4 � 5
�

c1

5!

Put n � 4: c6 � �
c4

5 � 6
� �

c0

4! 5 � 6
� �

c0

6!

Put n � 5: c7 � �
c5

6 � 7
� �

c1

5! 6 � 7
� �

c1

7!

For the even coefficients, c2n � ��1�n c0

�2n�!

For the odd coefficients, c2n�1 � ��1�n c1

�2n � 1�!

By writing out the first few terms of , you can
see that it is the same as . To obtain , we
replaced by and began the summation
at 0 instead of 2.

n � 2n

4
43
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1190 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

Putting these values back into Equation 2, we write the solution as

Notice that there are two arbitrary constants, and 

NOTE 1 We recognize the series obtained in Example 1 as being the Maclaurin series
for and . (See Equations 11.10.16 and 11.10.15.) Therefore we could write the
solution as

But we are not usually able to express power series solutions of differential equations in
terms of known functions.

Solve .

SOLUTION We assume there is a solution of the form

Then

and

as in Example 1. Substituting in the differential equation, we get

This equation is true if the coefficient of is 0:

y � c0 � c1x � c2x 2 � c3 x 3 � c4 x 4 � c5 x 5 � � � �

� c0�1 �
x 2

2!
�

x 4

4!
�

x 6

6!
� � � � � ��1�n x 2n

�2n�!
� � � ��

� � c1�x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � � � ��1�n x 2n�1

�2n � 1�!
� � � ��

� c0 

�

n�0
��1�n x 2n

�2n�!
� c1 


�

n�0
��1�n x 2n�1

�2n � 1�!

c0 c1.

sin xcos x

y�x� � c0 cos x � c1 sin x

y	 � 2xy
 � y � 0EXAMPLE 2v

y � 

�

n�0
cn x n

y
 � 

�

n�1
ncn xn�1

y	 � 

�

n�2
n�n � 1�cn xn�2 � 


�

n�0
�n � 2��n � 1�cn�2 x n



�

n�0
�n � 2��n � 1�cn�2 x n � 2x 


�

n�1
ncn xn�1 � 


�

n�0
cn xn � 0



�

n�0
�n � 2��n � 1�cn�2 x n � 


�

n�1
2ncn x n � 


�

n�0
cn x n � 0



�

n�0
��n � 2��n � 1�cn�2 � �2n � 1�cn �xn � 0

xn

�n � 2��n � 1�cn�2 � �2n � 1�cn � 0

n � 0, 1, 2, 3, . . .cn�2 �
2n � 1

�n � 1��n � 2�
cn7



�

n�1
2ncn xn � 


�

n�0
2ncn x n
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SECTION 17.4 SERIES SOLUTIONS 1191

We solve this recursion relation by putting successively in Equation 7:

In general, the even coefficients are given by

and the odd coefficients are given by

The solution is

or

n � 0, 1, 2, 3, . . .

Put n � 0: c2 �
�1

1 � 2
 c0

Put n � 1: c3 �
1

2 � 3
 c1

Put n � 2: c4 �
3

3 � 4
 c2 � �

3

1 � 2 � 3 � 4
 c0 � �

3

4!
 c0

Put n � 3: c5 �
5

4 � 5
 c3 �

1 � 5

2 � 3 � 4 � 5
 c1 �

1 � 5

5!
 c1

Put n � 4: c6 �
7

5 � 6
 c4 � �

3 � 7

4! 5 � 6
 c0 � �

3 � 7

6!
 c0

Put n � 5: c7 �
9

6 � 7
 c5 �

1 � 5 � 9

5! 6 � 7
 c1 �

1 � 5 � 9

7!
 c1

Put n � 6: c8 �
11

7 � 8
 c6 � �

3 � 7 � 11

8!
 c0

Put n � 7: c9 �
13

8 � 9
 c7 �

1 � 5 � 9 � 13

9!
 c1

c2n � �
3 � 7 � 11 � � � � � �4n � 5�

�2n�!
 c0

c2n�1 �
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 c1

y � c0 � c1 x � c2 x 2 � c3 x 3 � c4 x 4 � � � �

� c0�1 �
1

2!
 x 2 �

3

4!
 x 4 �

3 � 7

6!
 x 6 �

3 � 7 � 11

8!
 x 8 � � � ��

� � c1�x �
1

3!
 x 3 �

1 � 5

5!
 x 5 �

1 � 5 � 9

7!
 x 7 �

1 � 5 � 9 � 13

9!
 x 9 � � � ��

y � c0�1 �
1

2!
 x 2 � 


�

n�2

3 � 7 � � � � � �4n � 5�
�2n�!

 x 2n�8

� � c1�x � 

�

n�1

1 � 5 � 9 � � � � � �4n � 3�
�2n � 1�!

 x 2n�1�
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1192 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

1–11 Use power series to solve the differential equation. 

1. 2.

3. 4.

5. 6.

7.

8.

9. ,  ,  

10. ,  ,  

y
 � xyy
 � y � 0

�x � 3�y
 � 2y � 0y
 � x 2 y

y	 � yy	 � xy
 � y � 0

�x � 1�y	 � y
 � 0

y	 � xy

y
�0� � 0y�0� � 1y	 � xy
 � y � 0

y
�0� � 0y�0� � 1y	 � x 2 y � 0

11. ,  ,  

12. The solution of the initial-value problem

is called a Bessel function of order 0.
(a) Solve the initial-value problem to find a power series

expansion for the Bessel function.

; (b) Graph several Taylor polynomials until you reach one that
looks like a good approximation to the Bessel function on
the interval .

y	 � x 2 y
 � xy � 0 y�0� � 0 y
�0� � 1

x 2 y	 � xy
 � x 2 y � 0 y�0� � 1 y
�0� � 0

��5, 5�

17.4 Exercises

NOTE 2 In Example 2 we had to assume that the differential equation had a series solu-
tion. But now we could verify directly that the function given by Equation 8 is indeed a
solution.

NOTE 3 Unlike the situation of Example 1, the power series that arise in the solution
of Example 2 do not define elementary functions. The functions

and

are perfectly good functions but they can’t be expressed in terms of familiar functions. We
can use these power series expressions for and to compute approximate values of the
functions and even to graph them. Figure 1 shows the first few partial sums
(Taylor polynomials) for , and we see how they converge to . In this way we can
graph both and in Figure 2.

NOTE 4 If we were asked to solve the initial-value problem

we would observe from Theorem 11.10.5 that

This would simplify the calculations in Example 2, since all of the even coefficients would
be 0. The solution to the initial-value problem is

y1 y2

T0, T2, T4, . . .
y1�x� y1

y1 y2

y	 � 2xy
 � y � 0 y�0� � 0 y
�0� � 1

c0 � y�0� � 0 c1 � y
�0� � 1

y�x� � x � 

�

n�1

1 � 5 � 9 � � � � � �4n � 3�
�2n � 1�!

 x 2n�1

y1�x� � 1 �
1

2!
 x 2 � 


�

n�2

3 � 7 � � � � � �4n � 5�
�2n�!

 x 2n

y2�x� � x � 

�

n�1

1 � 5 � 9 � � � � � �4n � 3�
�2n � 1�!

 x 2n�1

15

_15

_2.5 2.5

›

fi

FIGURE 1

2

_8

_2 2

T¸

T¡¸

FIGURE 2
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CHAPTER 17 REVIEW 1193

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. If and are solutions of , then is also 
a solution of the equation.

2. If and are solutions of , then
is also a solution of the equation.

y1 � y2y	 � y � 0y2y1

y	 � 6y
 � 5y � xy2y1

c1 y1 � c2 y2

3. The general solution of can be written as

4. The equation has a particular solution of the form

y	 � y � 0

y � c1 cosh x � c2 sinh x

y	 � y � e x

yp � Ae x

True-False Quiz

1–10 Solve the differential equation.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. ,  

4y	 � y � 0

y	 � 2y
 � 10y � 0

y	 � 3y � 0

4y	 � 4y
 � y � 0

d 2y

dx 2 � 4 
dy

dx
� 5y � e 2x

d 2y

dx 2 �
dy

dx
� 2y � x 2

d 2y

dx 2 � 2 
dy

dx
� y � x cos x

d 2y

dx 2 � 4y � sin 2x

d 2y

dx 2 �
dy

dx
� 6y � 1 � e�2x

0  x  �	2
d 2y

dx 2 � y � csc x

11–14 Solve the initial-value problem.

11. ,  ,  

12. ,  ,  

13. ,  ,  

14. ,  ,  

15–16 Solve the boundary-value problem, if possible.

15. ,  ,  

16. ,  ,  

17. Use power series to solve the initial-value problem

18. Use power series to solve the equation

19. A series circuit contains a resistor with , an inductor
with H, a capacitor with F, and a 12-V bat-
tery. The initial charge is C and the initial current 
is 0. Find the charge at time t.

y	 � xy
 � 2y � 0

R � 40 �
L � 2 C � 0.0025

Q � 0.01

y
�0� � 1y�0� � 0y	 � xy
 � y � 0

y
�1� � 12y�1� � 3y	 � 6y
 � 0

y
�0� � 1y�0� � 2y	 � 6y
 � 25y � 0

y
�0� � 1y�0� � 0y	 � 5y
 � 4y � 0

y
�0� � 2y�0� � 19y	 � y � 3x � e �x

y	 � 4y
 � 29y � 0 y�0� � 1 y��� � �1

y	 � 4y
 � 29y � 0 y�0� � 1 y��� � �e�2�

Exercises

17 Review

1. (a) Write the general form of a second-order homogeneous 
linear differential equation with constant coefficients.

(b) Write the auxiliary equation.
(c) How do you use the roots of the auxiliary equation to solve

the differential equation? Write the form of the solution for
each of the three cases that can occur.

2. (a) What is an initial-value problem for a second-order differ-
ential equation?

(b) What is a boundary-value problem for such an equation?

3. (a) Write the general form of a second-order nonhomogeneous
linear differential equation with constant coefficients.

(b) What is the complementary equation? How does it help
solve the original differential equation?

(c) Explain how the method of undetermined coefficients
works.

(d) Explain how the method of variation of parameters works.

4. Discuss two applications of second-order linear differential
equations.

5. How do you use power series to solve a differential equation?

Concept Check
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1194 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

20. A spring with a mass of 2 kg has damping constant 16, and a
force of N keeps the spring stretched m beyond its 
natural length. Find the position of the mass at time if it 
starts at the equilibrium position with a velocity of m	s.

21. Assume that the earth is a solid sphere of uniform density with
mass and radius mi. For a particle of mass
within the earth at a distance from the earth’s center, the
gravi tational force attracting the particle to the center is

where is the gravitational constant and is the mass of the
earth within the sphere of radius .

12.8 0.2
t

2.4

M R � 3960 m
r

Fr �
�GMr m

r 2

G Mr

r

(a) Show that .

(b) Suppose a hole is drilled through the earth along a diame-
ter. Show that if a particle of mass is dropped from rest
at the surface, into the hole, then the distance of
the particle from the center of the earth at time is given by

where .
(c) Conclude from part (b) that the particle undergoes simple

harmonic motion. Find the period T.
(d) With what speed does the particle pass through the center

of the earth?

Fr �
�GMm

R3 r

m
y � y�t�

t

y	�t� � �k 2 y�t�

k 2 � GM	R3 � t	R
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In this appendix we present proofs of several theorems that are stated in the main body of
the text. The sections in which they occur are indicated in the margin.

Section 11.8 In order to prove Theorem 11.8.3, we first need the following results.

Theorem

1. If a power series converges when (where ), then it converges
whenever .

2. If a power series diverges when (where ), then it diverges
whenever .

PROOF OF 1 Suppose that converges. Then, by Theorem 11.2.6, we have
. According to Definition 11.1.2 with , there is a positive integer 

such that whenever . Thus, for , we have

If , then , so is a convergent geometric series. Therefore, 
by the Comparison Test, the series is convergent. Thus the series is
absolutely convergent and therefore convergent.

PROOF OF 2 Suppose that diverges. If is any number such that , then
cannot converge because, by part 1, the convergence of would imply the

convergence of . Therefore diverges whenever .

Theorem For a power series there are only three possibilities:

1. The series converges only when .

2. The series converges for all .

3. There is a positive number such that the series converges if and
diverges if .

PROOF Suppose that neither case 1 nor case 2 is true. Then there are nonzero numbers
and such that converges for and diverges for . Therefore the set

is not empty. By the preceding theorem, the series diverges if
, so for all . This says that is an upper bound for the set .

Thus, by the Completeness Axiom (see Section 11.1), has a least upper bound . If
, then , so diverges. If , then is not an upper bound for 

and so there exists such that . Since , converges, so by the
preceding theorem converges.

b � 0x � b� cn xn

� x � � � b �
d � 0x � d� cn xn

� x � � � d �

� cnbn

� � 1lim n l � cnbn � 0
n � Nn � N�cnb n � � 1N

�cnx n � � � cnbnxn

bn � � �cnbn � � x

b � n

� � x

b � n

� � x�b �n� x�b � � 1� x � � � b �
� cn xn��

n�N �cnxn �

� x � � � d �x� cndn

� cn x n� cnxn

� x � � � d �� cnx n� cndn

� cn xn

x � 0

x

� x � � RR

� x � � R

b
x � dx � b� cnxnd

S � �x � � cnx n converges�
S� d �x � S� x � � � d �� x � � � d �

RS

� x �� x � � R� cnx nx � S� x � � R
� cnb nb � Sb � � x �b � SS

� cnxn

F  Proofs of Theorems

A2 APPENDIX F PROOFS OF THEOREMS
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APPENDIX F PROOFS OF THEOREMS A3

Theorem For a power series there are only three possibilities:

1. The series converges only when .

2. The series converges for all .

3. There is a positive number such that the series converges if and
diverges if .

PROOF If we make the change of variable , then the power series becomes
and we can apply the preceding theorem to this series. In case 3 we have con-

vergence for and divergence for . Thus we have convergence for
and divergence for .

Section 14.3 Clairaut’s Theorem Suppose is defined on a disk that contains the point .
If the functions and are both continuous on , then .

PROOF For small values of , , consider the difference

Notice that if we let , then

By the Mean Value Theorem, there is a number between and such that

Applying the Mean Value Theorem again, this time to we get a number between
and such that

Combining these equations, we obtain

If , then , so the continuity of at gives

Similarly, by writing

and using the Mean Value Theorem twice and the continuity of at , we obtain

It follows that .

u � x � a
� cnun

� u � � R � u � � R

� x � a � � R � x � a � � R

f D �a, b	
fxy fyx D fxy�a, b	 � fyx�a, b	

h h � 0

	�h	 � 
 f �a 
 h, b 
 h	 � f �a 
 h, b	� � 
 f �a, b 
 h	 � f �a, b	�

t�x	 � f �x, b 
 h	 � f �x, b	

	�h	 � t�a 
 h	 � t�a	

c a a 
 h

t�a 
 h	 � t�a	 � t��c	h � h 
 fx�c, b 
 h	 � fx�c, b	�

fx , d b
b 
 h

fx�c, b 
 h	 � fx�c, b	 � fxy�c, d 	h

	�h	 � h 2fxy�c, d 	

h l 0 �c, d 	 l �a, b	 fxy �a, b	

lim
h l 0

	�h	
h 2 � lim

�c, d	 l �a, b	
fxy�c, d 	 � fxy�a, b	

	�h	 � 
 f �a 
 h, b 
 h	 � f �a, b 
 h	� � 
 f �a 
 h, b	 � f �a, b	�

fyx �a, b	

lim
h l 0

	�h	
h 2 � fyx�a, b	

� x � a � � R
R � x � a � � R

x

3 � cn�x � a	n

x � a

fxy�a, b	 � fyx�a, b	
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A4 APPENDIX F PROOFS OF THEOREMS

Section 14.4 Theorem If the partial derivatives and exist near and are continu-
ous at , then f is differentiable at .

PROOF Let

According to (14.4.7), to prove that f is differentiable at we have to show that we
can write in the form

where and as .
Referring to Figure 1, we write

Observe that the function of a single variable

is defined on the interval and . If we apply the Mean
Value Theorem to , we get

where is some number between and . In terms of , this equation becomes

This gives us an expression for the first part of the right side of Equation 1. For the 
second part we let . Then is a function of a single variable defined on 
the interval and . A second application of the Mean Value 
Theorem then gives

where is some number between and . In terms of , this becomes

We now substitute these expressions into Equation 1 and obtain

�a, b	
	z

	z � fx�a, b	 	x 
 fy�a, b	 	y 
 �1 	x 
 �2 	y

�1 �2 l 0 �	x, 	y	 l �0, 0	

1 	z � 
 f �a 
 	x, b 
 	y	 � f �a, b 
 	y	� 
 
 f �a, b 
 	y	 � f �a, b	�

t�x	 � f �x, b 
 	y	


a, a 
 	x� t��x	 � fx�x, b 
 	y	
t

t�a 
 	x	 � t�a	 � t��u	 	x

u a a 
 	x f

f �a 
 	x, b 
 	y	 � f �a, b 
 	y	 � fx�u, b 
 	y	 	x

h�y	 � f �a, y	 h

b, b 
 	y� h��y	 � fy�a, y	

h�b 
 	y	 � h�b	 � h��v	 	y

v b b 
 	y f

f �a, b 
 	y	 � f �a, b	 � fy�a, v	 	y

	z � fx�u, b 
 	y	 	x 
 fy�a, v	 	y

� fx�a, b	 	x 
 
 fx�u, b 
 	y	 � fx�a, b	� 	x 
 fy�a, b	 	y

� 
 
 fy�a, v	 � fy�a, b	� 	y

� fx�a, b	 	x 
 fy�a, b	 	y 
 �1 	x 
 �2 	y

	z � f �a 
 	x, b 
 	y	 � f �a, b	

�a, b	�a, b	
�a, b	fyfx8

FIGURE 1

x

y

0

R
(a, √)

(a, b+Îy)

(a+Îx, b+Îy)

(u, b+Îy)

(a, b)
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APPENDIX G COMPLEX NUMBERS A5

where

Since and as and since and
are continuous at , we see that and as .

Therefore is differentiable at .
�	x, 	y	 l �0, 0	�2 l 0�1 l 0�a, b	

�a, b	f

fyfx�	x, 	y	 l �0, 0	�a, v	 l �a, b	�u, b 
 	y	 l �a, b	

�1 � fx�u, b 
 	y	 � fx�a, b	

�2 � fy�a, v	 � fy�a, b	

A complex number can be represented by an expression of the form , where and
are real numbers and is a symbol with the property that . The complex num-

ber can also be represented by the ordered pair and plotted as a point in a 
plane (called the Argand plane) as in Figure 1. Thus the complex number is
identified with the point .

The real part of the complex number is the real number and the imaginary
part is the real number . Thus the real part of is and the imaginary part is . 
Two complex numbers and are equal if and , that is, their real
parts are equal and their imaginary parts are equal. In the Argand plane the horizontal axis
is called the real axis and the vertical axis is called the imaginary axis.

The sum and difference of two complex numbers are defined by adding or subtracting
their real parts and their imaginary parts:

For instance,

The product of complex numbers is defined so that the usual commutative and distributive
laws hold:

Since , this becomes

Division of complex numbers is much like rationalizing the denominator of a rational
expression. For the complex number , we define its complex conjugate to be

. To find the quotient of two complex numbers we multiply numerator and
denominator by the complex conjugate of the denominator.

a 
 bi a
b i i 2 � �1

a 
 bi �a, b	
i � 0 
 1 � i

�0, 1	
a 
 bi a

b 4 � 3i 4 �3
a 
 bi c 
 di a � c b � d

�a 
 bi	 
 �c 
 di	 � �a 
 c	 
 �b 
 d 	i

�a 
 bi	 � �c 
 di	 � �a � c	 
 �b � d 	i

�1 � i 	 
 �4 
 7i 	 � �1 
 4	 
 ��1 
 7	i � 5 
 6i

�a 
 bi	�c 
 di	 � a�c 
 di	 
 �bi	�c 
 di	

� ac 
 adi 
 bci 
 bdi 2

i 2 � �1

�a 
 bi 	�c 
 di 	 � �ac � bd 	 
 �ad 
 bc	i

EXAMPLE 1

��1 
 3i	�2 � 5i	 � ��1	�2 � 5i	 
 3i�2 � 5i	

� �2 
 5i 
 6i � 15��1	 � 13 
 11i

z � a 
 bi
z � a � bi

G  Complex Numbers

FIGURE 1
Complex numbers as points in
the Argand plane

Re

Im

0

i

_2-2i

_i

3-2i

2+3i

_4+2i

1
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A6 APPENDIX G COMPLEX NUMBERS

Express the number in the form .

SOLUTION We multiply numerator and denominator by the complex conjugate of ,
namely , and we take advantage of the result of Example 1:

The geometric interpretation of the complex conjugate is shown in Figure 2: is the
reflection of in the real axis. We list some of the properties of the complex conjugate in
the following box. The proofs follow from the definition and are requested in Exercise 18.

Properties of Conjugates

The modulus, or absolute value, of a complex number is its distance
from the origin. From Figure 3 we see that if , then

Notice that

and so

This explains why the division procedure in Example 2 works in general:

Since , we can think of as a square root of . But notice that we also have
and so is also a square root of . We say that is the principal

square root of and write . In general, if is any positive number, we write

With this convention, the usual derivation and formula for the roots of the quadratic equa-
tion are valid even when :

Find the roots of the equation .

SOLUTION Using the quadratic formula, we have

�1 
 3i

2 
 5i
a 
 bi

2 
 5i
2 � 5i

�1 
 3i

2 
 5i
�

�1 
 3i

2 
 5i
�

2 � 5i

2 � 5i
�

13 
 11i

22 
 52 �
13

29



11

29
 i

z
z

z 
 w � z 
 w zw � z w z n � z n

� z � z � a 
 bi
z � a 
 bi

� z � � sa 2 
 b 2 

zz � �a 
 bi 	�a � bi 	 � a 2 
 abi � abi � b 2i 2 � a 2 
 b 2

zz � � z �2

z

w
�

zw

ww
�

zw

� w �2

i 2 � �1 i �1
��i	2 � i 2 � �1 �i �1 i

�1 s�1 � i c

s�c � sc i

ax 2 
 bx 
 c � 0 b 2 � 4ac � 0

x �
�b � sb 2 � 4ac

2a

EXAMPLE 3 x 2 
 x 
 1 � 0

x �
�1 � s12 � 4 � 1

2
�

�1 � s�3

2
�

�1 � s3 i

2

EXAMPLE 2

FIGURE 3

Re

Im

0

bi

a

b

z=a+bi

|z |=
    a

@+
b@

œ„„„„„

Re

Im

0

i

_i

z=a-bi–

z=a+bi

FIGURE 2

97879_Apdx7eMV_Apdx7eMV_pA02-A12.qk_97879_Apdx7eMV_Apdx7eMV_pA02-A12  11/10/10  1:04 PM  Page A6

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



APPENDIX G COMPLEX NUMBERS A7

We observe that the solutions of the equation in Example 3 are complex conjugates of
each other. In general, the solutions of any quadratic equation with real
coefficients , , and are always complex conjugates. (If is real, , so is its own
conjugate.)

We have seen that if we allow complex numbers as solutions, then every quadratic 
equation has a solution. More generally, it is true that every polynomial equation

of degree at least one has a solution among the complex numbers. This fact is known as 
the Fundamental Theorem of Algebra and was proved by Gauss.

Polar Form
We know that any complex number can be considered as a point and that
any such point can be represented by polar coordinates with . In fact,

as in Figure 4. Therefore we have

Thus we can write any complex number in the form

where

The angle is called the argument of and we write . Note that is not
unique; any two arguments of differ by an integer multiple of .

Write the following numbers in polar form.

(a) (b) 

SOLUTION
(a) We have and , so we can take .
Therefore the polar form is

(b) Here we have and . Since lies in the
fourth quadrant, we take and

The numbers and are shown in Figure 5.

ax 2 
 bx 
 c � 0
a b c z z � z z

an xn 
 an�1 xn�1 
    
 a1x 
 a0 � 0

z � a 
 bi �a, b	
�r, �	 r � 0

a � r cos � b � r sin �

z � a 
 bi � �r cos �	 
 �r sin �	i

z

z � r�cos � 
 i sin �	

r � � z � � sa 2 
 b 2 and tan � �
b

a

� z � � arg�z	 arg�z	
z 2�

EXAMPLE 4

z � 1 
 i w � s3 � i

r � � z � � s12 
 12 � s2 tan � � 1 � � ��4

z � s2 �cos 
�

4

 i sin 

�

4 
r � � w � � s3 
 1 � 2 tan � � �1�s3 w

� � ���6

w � 2�cos��
�

6  
 i sin��
�

6 �
z w

Re

Im

0

a+bi

b

¨

r

a

FIGURE 4

a

Re

Im

0

œ„3-i

2

1+i

œ„2

π
4

_
π
6

FIGURE 5
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A8 APPENDIX G COMPLEX NUMBERS

The polar form of complex numbers gives insight into multiplication and division. Let

be two complex numbers written in polar form. Then

Therefore, using the addition formulas for cosine and sine, we have

This formula says that to multiply two complex numbers we multiply the moduli and add the
arguments. (See Figure 6.)

A similar argument using the subtraction formulas for sine and cosine shows that to
divide two complex numbers we divide the moduli and subtract the arguments.

In particular, taking and (and therefore and ), we have the 
following, which is illustrated in Figure 7.

Find the product of the complex numbers and in polar form.

SOLUTION From Example 4 we have

and

So, by Equation 1,

This is illustrated in Figure 8.

z1 � r1�cos �1 � i sin �1� z2 � r2�cos �2 � i sin �2�

z1z2 � r1r2�cos �1 � i sin �1��cos �2 � i sin �2 �

� r1r2��cos �1 cos �2 � sin �1 sin �2� � i�sin �1 cos �2 � cos �1 sin �2��

1 z1z2 � r1r2�cos��1 � �2� � i sin��1 � �2 ��

z1

z2
�

r1

r2
�cos��1 � �2� � i sin��1 � �2�� z2 � 0

z1 � 1 z2 � z �1 � 0 � 2 � �

If z � r�cos � � i sin ��, then
1

z
�

1

r
�cos � � i sin ��.

EXAMPLE 5 1 � i s3 � i

1 � i � s2 �cos 
�

4
� i sin 

�

4 �
s3 � i � 2�cos��

�

6 � � i sin��
�

6 �	

�1 � i�(s3 � i) � 2s2 �cos��

4
�

�

6 � � i sin��

4
�

�

6 �	
� 2s2 �cos 

�

12
� i sin 

�

12�

z¡

FIGURE 6

Re

Im

z¡z™

¨¡+¨™

z™

¨¡

¨™

Re

Im

0

r

z

¨

_¨
1
r

1
z

FIGURE 7

0

2

z=1+i

w=œ„3-i

zw
2œ„2œ„2

FIGURE 8

Re

Im

π
12
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APPENDIX G COMPLEX NUMBERS A9

Repeated use of Formula 1 shows how to compute powers of a complex number. If

then

and

In general, we obtain the following result, which is named after the French mathematician
Abraham De Moivre (1667–1754).

De Moivre’s Theorem If and is a positive integer, then

This says that to take the nth power of a complex number we take the nth power of the
modulus and multiply the argument by n.

Find .

SOLUTION Since , it follows from Example 4(a) that has the
polar form

So by De Moivre’s Theorem,

De Moivre’s Theorem can also be used to find the th roots of complex numbers. An 
th root of the complex number is a complex number such that

Writing these two numbers in trigonometric form as

and using De Moivre’s Theorem, we get

The equality of these two complex numbers shows that

and

z � r �cos � 
 i sin �	

z 2 � r 2�cos 2� 
 i sin 2�	

z 3 � zz 2 � r 3�cos 3� 
 i sin 3�	

2 z � r �cos � 
 i sin �	 n

z n � 
r �cos � 
 i sin �	�n � r n�cos n� 
 i sin n�	

EXAMPLE 6 ( 1
2 


1
2 i)10

1
2 


1
2 i � 1

2 �1 
 i 	 1
2 


1
2 i

1

2



1

2
 i �

s2

2
 �cos 

�

4

 i sin 

�

4 

�1

2



1

2
 i10

� �s2

2 10�cos 
10�

4

 i sin 

10�

4 
�

25

210 �cos 
5�

2

 i sin 

5�

2  �
1

32
 i

n
n z w

wn � z

w � s�cos � 
 i sin �	 and z � r �cos � 
 i sin �	

s n�cos n� 
 i sin n�	 � r �cos � 
 i sin �	

sn � r or s � r 1�n

cos n� � cos � and sin n� � sin �
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A10 APPENDIX G COMPLEX NUMBERS

From the fact that sine and cosine have period it follows that

Thus

Since this expression gives a different value of for , 1, 2, . . . , , we have the
following.

Roots of a Complex Number Let and let be a positive
integer. Then has the distinct th roots

where , 1, 2, . . . , .

Notice that each of the th roots of has modulus . Thus all the th roots of
lie on the circle of radius in the complex plane. Also, since the argument of each suc-

cessive th root exceeds the argument of the previous root by , we see that the 
th roots of are equally spaced on this circle.

Find the six sixth roots of and graph these roots in the complex
plane.

SOLUTION In trigonometric form, . Applying Equation 3 with
, we get

We get the six sixth roots of by taking in this formula:

All these points lie on the circle of radius as shown in Figure 9.

2�

n� � � 
 2k� or � �
� 
 2k�

n

w � r 1�n�cos� � 
 2k�

n  
 i sin�� 
 2k�

n �
w k � 0 n � 1

3 z � r �cos � 
 i sin �	 n
z n n

wk � r 1�n�cos� � 
 2k�

n  
 i sin�� 
 2k�

n �
k � 0 n � 1

n z � wk � � r 1�n n
z r 1�n

n 2��n
n z

EXAMPLE 7 z � �8

z � 8�cos � 
 i sin �	
n � 6

wk � 81�6�cos 
� 
 2k�

6

 i sin 

� 
 2k�

6 
�8 k � 0, 1, 2, 3, 4, 5

w0 � 81�6�cos 
�

6

 i sin 

�

6  � s2 �s3

2



1

2
 i

w1 � 81�6�cos 
�

2

 i sin 

�

2  � s2 i

w2 � 81�6�cos 
5�

6

 i sin 

5�

6  � s2 ��
s3

2



1

2
 i

w3 � 81�6�cos 
7�

6

 i sin 

7�

6  � s2 ��
s3

2
�

1

2
 i

w4 � 81�6�cos 
3�

2

 i sin 

3�

2  � �s2 i

w5 � 81�6�cos 
11�

6

 i sin 

11�

6  � s2 �s3

2
�

1

2
 i

s2
FIGURE 9
The six sixth roots of z=_8

0

w¡

w¢

w∞

w¸w™

w£

_œ„2 œ„2

_œ„2i

œ„2i

Re

Im
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APPENDIX G COMPLEX NUMBERS A11

Complex Exponentials
We also need to give a meaning to the expression when is a complex num-
ber. The theory of infinite series as developed in Chapter 11 can be extended to the case
where the terms are complex numbers. Using the Taylor series for (11.10.11) as our guide,
we define

and it turns out that this complex exponential function has the same properties as the real
exponential function. In particular, it is true that

If we put , where is a real number, in Equation 4, and use the facts that

. . .

we get

Here we have used the Taylor series for and (Equations 11.10.16 and 11.10.15). 
The result is a famous formula called Euler’s formula:

Combining Euler’s formula with Equation 5, we get

Evaluate:  (a) (b) 

SOLUTION
(a) From Euler’s equation we have

(b) Using Equation 7 we get

Finally, we note that Euler’s equation provides us with an easier method of proving 
De Moivre’s Theorem:

e z z � x 
 iy

ex

4 e z � �
�

n�0

z n

n!
� 1 
 z 


z2

2!



z3

3!

   

5 e z1
z2 � e z1e z2

z � iy y

i 2 � �1, i 3 � i 2i � �i, i 4 � 1, i 5 � i,

e iy � 1 
 iy 

�iy	2

2!



�iy	3

3!



�iy	4

4!



�iy	5

5!

   

� 1 
 iy �
y 2

2!
� i

y 3

3!



y 4

4!

 i

y 5

5!

   

� �1 �
y 2

2!



y 4

4!
�

y 6

6!

    
 i�y �

y 3

3!



y 5

5!
�   

� cos y 
 i sin y

cos y sin y

6 e iy � cos y 
 i sin y

7 ex
iy � exe iy � ex�cos y 
 i sin y	

EXAMPLE 8 e i� e�1
i��2

6

e i� � cos � 
 i sin � � �1 
 i�0	 � �1

e�1
i��2 � e�1�cos 
�

2

 i sin 

�

2  �
1

e

0 
 i�1	� �

i

e


r �cos � 
 i sin �	�n � �re i� 	n � r ne in� � r n�cos n� 
 i sin n�	

We could write the result of Example 8(a) as

This equation relates the five most famous num-
bers in all of mathematics: and .�0, 1, e, i,

e i� 
 1 � 0
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A12 APPENDIX G COMPLEX NUMBERS

1–14 Evaluate the expression and write your answer in the 
form .

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15–17 Find the complex conjugate and the modulus of the 
number.

15. 16.

17.

18. Prove the following properties of complex numbers.
(a) (b) 
(c) , where is a positive integer

[Hint: Write , .]

19–24 Find all solutions of the equation.

19. 20.

21. 22.

23. 24.

25–28 Write the number in polar form with argument between
and .

25. 26.

27. 28.

29–32 Find polar forms for , , and by first putting and
into polar form.

29. ,  

30. ,  

31. ,  

32. ,  

a 
 bi

�5 � 6i 	 
 �3 
 2i 	 (4 �
1
2 i) � (9 


5
2 i)

�2 
 5i 	�4 � i	 �1 � 2i 	�8 � 3i 	

12 
 7i 2i ( 1
2 � i)

1 
 4i

3 
 2i

3 
 2i

1 � 4i

1

1 
 i

3

4 � 3i

i 3 i 100

s�25 s�3 s�12

12 � 5i �1 
 2s2 i

�4i

z 
 w � z 
 w zw � z w
z n � z n n

z � a 
 bi w � c 
 di

4x 2 
 9 � 0 x 4 � 1

x 2 
 2x 
 5 � 0 2x 2 � 2x 
 1 � 0

z2 
 z 
 2 � 0 z2 

1
2 z 


1
4 � 0

0
2�

�3 
 3i 1 � s3 i

3 
 4i 8i

zw z�w 1�z z w

z � s3 
 i w � 1 
 s3 i

z � 4s3 � 4i w � 8i

z � 2s3 � 2i w � �1 
 i

z � 4(s3 
 i ) w � �3 � 3i

33–36 Find the indicated power using De Moivre’s Theorem.

33. 34.

35. 36.

37–40 Find the indicated roots. Sketch the roots in the complex
plane.

37. The eighth roots of 1 38. The fifth roots of 32

39. The cube roots of 40. The cube roots of 

41–46 Write the number in the form .

41. 42.

43. 44.

45. 46.

47. Use De Moivre’s Theorem with to express and
in terms of and .

48. Use Euler’s formula to prove the following formulas for
and :

49. If is a complex-valued function of a real
variable and the real and imaginary parts and are
differentiable functions of , then the derivative of is defined
to be . Use this together with Equation 7
to prove that if , then when
is a complex number.

50. (a) If is a complex-valued function of a real variable, its
indefinite integral is an antiderivative of . 
Evaluate

(b) By considering the real and imaginary parts of the integral
in part (a), evaluate the real integrals

and    

(c) Compare with the method used in Example 4 in Sec-
tion 7.1.

(2s3 
 2i )5 �1 � i 	8

i 1 
 i

a 
 bi

e i��2 e 2� i

e i��3 e �i�

e 2
i� e�
i

n � 3 cos 3�
sin 3� cos � sin �

cos x
sin x

cos x �
eix 
 e�ix

2
sin x �

eix � e�ix

2i

u�x	 � f �x	 
 it�x	
x f �x	 t�x	

x u
u��x	 � f ��x	 
 it��x	

F�x	 � e rx F��x	 � re rx r � a 
 bi

u
x u�x	 dx u

y e �1
i 	x dx

y e x cos x dx y e x sin x dx

�1 
 i 	20 (1 � s3 i )5

G Exercises
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APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A13

H Answers to Odd-Numbered Exercises

CHAPTER 10

EXERCISES 10.1 N PAGE 665

1. 3.

5. (a) (b) 

7. (a) (b) ,

9. (a) (b) 

11. (a) , (b) 

0 1

1

t=0

(1, 1)

(0, 0)

y

x

t= 
π

2

t= 
π

3

t= 
π

6

0 2

2

t=0

(0, 0)

t=2

(6, 2)

t=_2

(2, 6)

y

x

y � 3
4x �

1
4

x

y
(7, 5) 

t=_1

(3, 2) 

t=0

(_1, _1) 

t=1

(_5, _4) 

t=2

0

x � ��y � 2�2 � 1

x

y

(_3, 0) 

t=2

(_3, _4) 

t=_2

(0, _1) 

t=1

(0, _3) 

t=_1

(1, _2) 

t=0

�4 � y � 0

y � 1 � x 2, x � 0y

0 x

(0, 1)  t=0

(1, 0)  t=1

(2, _3)  t=4

0 1

1

y

x_1

y � 0x 2 � y 2 � 1

13. (a) , (b) 

15. (a) (b) 

17. (a) 
(b) 

19. Moves counterclockwise along the circle 
from to 

21. Moves 3 times clockwise around the ellipse 
, starting and ending at 

23. It is contained in the rectangle described by 
and .
25. 27.

29.

31. (b) , 
33. (a) 
(b) 
(c) 

y � 1�x y � 1
y

x0

(1, 1)

y � 1
2 ln x � 1 y

x0 1

1

y 2 � x 2 � 1, y � 1

x0

1

y

�x � 3�2 � �y � 1�2 � 4 �3, 3� �3, �1�

�x 2�25� � �y 2�4� � 1 �0, �2�
1 � x � 4

2 � y � 3
y

x

(0, _1)   t=_1

(0, 1)   t=1

(_1, 0)

t=0

x

y

t=0

t=
1
2

1

1

π

_π

4_4

x � �2 � 5t, y � 7 � 8t 0 � t � 1
x � 2 cos t, y � 1 � 2 sin t, 0 � t � 2�

x � 2 cos t, y � 1 � 2 sin t, 0 � t � 6�

x � 2 cos t, y � 1 � 2 sin t, ��2 � t � 3��2
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A14 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

37. The curve is generated in (a). In (b), only the portion
with is generated, and in (c) we get only the portion with

.
41. , ellipse

43.

45. (a) Two points of intersection

(b) One collision point at when 
(c) There are still two intersection points, but no collision point.
47. For , there is a cusp; for , there is a loop whose size
increases as c increases.

49. The curves roughly follow the line , and they start having
loops when is between 1.4 and 1.6 more precisely, when

. The loops increase in size as increases.
51. As n increases, the number of oscillations increases; 
a and b determine the width and height.

EXERCISES 10.2 N PAGE 675

1. 3. 5.

7.
9.

11. , , 13. , , 

15.

17. Horizontal at , vertical at 

y � x 2�3

x � 0
x � 0

x � a cos �, y � b sin �; �x 2�a 2 � � �y 2�b 2 � � 1
y

O x

2a

4

�4

�6 6

��3, 0� t � 3��2

c � 0 c � 0

3

0 1.5

_3

_1

0
0 1.5

1

_1

1
1
2

y � x
a (

a � s2 ) a

2t � 1

t cos t � sin t
y � �

3
2x � 7 y � �x � � 2

y � 2x � 1
y � 1

6 x 20

_2

10_10

2t � 1

2t
�

1

4t 3 t 	 0 e�2 t�1 � t� e�3t�2t � 3� t �
3
2

�
3
2 tan t, �3

4 sec3t, ��2 	 t 	 3��2

�
2, �2��0, �3�

19. Horizontal at and , no vertical

21. ; 
23. 25.

27. (a) 29.

31. 33. 35.

37.

39. 41.

43.

45.

47. 16.7102    

49. 612.3053    51.

55. (a) 

(b) 

57.

59.

61. 63.

65. 71.

7.5

�1

�8.5 3

y � x, y � �x

0

y

x

d sin ���r � d cos �� (16
27, 

29
9 ), ��2, �4�

�ab 3 � e 2�r 2 � �d 2

x
2

0 s2 � 2e�2t dt � 3.1416

x
4�

0 s5 � 4 cos t dt � 26.7298 4s2 � 2
1
2 s2 �

1
2 ln(1 � s2 )

s2 �e � � 1� 8

0
�25 2.5

1.4

_1.4

2.1_2.1

6s2, s2

15

�15

�15 15

t � �0, 4��

294

x
��2
0 2� t cos t st 2 � 1 dt � 4.7394

x
1
0 2� �t 2 � 1�e t

se 2 t�t � 1�2�t 2 � 2t � 2� dt � 103.5999
2

1215� (247s13 � 64) 6
5�a 2

24
5 � (949s26 � 1) 1

4

(�1
2 , 1)(1

2, �1)
(5 � 6�6�5, e6�1�5)�0.6, 2�

97879_Ans7eMV_Ans7eMV_pA013-A023.qk_97879_Ans7eMV_Ans7eMV_pA013-A023  11/10/10  3:03 PM  Page 14

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A15

EXERCISES 10.3 N PAGE 686

1. (a) (b) 

(c) 

3. (a) (b) 

(c) 

5. (a) (i) (ii) 
(b) (i) (ii) 
7.

9.

O

π

3

π

3
”2,     ’

O

_
3π

4
”1, _     ’

3π

4

�2, 7��3�, ��2, 4��3� �1, 5��4�, ��1, ��4�

O

π

2

”_1,    ’
π

2

�1, 3��2�, ��1, 5��2�

π

O

(1, π) O

_
2π

3

”2, _     ’
2π

3

��1, 0� (�1, �s3)

O

3π

4

”_2,      ’
3π

4

(s2, �s2)

(2s2, 7��4) (�2s2, 3��4)
�2, 2��3� ��2, 5��3�

O

r=1

¨=
3π

4
¨=

π

4

O

11.

13. 15. Circle, center , radius 
17. Circle, center , radius 1
19. Hyperbola, center , foci on -axis
21. 23.
25. 27. (a) (b) 
29. 31.

33. 35.

37. 39.

41. 43.

45. 47.

O

r=2

r=3

¨=
7π

3

¨=
5π

3

2s3 O s5
�1, 0�

O x
r � 2 csc � r � 1��sin � � 3 cos ��
r � 2c cos � � � ��6 x � 3

O

(2, 3π/2)

O

(4, 0)

O

(2π, 2π)

1

3 4

5

6

2

¨=
π

3

”4,    ’
π

6

¨=
π

8

(2, 0) O

¨=
π

6
¨=

5π

6

O

(3, π/4)

O

(3, π/6)

¨=
π

3
¨=

2π

3

(3, 0)(3, π)

O 1

1

2
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A16 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

49 51.

53. (a) For , the inner loop begins at and 
ends at ; for , it begins at

and ends at .

55. 57. 59. 1    

61. Horizontal at , ; 
vertical at 
63. Horizontal at , [the pole], and ;

vertical at (2, 0), , 

65. Center , radius 
67. 69.

71.

73. By counterclockwise rotation through angle , , 
or about the origin
75. For , the curve is a circle. As increases, the left side gets
flatter, then has a dimple for , a cusp for , and a
loop for .

EXERCISES 10.4 N PAGE 692

1. 3. 5. 7.
9. 11.

13.

(2, 0) (6, 0)

O

x=1

c 	 �1 � � sin�1 ��1�c�
� � � � sin�1 ��1/c� c � 1

� � � � sin�1 �1�c� � � 2� � sin�1 �1�c�
s3 ��

(3�s2, ��4) (�3�s2, 3��4)
�3, 0�, �0, ��2�

( 3
2, ��3) �0, �� ( 3

2, 5��3)
( 1

2, 2��3) ( 1
2, 4��3)

�b�2, a�2� sa 2 � b 2�2

_3.4 1.8

_2.6

2.6

_3 3

_2.5

3.5

��6 ��3
�

c � 0 c
0.5 	 c 	 1 c � 1

c � 1

e ���4 � e ���2 9
2 � 2 41

4 �
�

O

r=2 sin ¨

(2, π/2)
11�

(1, π)

(3, π/2)

(3, 3π/2)

O

(5, 0)

9
2� 3

_3

4_4

15.

17. 19. 21. 23.

25. 27. 29. 31.

33. 35.

37. , and the pole

39. where , , , 
and where , , , 

41. , and the pole    
43. Intersection at 
45. 47.

49.

51. 2.4221    53. 8.0091    
55. (b) 

EXERCISES 10.5 N PAGE 700

1. , , 3. , , 

5. , , 7. , , 

9. , focus , directrix 

3
2� 1.4

_1.4

2.1_2.1

4
3�

1
16� � �

3
2 s3 1

3� �
1
2 s3

4s3 �
4
3� � 5

24� �
1
4 s3 1

2� � 1

1 �
1
2 s2 1

4(� � 3s3)
(3

2, ��6), (3
2, 5��6)

�1, �� � � ��12 5��12 13��12 17��12
��1, �� � � 7��12 11��12 19��12 23��12

(1
2 s3, ��3), (1

2 s3, 2��3)
� � 0.89, 2.25; area � 3.46

2� 8
3 ��� 2 � 1�3�2 � 1�

16
3

1

_1

_0.75 1.25

2� (2 � s2)

�0, 0� (0, 3
2) y � �

3
2 �0, 0� (�1

2,, 0) x � 1
2

x

y

6

”0,   ’
3

2

6

y=-
3

2

2

x

y

_2

x=

(_1/2, 0)

1

2

��2, 3� ��2, 5� y � 1 ��2, �1� ��5, �1� x � 1

y

x

y=1

(_2, 5)

0 x

y

x=1

(_2, _1)

(_5, _1)

x � �y 2 (� 1
4 , 0) x � 1

4

97879_Ans7eMV_Ans7eMV_pA013-A023.qk_97879_Ans7eMV_Ans7eMV_pA013-A023  11/10/10  3:03 PM  Page 16

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A17

11. , 13. , 

15. 17. , foci 

19. ; ; 

21. , , 

23.

25. Parabola, 
27. Ellipse, , 
29. Hyperbola, 

�0, 
2� (0, 
s2 ) �
3, 0� (
2s2 , 0)

x

y

0 2œ„

2_œ„

2œ„

2_œ„

2

_2

x

y

0 3_3

2œ„2_2œ„2

11

_1

�1, 
3�, (1, 
s5) x 2

4
�

y 2

9
� 1 (0, 
s5)

x0

y

�1 3

(1,_3)

(1, 3)

�0, 
5� (0, 
s34 ) y � 

5
3 x

x

y

5 

3
y=  x

5 

3
y=_  x

(0, _5)

(0, 5)

œ„„34}{0,  

œ„„34}{0, _     

(3, 5)

�
10, 0� (
10s2 , 0) y � 
x

x

y

(_10, 0) (10, 0)

y=x

y=_x

{_10œ„2     , 0} {10œ„2     , 0}

(10, 10)

�4, �2�, �2, �2�;
(3
s5, �2);
y � 2 � 
2�x � 3�

x0

y

(4, _2)

(3+œ„5, _2)(3-œ„5, _2)

(2, _2)

�0, �1�, (0, �3
4)

(
s2, 1) �
1, 1�
�0, 1�, �0, �3�; (0, �1 
 s5)

31. 33. 35.

37. 39.

41. 43.

45. 47.

49.

51. (a) (b) 

55. (a) Ellipse   (b) Hyperbola   (c) No curve    
59. 15.9

61. where 

63.

EXERCISES 10.6 N PAGE 708

1. 3.

5. 7.

9. (a) (b) Ellipse   (c) 
(d) 

11. (a) 1   (b) Parabola   (c) 
(d) 

13. (a) (b) Ellipse   (c) 
(d) 

y 2 � 4x y 2 � �12�x � 1� y � 3 � 2�x � 2�2

x 2

25
�

y 2

21
� 1

x 2

12
�

�y � 4�2

16
� 1

�x � 1�2

12
�

�y � 4�2

16
� 1

x 2

9
�

y 2

16
� 1

�y � 1�2

25
�

�x � 3�2

39
� 1

x 2

9
�

y 2

36
� 1

x 2

3,763,600
�

y 2

3,753,196
� 1

121x 2

1,500,625
�

121y 2

3,339,375
� 1 �248 mi

b2c

a
� ab ln� a

b � c	 c 2 � a 2 � b2

�0, 4���

r �
4

2 � cos �
r �

6

2 � 3 sin �

r �
8

1 � sin �
r �

4

2 � cos �
4
5 y � �1

x

y

(4, π/2)

O
”   , π’

4

5
”    , 0’

4

5

”    ,     ’
4

9

3π

2
y=_1

y � 2
3

x

y

”   ,   ’
1

3

π

2

O

”   , π’
2

3
”   , 0’
2

3

y=2/3

1
3 x � 9

2

O

x=
9

2

”   ,    ’
π

2

3

2

”   , 0’
9

8
”   , π’

9

4

”   ,      ’
3π

2

3

2
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A18 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

15. (a) 2   (b) Hyperbola   (c) 
(d) 

17. (a) 

(b) 

19. The ellipse is nearly circular     
when e is close to 0 and becomes 
more elongated as . At 

, the curve becomes a 
parabola.

25.

27. 35.64 AU    29. 31.

CHAPTER 10 REVIEW N PAGE 709

True-False Quiz
1. False    3. False    5. True    7. False    9. True

Exercises

1. 3.

5. , ; , ; 
, , 

x � �
3
8

O

x=_
3

8

”-   , 0’
3

4
”    , π’

1

4

1

_3

_2 2

-y=
1

2

2, y � �
1
2

2

_2

_2 2

r �
1

1 � 2 sin�� � 3��4�

e=0.4 e=1.0

e=0.8
e=0.6

e l 1�

e � 1

r �
2.26 � 108

1 � 0.093 cos �
3.6 � 108 km7.0 � 107 km

y � 1�xx � y 2 � 8y � 12

x

y

(1, 1), ¨=0

y

x

(0, 6), t=_4

(5, 1),

t=1

y � t 2x � t 4y � stx � t
0 � t 	 ��2y � tan tx � tan2 t

7. (a) (b) ,

9. 11.

13. 15.

17. 19.

21. 2    23.

25. 27.

29. Vertical tangent at

;
horizontal tangent at

31. 18    33. 35.

37.

39.

41.

(3s2, 3��4)

O

2π

3

”4,      ’
2π

3 (�3s2, 7��4)

(�2, 2s3)

¨=
π

6

(1, 0)

O

(2, π)

”1,    ’
π

2

”1,      ’
3π

2

”_3,     ’
3π

2

”1,    ’
π

2

3

2
y=

O

O

1

_1

(2, π) (2, 0)

0.75

-0.3 1.2

-0.75

r= 
sin ̈

¨

r �
2

cos � � sin �

�1

( 11
8 , 3

4 )1 � sin t

1 � cos t
, 

1 � cos t � sin t

�1 � cos t�3

x

y

0

(�3a, 0) (a, 0)

(3
2 a, 
 1

2 s3 a), ��3a, 0�

�a, 0�, (�1
2 a, 
3

2 s3a)

1
2�� � 1��2, 
��3�

2(5s5 � 1)
2s� 2 � 1 � s4� 2 � 1

2�
� ln� 2� � s4� 2 � 1

� � s� 2 � 1 	
471,295��1024
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APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A19

43. All curves have the vertical asymptote . For , the
curve bulges to the right. At , the curve is the line .
For , it bulges to the left. At there is a cusp at
(0, 0). For , there is a loop.

45. 47.

49. 51.

53. 55.

57. (a) At (0, 0) and 
(b) Horizontal tangents at (0, 0) and ;
vertical tangents at (0, 0) and 
(d) (g) 

PROBLEMS PLUS N PAGE 712

1. 3.

CHAPTER 11

EXERCISES 11.1 N PAGE 724

Abbreviations: C, convergent; D, divergent

1. (a) A sequence is an ordered list of numbers. It can also be
defined as a function whose domain is the set of positive integers.
(b) The terms approach 8 as becomes large.
(c) The terms become large as becomes large.

3. , , , , 5. , , , , 7. , , , , 

9. 1, 2, 7, 32, 157    11. , , , , 13.

15. 17.

19. 0.4286, 0.4615, 0.4737, 0.4800, 0.4839, 0.4865, 0.4884,
0.4898, 0.4909, 0.4918; yes; 
21. 0.5000, 1.2500, 0.8750, 1.0625, 0.9688, 1.0156, 0.9922,
1.0039, 0.9980, 1.0010; yes; 1
23. 1    25. 5    27. 1    29. 1    31. D    33. 0    
35. D    37. 0    39. 0    41. 0    43. 0    45. 1    
47. 49. 51. 53. D    55. D    
57. 1    59. 61. D    63. 0    
65. (a) 1060, 1123.60, 1191.02, 1262.48, 1338.23   (b) D    

c 	 �1x � 1
x � 1c � �1

c � 0�1 	 c 	 0
c � 0

(� 25
24 , 3), ��1, 3��
1, 0�, �
3, 0�

x

(_1, 3)

y

0

x

y

0

(1, 0)

2œ„2

�2œ„2

�3 3

y 2

72�5
�

x 2

8�5
� 1

x 2

25
�

y 2

9
� 1

r �
4

3 � cos �

x 2

25
�

�8y � 399�2

160,801
� 1

( 3
2, 3

2 )
(s3 2, s3 4 )

(s3 4, s3 2 )
3
2y

x
y  �x � 1

[�3
4 s3, 3

4 s3] � ��1, 2�ln���2�

nan

nan
1

720
1

120
1

24
1
6

1
2

1
3125�

1
625

1
125�

1
25

1
5

5
13

8
17

3
5

4
51

an � 1��2n � 1�2
9

2
7

2
5

2
32

an � ��1�n�1 n 2

n � 1
an � �3(�2

3)
n�1

1
2

��2ln 2e 2

1
2

67. (a) (b) 
69.
71. Convergent by the Monotonic Sequence Theorem; 
73. Decreasing; yes    75. Not monotonic; no    
77. Decreasing; yes    
79. 2    81. 83. (b) 
85. (a) 0   (b) 9, 11

EXERCISES 11.2 N PAGE 735

1. (a) A sequence is an ordered list of numbers whereas a series is
the sum of a list of numbers.
(b) A series is convergent if the sequence of partial sums is a con-
vergent sequence. A series is divergent if it is not convergent.
3. 2    
5. 1, 1.125, 1.1620, 1.1777, 1.1857, 1.1903, 1.1932, 1.1952; C
7. 0.5, 1.3284, 2.4265, 3.7598, 5.3049, 7.0443, 8.9644, 11.0540; D

9. , ,
, ,
, ,
, ,
, ;

convergent, 

11. , ,
, ,
, ,
, ,
, ;

divergent

13. , ,
, ,
, ,
, ,
, ;

convergent, sum

15. (a) C   (b) D    17. D    19. 21. 60 23.
25. D    27. D    29. D    31. 33. D    35. D    
37. D    39. D 41. 43. 45. 47.
49. (b) (c) (d) All rational numbers with a terminating
decimal representation, except 0.
51. 53. 55.

57. ; 59. ; 

61. or ; 63. ; 

65. 1    67. for , 

Pn � 1.08Pn�1 � 300 5734
�1 	 r 	 1

5 � L 	 8

1
2 (3 � s5) 1

2 (1 � s5)

�2.40000 �1.92000

ssnd

1

0 10

_3

sand�2.01600 �1.99680
�2.00064 �1.99987
�2.00003 �1.99999
�2.00000 �2.00000

sum � �2

0.44721 1.15432 10

0 11

ssnd

sand

1.98637 2.88080
3.80927 4.75796
5.71948 6.68962
7.66581 8.64639

0.29289 0.42265

0

1

11

ssnd

sand

0.50000 0.55279
0.59175 0.62204
0.64645 0.66667
0.68377 0.69849

� 1

25
3

1
7

5
2

e��e � 1� 3
2

11
6 e � 1

1 2

8
9

838
333 5063�3300

�
1

5
	 x 	

1

5

�5x

1 � 5x
�1 	 x 	 5

3

5 � x

x � 2 x 	 �2
x

x � 2
x 	 0

1

1 � e x

a1 � 0, an �
2

n�n � 1�
n � 1 sum � 1
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A20 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

69. (a) 157.875 mg; (b) 157.895 mg

71. (a) (b) 5    73.

77. 79. The series is divergent.    

85. is bounded and increasing.    

87. (a) 

89. (a) (c) 1

EXERCISES 11.3 N PAGE 744

1. C   

3. D    5. C    7. D    9. C    11. C    13. D    
15. C    17. C    19. C    21. D    23. C    25. C
27. is neither positive nor decreasing.
29. 31. 33.
35. (a) (b) 
37. (a) 1.54977, (b) 1.64522, 
(c) 1.64522 compared to 1.64493   (d) 
39. 0.00145    45.

EXERCISES 11.4 N PAGE 750

1. (a) Nothing   (b) C    3. C    5. D    7. C    9. D
11. C    13. C    15. D    17. D     19. D    21. C    
23. C    25. D    27. C    29. C    31. D    
33. 1.249, error 35. 0.0739, 
45. Yes

EXERCISES 11.5 N PAGE 755

1. (a) A series whose terms are alternately positive and 
negative   (b) and , 
where (c) 
3. C    5. C    7. D    9. C    11. C 13. D    15. C
17. C    19. D    21. 23. 5    25. 4    
27. 29. 31. An underestimate    
33. is not a negative integer    35. is not decreasing

EXERCISES 11.6 N PAGE 761

Abbreviations: AC, absolutely convergent;
CC, conditionally convergent

1. (a) D   (b) C   (c) May converge or diverge    
3. AC    5. CC    7. AC    9. D    11. AC    13. AC
15. AC    17. CC    19. AC    21. AC    23. D    25. AC
27. AC    29. D    31. D    33. AC

3000
19 �1 � 0.05n�

1
2 (s3 � 1)Sn �

D�1 � cn �
1 � c

1

n�n � 1�

sn �

0, 1
9, 2

9 , 1
3 , 2

3 , 7
9 , 8

9 , 1

1
2, 5

6 , 23
24 , 119

120; 
�n � 1�! � 1

�n � 1�!

0 x

y

1

. . .
a™

a£ a¢ a∞

2 3 4

y=
1

x1.3

f
�1, ��p 	 �1p � 1

1
90�

4 �
17
16

9
10�

4

error � 0.005error � 0.1
n � 1000

b 	 1�e

error 	 6.4 � 10�8	 0.1

limn l � bn � 00 	 bn�1 � bn

� Rn � � bn�1bn � � an �
�0.5507

0.0676�0.4597

bn �p

35. (a) and (d)
39. (a) , 
(b) , 0.693109

45. (b) ; 

EXERCISES 11.7 N PAGE 764

1. C    3. D    5. C    7. D    9. C    11. C
13. C 15. C    17. C    19. C    21. D    23. D    
25. C    27. C    29. C    31. D    
33. C    35. D    37. C

EXERCISES 11.8 N PAGE 769

1. A series of the form , where is a variable 
and and the ’s are constants
3. 1, 5. 1, 
7. 9. 11. , 

13. 15. 17.

19. 21. 23. 0, 

25. , 27. 29. (a) Yes   (b) No    

31. 33. No

35. (a) 
(b), (c) 

37. , 41. 2

EXERCISES 11.9 N PAGE 775

1. 10    3. 5.

7. 9.

11.

13. (a) 

(b) 

(c) 

15.

17.

error 	 0.00521661
960 � 0.68854

n � 11


�

n�1

��1�n�1

n
�

n�2

��1�n

n ln n

x��
n�0 cn�x � a�n

cna
��1, 1���1, 1�

[�1
3, 

1
3]1

32, ��2, 2��, ���, ��
1
3 , [�13

3 , �11
3 )1, �1, 3�4, ��4, 4�

{ 1
2 }b, �a � b, a � b��, ���, ��

�, ���, ��[3
5, 1]1

5

k k

���, ��
2

8

_2

_8

s¸

J¡

s£ s∞s¡

s™ s¢

f �x� � �1 � 2x���1 � x 2���1, 1�

2 
�

n�0

1

3 n�1 x n, ��3, 3�
�

n�0
��1�nx n, ��1, 1�

1 � 2 
�

n�1
x n, ��1, 1�

�

n�0
��1�n 1

9 n�1 x 2n�1, ��3, 3�


�

n�0
���1�n�1 �

1

2n�1�x n, ��1, 1�


�

n�0
��1�n�n � 1�xn, R � 1

1

2
 

�

n�0
��1�n�n � 2��n � 1�xn, R � 1

1

2
 

�

n�2
��1�nn�n � 1�xn, R � 1

ln 5 � 
�

n�1

xn

n5n , R � 5


�

n�0
��1�n4n�n � 1�x n�1, R � 1

4

97879_Ans7eMV_Ans7eMV_pA013-A023.qk_97879_Ans7eMV_Ans7eMV_pA013-A023  11/10/10  3:03 PM  Page 20

       Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.EngineeringEBooksPdf.com



APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A21

19.

21. 

23.

25.

27.

29. 0.199989    31. 0.000983    33. 0.19740    
35. (b) 0.920    39.

EXERCISES 11.10 N PAGE 789

1. 3.

5.

7.

9. 11.

13. , 

15.

17.

19.

25.

27.


�

n�0
�2n � 1�x n, R � 1


�

n�0
��1�n 1

16n�1 x 2n�1, R � 4

0.25

_0.25

4_4

s¡

s¡

s™

s™

s£

s£

s¢

s¢

s∞

s∞

f

f

3

2

�3

�2

s¡

f

s£
s™


�

n�0

2x 2n�1

2n � 1
, R � 1

C � 
�

n�0

t 8n�2

8n � 2
, R � 1

C � 
�

n�1
��1�n x n�3

n�n � 3�
, R � 1

��1, 1�, ��1, 1�, ��1, 1�


�

n�0
�n � 1�xn, R � 1b8 � f �8��5��8!


�

n�0
�n � 1�x n, R � 1


�

n�0
��1�n � 2n�1

�2n � 1�!
 x 2n�1, R � �


�

n�0

x 2n�1

�2n � 1�!
, R � �

�

n�0

�ln 2�n

n!
 x n, R � �

R � ��1 � 2�x � 1� � 3�x � 1�2 � 4�x � 1�3 � �x � 1�4

ln 2 � 
�

n�1
��1� n�1 1

n 2n �x � 2�n, R � 2


�

n�0

2ne6

n!
 �x � 3�n, R � �


�

n�0
��1�n�1 1

�2n�!
 �x � ��2n, R � �

1 �
1

4
x � 

�

n�2

3 � 7 � � � � � �4n � 5�
4 n � n!

x n, R � 1


�

n�0
��1�n �n � 1��n � 2�

2n�4 x n, R � 2

29.

31.

33.

35.

37.

39.

41. 

43. 0.99619

45. (a) 

(b) 

47.

49.

51. 0.0059    53. 0.40102    55. 57.

59. 61. 63.

65. 67. 69.


�

n�0
��1�n � 2n�1

�2n � 1�!
 x 2n�1, R � �


�

n�0

2n � 1

n!
 x n , R � �


�

n�0
��1�n 1

2 2n�2n�!
 x 4n�1 , R � �

1

2
x � 

�

n�1
��1�n 1 � 3 � 5 � � � � � �2n � 1�

n!23n�1 x 2n�1, R � 2


�

n�1
��1�n�1 2

2n�1

�2n�!
 x 2n, R � �


�

n�0
��1�n 1

�2n�!
 x 4n, R � �

1.5

1.5

_1.5

_1.5

Tˆ=T˜=T¡¸=T¡¡

T¢=T∞=Tß=T¶

T¸=T¡=T™=T£

f


�

n�1

��1�n�1

�n � 1�!
 xn, R � �

6

_6

4_3

T¡

T¡

T£

T£

T™

T™

T¢

T¢

Tß

Tß

T∞

T∞

f

f

1 � 
�

n�1

1 � 3 � 5 � � � � � �2n � 1�
2nn!

 x 2n

x � 
�

n�1

1 � 3 � 5 � � � � � �2n � 1�
�2n � 1�2nn!

 x 2n�1

C � 
�

n�0
��1�n x 6n�2

�6n � 2��2n�!
, R � �

C � 
�

n�1
��1�n 1

2n �2n�!
 x 2n, R � �

1
120

1
2

4
e�x1 �

1
6 x 2 �

7
360 x 41 �

3
2 x 2 �

25
24 x 4

e 3 � 11�s2ln 8
5
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A22 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

EXERCISES 11.11 N PAGE 798

1. (a) ,

,

(b) 

(c) As increases, is a good approximation to on a 
larger and larger interval.

3.

5.

7.

T0�x� � 1 � T1�x�, T2�x� � 1 �
1
2 x 2 � T3�x�

T4�x� � 1 �
1
2 x 2 �

1
24 x 4 � T5�x�

T6�x� � 1 �
1
2 x 2 �

1
24 x 4 �

1
720 x 6

2

2π

_2

_2π

T¢=T∞

T™=T£

T¸=T¡

Tß

f

f �x�Tn�x�n

1
2 �

1
4 �x � 2� �

1
8 �x � 2�2 �

1
16 �x � 2�3

2

40

T£

f

��x �
�

2 	 �
1

6 �x �
�

2 	3

1.1

_1.1

T£

T£

f

f

π0
π

2

�x � 1� �
1
2�x � 1�2 �

1
3�x � 1�3

T£

2

_4

3_1

f

9.

11.

13. (a) (b) 

15. (a) (b) 
17. (a) (b) 
19. (a) (b) 0.00006    21. (a) (b) 0.042
23. 25. Four 27.
29. 31. 21 m, no    
37. (c) They differ by about 

CHAPTER 11 REVIEW N PAGE 802

True-False Quiz
1. False    3. True    5. False    7. False    9. False
11. True    13. True    15. False    17. True    
19. True    21. True

Exercises

1. 3. D    5. 0    7. 9. 2    11. C    13. C
15. D    17. C    19. C    21. C    23. CC    25. AC    

27. 29. 31. 35. 0.9721    

37. , error

41. 43. 0.5, [2.5, 3.5)

45.

47. 49.

51.

x � 2x 2 � 2x 3

_4f

3

_1 1.5

T£

T5�x� � 1 � 2�x �
�

4 	 � 2�x �
�

4 	2

�
8

3�x �
�

4 	3

�
10

3 �x �
�

4 	4

�
64

15�x �
�

4 	5

5

_2

T™

T¢

T™

T£

T£

T¢ T∞

T∞

f

f

20
π

4

π

2

1.5625 � 10�52 �
1
4 �x � 4� �

1
64 �x � 4�2

0.0000971 �
2
3�x � 1� �

1
9�x � 1�2 �

4
81�x � 1�3

0.00141 �
1
2 x 2

x 2 �
1
6 x 41 � x 2

�1.037 	 x 	 1.0370.17365
�0.86 	 x 	 0.86

8 � 10�9 km.

e 121
2

ee���41
11

	 6.4 � 10�70.18976224

4, ��6, 2�

1

2
 

�

n�0
��1�n� 1

�2n�!
 �x �

�

6 	
2n

�
s3

�2n � 1�!
 �x �

�

6 	
2n�1�

ln 4 � 
�

n�1

xn

n4n , R � 4
�

n�0
��1�nx n�2, R � 1


�

n�0
��1�n x 8n�4

�2n � 1�!
, R � �

x f

0.7071 1 0.6916 0.7074 0.7071

0 1 �0.2337 0.0200 �0.0009

�1 1 �3.9348 0.1239 �1.2114

T0 � T1

�

�

2

�

4

T6T4 � T5T2 � T3
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APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A23

53.

55.

57. (a) 

(b) (c) 0.000006

59.

PROBLEMS PLUS N PAGE 805

1.
3. (b) 0 if , if , k an integer
5. (a) (c) 

9.

11. 13. (a) (b) 

19.

21. where is a positive integer

CHAPTER 12

EXERCISES 12.1 N PAGE 814

1. 3.

5. A vertical plane that
intersects the xy-plane in
the line , 

7. (a) , , ; isosceles triangle
9. (a) No   (b) Yes    
11. ;

, (a circle)
13.
15. , 6    17.
19. (b) 
21. (a) 
(b) 
(c) 
23. A plane parallel to the -plane and 5 units in front of it

1

2
� 

�

n�1

1 � 5 � 9 � � � � � �4n � 3�
n!26n�1 x n, R � 16

C � ln � x � � 
�

n�1

xn

n � n!

1 �
1
2 �x � 1� �

1
8 �x � 1�2 �

1
16 �x � 1�3

1.5

20

T£

f

�
1
6

15!�5! � 10,897,286,400
x � k��1�x� � cot xx � 0

2
5 s3sn � 3 � 4n, ln � 1�3n, pn � 4n�3n�1

��1, 1�, 
x 3 � 4x 2 � x

�1 � x�4

250
101�250

101� �e��n�1���5 � e�n��5�ln 1
2

�

2s3
� 1

k���

2
� �k	2

C; A�4, 0, �3�
z

y

2

x

2

0

y=2-x

y=2-x, z=0

z � 0y � 2 � x

� RP � � 6� QR � � 2s10� PQ � � 6

�x � 3�2 � �y � 2�2 � �z � 5�2 � 16
x � 0�y � 2�2 � �z � 5�2 � 7

�x � 3�2 � �y � 8�2 � �z � 1�2 � 30
�2, 0, �6�, 9�s2�1, 2, �4�

5
2 , 1

2 s94 , 1
2 s85

�x � 2�2 � �y � 3�2 � �z � 6�2 � 36
�x � 2�2 � �y � 3�2 � �z � 6�2 � 4
�x � 2�2 � �y � 3�2 � �z � 6�2 � 9

yz

25. A half-space consisting of all points to the left of the 
plane 
27. All points on or between the horizontal planes and 
29. All points on a circle with radius 2 with center on the -axis
that is contained in the plane 
31. All points on or inside a sphere with radius and center O
33. All points on or inside a circular cylinder of radius 3 with axis
the -axis
35. 37.
39. (a) (2, 1, 4)   (b) 

41. , a plane perpendicular to AB
43.

EXERCISES 12.2 N PAGE 822

1. (a) Scalar   (b) Vector   (c) Vector   (d) Scalar

3. AB
l

� DC
l

, DA
l

� CB
l

, DE
l

� EB
l

, EA
l

� CE
l

5. (a) (b)

(c) (d)

(e) (f)

7. , 

9. 11.

13. 15.

y � 8
z � 0 z � 6

z
z � �1

s3

y
0 	 x 	 5 r 2 	 x 2 � y 2 � z2 	 R2

P

A

C

B

0

z

y
x

L™

L¡

14x � 6y � 10z � 9
2s3 � 3

vu+v

u
w

u

u+w

w v

v+w

_v
u

u-v

w
v

u

v+u+w

_w
u

_v

u-w-v

c � 1
2 a �

1
2 b d � 1

2 b �
1
2 a

a � �4, 1 � a � �3, �1 �

x

y

A(_1, 1)

0

B(3, 2)

a

x0

y

A(_1, 3)

B(2, 2)

a

a � �2, 0, �2 � �5, 2 �
z

y

0

A(0, 3, 1)

a
B(2, 3, _1)x

x0

y

k6, _2l

k5, 2l

k_1, 4l
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A24 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

17.

19. , , 13, 10
21. , , , 

23. 25. 27.

29. 31. , 
33.

35.

37.
39. (a) At an angle of from the bank, toward upstream
(b) 20.2 min
41. 43.
45. (a), (b) (d) 

47. A sphere with radius 1, centered at 

EXERCISES 12.3 N PAGE 830

1. (b), (c), (d) are meaningful    3. 5. 7.
9. 11.

15. 17.

19. 21.

23. (a) Neither   (b) Orthogonal    
(c) Orthogonal   (d) Parallel

25. Yes    27.

29. 31. at , at 
33.

35.

37. , , ; 39. 4, 

41. , 43. , 

47. or any vector of the form

49. 51.
53. 55.

EXERCISES 12.4 N PAGE 838

1. 3. 5.
7. 9. 11.
13. (a) Scalar   (b) Meaningless   (c) Vector   
(d) Meaningless   (e) Meaningless   (f) Scalar

�3, 8, 1 �

y

z

k3, 8, 1l

k0, 8, 0l

k3, 0, 1l

x

�1, �42 ��2, �18 �
s82s14�4 i � j � 9 k�i � j � 2 k

60�
8
9 i �

1
9 j �

4
9 k�

3

s58
i �

7

s58
j

�38.57 ft�s� 45.96 ft�s�2, 2s3�
100s7 � 264.6 N, �139.1�

s493 � 22.2 mi�h, N8�W

T1 � �196 i � 3.92 j, T2 � 196 i � 3.92 j
43.4�

0��i � 4 j��s17
s � 9

7 , t � 11
7

y

x0

a

b

c

sa

tb

�x0, y0, z0 �

11914
u � v � 1

2 , u � w � �
1
2�15

cos�1� 5

s1015	 � 81�cos�1� 1

s5 	 � 63�

48�, 75�, 57�cos�1� 7

s130 	 � 52�

�i � j � k��s3 [or ��i � j � k��s3]
�1, 1�8.1��0, 0�0�45�

48�, 71�, 48�
2
3, 

1
3, 

2
3;

74�, 122�, 143�1�s14 , �2�s14 , �3�s14 ;

��
20
13, 

48
13 �55�, 55�, 55�1�s31�s31�s3

2
21 i �

1
21 j �

4
21 k1�s21� 27

49 , 54
49 , �18

49 �9
7

�0, 0, �2s10 �
�s, t, 3s � 2s10 �, s, t � �

2400 cos�40�� � 1839 ft-lb144 J
cos�1(1�s3) � 55�

13
5

1
2 i � j �

3
2 k15 i � 3 j � 3 k16 i � 48 k

i � j � k0�1 � t� i � �t 3 � t 2� k

15. ; into the page   17.

19. , 

27. 16    29. (a) (b) 

31. (a) (b) 

33. 9    35. 16    39.

41. 43.

45. (b) 53. (a) No   (b) No   (c) Yes

EXERCISES 12.5 N PAGE 848

1. (a) True   (b) False   (c) True   (d) False   (e) False
(f ) True   (g) False   (h) True   (i) True   ( j) False
(k) True
3. ;

, , 
5. ; 

, , 

7. , , ;

9. , , ; , 

11. , , ; 

13. Yes

15. (a) 
(b) , , 

17. , 
19. Skew    21. 23.
25. 27.
29. 31.
33. 35.
37. 39.

41. 43.

45. 47. 49. 1, 0, �1    
51. Perpendicular    53. Neither, 
55. Parallel    
57. (a) , , (b) 

59. , 61.
63.
65.
67. and are parallel, and are identical

96s3 ��7, 10, 8 � , �7, �10, �8 �


�
1

3s3
, �

1

3s3
, 

5

3s3 � 
 1

3s3
, 

1

3s3
, �

5

3s3 �
�0, 18, �9 � 9

2 s5

�13, �14, 5 � 1
2 s390

10.8 sin 80� � 10.6 N � m

�417 N 60�

s97�3

r � �2 i � 2.4 j � 3.5 k� � t�3 i � 2 j � k�
x � 2 � 3t y � 2.4 � 2t z � 3.5 � t

r � �i � 6k� � t�i � 3 j � k�
x � 1 � t y � 3t z � 6 � t

x � 2 � 2t y � 1 �
1
2 t z � �3 � 4t

�x � 2��2 � 2y � 2 � �z � 3����4�

x � �8 � 11t y � 1 � 3t z � 4
x � 8

11
�

y � 1

�3
z � 4

x � 1 � t y � �1 � 2t z � 1 � t
x � 1 � �y � 1��2 � z � 1

�x � 1����1� � � y � 5��2 � �z � 6����3�
��1, �1, 0� (�3

2 , 0, �3
2) �0, �3, 3�

r�t� � �2 i � j � 4k� � t�2 i � 7 j � 3k� 0 � t � 1
�4, �1, �5� x � 2y � 5z � 0

x � 4y � z � 4 5x � y � z � 7
6x � 6y � 6z � 11 x � y � z � 2
�13x � 17y � 7z � �42 33x � 10y � 4z � 190
x � 2y � 4z � �1 3x � 8y � z � �38

0

z

y

x

(0, 0, 10)

(5, 0, 0)

(0, 2, 0)

0

z

y

x

”0, 0,    ’

(1, 0, 0)

(0, _2, 0)

3
2

�2, 3, 5� �2, 3, 1�
cos�1(1

3) � 70.5�

x � 1 y � �t z � t cos�1� 5

3s3	 � 15.8�

x � 1 y � 2 � �z x � 2y � z � 5
�x�a� � �y�b� � �z�c� � 1
x � 3t, y � 1 � t, z � 2 � 2t
P2 P3 P1 P4
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APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A25

69. 71. 73. 77.
79.

EXERCISES 12.6 N PAGE 856

1. (a) Parabola
(b) Parabolic cylinder with rulings parallel to the -axis
(c) Parabolic cylinder with rulings parallel to the x-axis
3. Circular cylinder 5. Parabolic cylinder

7. Hyperbolic cylinder

9. (a) , , hyperbola ;
, , hyperbola ;
, , circle

(b) The hyperboloid is rotated so that it has axis the -axis
(c) The hyperboloid is shifted one unit in the negative -direction

11. Elliptic paraboloid with axis the -axis

13. Elliptic cone with axis the -axis

s61�14 18
7 5�(2s14) 1�s6

13�s69

z

y

z

x

y
x

z

y

x

y

x � k y2 � z2 � 1 � k2 �k ��1�
y � k x 2 � z2 � 1 � k2 �k ��1�
z � k x 2 � y 2 � 1 � k2

y
y

x

x

z

y

x
z

y

x

15. Hyperboloid of two sheets

17. Ellipsoid

19. Hyperbolic paraboloid 

21. VII    23. II    25. VI    27. VIII

29.

Elliptic cone with axis the -axis

31.

Hyperbolic paraboloid

33.

Ellipsoid with center

x

y

z

x y

z

(0, 0, 1)

(0, 6, 0)

(1, 0, 0)

z

y

x

y

x

z

y 2 � x 2 �
z2

9

y

z

x

y

y � z2 �
x 2

2

0

z

yx

(0, 4, 3)

(0, 0, 3)

x 2 �
�y � 2�2

4
� �z � 3�2 � 1

�0, 2, 3�
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A26 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

35.
Circular cone with vertex 
and axis parallel to the -axis

37. 39.

41.

43. 45. , paraboloid

47. (a) 

(b) Circle   (c) Ellipse
51.

CHAPTER 12 REVIEW N PAGE 858

True-False Quiz
1. False    3. False    5. True    7. True    9. True
11. True    13. True    15. False    17. False    
19. False    21. True

Exercises

1. (a) 

(b) , 
(c) Center , radius 5
3. ; ; out of the page    
5. 7. (a) 2   (b) (c) (d) 0    
9. 11. (a) (b) 
13. 166 N, 114 N    
15. , , 
17. , , 
19. 21. (1, 4, 4)    23. Skew
25. 27.

x
y

z(2,-1,1)�y � 1�2 � �x � 2�2 � �z � 1�2

�2, �1, 1�
y

_2
0

2 x_2 0 2y

z

_2

0

2

_4
0

4 x
_4

0
4y

_4

0z

4

z

yx

0

z=œ„„„„„≈+¥

z=2

�4x � y 2 � z2y � x 2 � z2

x 2

�6378.137�2 �
y 2

�6378.137�2 �
z2

�6356.523�2 � 1

2
1
0

y
1

0
�1

x
1

0
�1

z

�x � 1�2 � �y � 2�2 � �z � 1�2 � 69

x � 0�y � 2�2 � �z � 1�2 � 68
�4, �1, �3�

� u � v � � 3s2u � v � 3s2
�2�2�2, �4

s41�2�4, �3, 4 �cos�1( 1
3 ) � 71�

z � 2 � 3ty � �1 � 2tx � 4 � 3t
z � 4 � 5ty � 2 � tx � �2 � 2t

�4x � 3y � z � �14
22�s26x � y � z � 4

29. Plane 31. Cone

33. Hyperboloid of two sheets 35. Ellipsoid

37.

PROBLEMS PLUS N PAGE 861

1.
3. (a) 
(b) (c) 
5.

CHAPTER 13

EXERCISES 13.1 N PAGE 869

1. 3. 5.

7. 9.

11. 13.

x

y

z

0

z

y
x

z

x y

(0, 1, 2)

(0, 2, 0)(1, 1, 0)

(0, 1, -2)

z

x

y

(0, 2, 0)

4x 2 � y 2 � z2 � 16

(s3 �
3
2) m

�x � 1����2c� � �y � c���c 2 � 1� � �z � c���c 2 � 1�
4��3x 2 � y 2 � t 2 � 1, z � t

20

��1, ��2, 0 �i � j � k��1, 2

x y

z

(0, 2, 0)

y

x1

π

x

z

y y=≈

z

x
1

y
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APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A27

15.

17. , ; 
, , , 

19. , ; 

, , , 
21. II    23. V    25. IV
27. 29. , 

31.

33.

x

2π

y

1

_1
_2π

x

z

2

_2

2π_2π

y

z

2

_2

_1 1

x

y

z

(0, 0, 2)

r�t� � �2 � 4t, 2t, �2t� 0 � t � 1
x � 2 � 4t y � 2t z � �2t 0 � t � 1

r�t� � � 1
2 t, �1 �

4
3t, 1 �

3
4 t� 0 � t � 1

x � 1
2 t y � �1 �

4
3t z � 1 �

3
4 t 0 � t � 1

�0, 0, 0� �1, 0, 1�z

y

x

0

1

1
1

0 x

_1

0

0

z

y

_1
_1

10

10 10

0

0
0

z

y

x

_10 _10

_10

35. 37.

41.
43.
45. 47. Yes

EXERCISES 13.2 N PAGE 876

1. (a) 

(b), (d) 

(c) ; 

3. (a), (c) (b) 

5. (a), (c) (b) 

_1
_1

0

1
1

0
x

_1

0z

y

1

0
2 2

�2

0

2

�2

0
x

y

z

r�t� � t i �
1
2 �t 2 � 1� j �

1
2 �t 2 � 1� k

r�t� � cos t i � sin t j � cos 2t k, 0 � t � 2�
x � 2 cos t, y � 2 sin t, z � 4 cos2t

y

x0 1

1

RC

Q

P

r(4.5)

r(4.2)

r(4)

r(4.5)-r(4)

r(4.2)-r(4)

y

x0 1

1

RC

Q

P

r(4.5)

r(4.2)

r(4)

r(4.5)-r(4)
0.5

r(4.2)-r(4)
0.2

T(4)

r	�4� � lim
h l 0

r�4 � h� � r�4�
h

T�4� �
r	�4�

� r	�4� �
y

0 x

r(_1)
rª(_1)

(_3, 2)

r	�t� � �1, 2t �

y

0 x
r ”   ’

”     , œ„2’œ„2
2

π
4

rª ”   ’
π
4

r	�t� � cos t i � 2 sin t j
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A28 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

7. (a), (c) (b) 

9.
11.
13. 15.

17. 19.

21. , , , 
23. , , 
25. , , 
27.
29. , , 
31. , , 
33. 66°    35. 37.

39.

41.
47. 49. 35

EXERCISES 13.3 N PAGE 884

1. 3. 5. 7. 18.6833
9. 11.

13.

15.

17. (a) ,
(b) 

19. (a) 

(b) 
21. 23. 25.
27. 29.

31. ; approaches 0    33. (a) P (b) 
35.

37.

39. is , is 

x

y

0

rª(0)

r(0)

(1, 1)

r	�t� � 2e 2 t i � e t j

r	�t� � � t cos t � sin t, 2t, cos 2t � 2t sin 2t �
r	�t� � i � (1�st ) k
r	�t� � 2tet 2

i � [3��1 � 3t� k r	�t� � b � 2tc

� 1
3 , 2

3 , 2
3 � 3

5 j �
4
5 k

�1, 2t, 3t 2 � �1�s14, 2�s14, 3�s14 � �0, 2, 6t � �6t 2, �6t, 2 �
x � 3 � t y � 2t z � 2 � 4t
x � 1 � t y � t z � 1 � t
r�t� � �3 � 4t� i � �4 � 3t� j � �2 � 6t� k
x � t y � 1 � t z � 2t
x � �� � t y � � � t z � �� t

2 i � 4 j � 32 k i � j � k

tan t i �
1
8�t 2 � 1�4 j � (1

3 t 3 ln t �
1
9 t 3)k � C

t 2 i � t 3 j � ( 2
3t

3�2 �
2
3) k

2t cos t � 2 sin t � 2 cos t sin t

10s10 e � e�1 1
27�13 3�2 � 8�

1.2780 42

r�t�s�� �
2

s29
s i � �1 �

3

s29
s	 j � �5 �

4

s29
s	 k

�3 sin 1, 4, 3 cos 1�
�1�s10 , (�3�s10 )sin t, (3�s10 )cos t�

�0, �cos t, �sin t� 3
10

1

e 2 t � 1
�s2et, e 2 t, �1 � ,

1

e2 t � 1
�1 � e 2 t, s2e t, s2e t �

s2e 2 t��e 2 t � 1�2

6t 2��9t 4 � 4t 2�3�2 4
25

1
7 s

19
14

12x 2��1 � 16x 6�3�2 e x� x � 2 ���1 � �xe x � e x�23�2

(� 1
2 ln 2, 1�s2) 1.3,  0.7

4

_4 4

_1

y=k(x)
y=x–@

5

_5 0
250

500
100500

0z

y

x

0.6

50_5 t

�(t)

y � 
�x�by � f �x�a

41.

integer multiples of 

43.

45. 47.
49.
51.

53.
55. , 
63. 65.

EXERCISES 13.4 N PAGE 894

1. (a) , ,
, 

(b) , 2.58
3.

5.

7.


�t� �
6s4 cos2t � 12 cos t � 13

�17 � 12 cos t�3�2

k(t)

t0 2π 4π 6π

2�

6t 2��4 t 2 � 9t 4�3�2

1�(s2et) � 2
3 , 2

3 , 1
3 �, �� 1

3 , 2
3 , � 2

3 �, �� 2
3 , 1

3 , 2
3 �

y � 6x � �, x � 6y � 6�

(x �
5
2 )2

� y 2 � 81
4 , x 2 � (y �

5
3 )2 � 16

9

5

2.5�7.5

�5

��1, �3, 1�
2x � y � 4z � 7 6x � 8y � z � �3
2��t 4 � 4t 2 � 1� 2.07 � 1010 Å � 2 m

1.8 i � 3.8 j � 0.7k 2.0 i � 2.4 j � 0.6k
2.8 i � 1.8 j � 0.3k 2.8 i � 0.8 j � 0.4k

2.4 i � 0.8 j � 0.5k
v�t� � ��t, 1 �

(_2, 2)

0

y

x

v(2)

a(2)

a�t� � ��1, 0 �
� v�t� � � st 2 � 1

v�t� � �3 sin t i � 2 cos t j

0

y

x

v ”   ’π
3

a ”   ’π
3

”   , œ„3’
3
2

(0, 2)

(3, 0)

a�t� � �3 cos t i � 2 sin t j

� v�t� � � s5 sin2 t � 4

v�t� � i � 2t j

(1, 1, 2)

z

y

x

a(1)

v(1)

a�t� � 2 j

� v�t� � � s1 � 4t 2
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APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A29

9. , , 

11.
13. ,

,  

15. ,
17. (a) 
(b) 

19. 21. , 
23. (a) (b) (c) 
25. 27. , 
29. , 
31. ; 
33. (a) 16 m (b) upstream

35. The path is contained in a circle that lies in a plane perpen-
dicular to with center on a line through the origin in the direction
of .
37. 39. 0, 1    41.
43. 45.

CHAPTER 13 REVIEW N PAGE 897

True-False Quiz
1. True    3. False    5. False    7. False    
9. True    11. False    13. True

Exercises
1. (a) 

(b) ,

3. ,
5. 7. 86.631    9.
11. (a) 

(b) 

(c) 
13. 15.

�2t � 1, 2t � 1, 3t 2 � �2, 2, 6t� s9t 4 � 8t 2 � 2

s2 i � e t j � e�t k, e t j � e�t k, e t � e�t

e t ��cos t � sin t� i � �sin t � cos t� j � �t � 1�k
e t ��2 sin t i � 2 cos t j � �t � 2�k e t

st 2 � 2t � 3

v�t� � t i � 2t j � k r�t� � ( 1
2t

2 � 1� i � t 2 j � t k
r�t� � ( 1

3t
3 � t) i � �t � sin t � 1� j � ( 1

4 �
1
4 cos 2t) k

_200
0

200
x

_10

0
10

y

z

0
0.2
0.4
0.6

t � 4 r�t� � t i � t j �
5
2 t 2 k � v�t� � � s25t 2 � 2

�3535 m �1531 m 200 m�s
30 m�s �10.2� �79.8�

13.0� � � � 36.0� 55.4� � � � 85.5�
�250, �50, 0� 10s93 � 96.4 ft�s

�23.6�

40

_4

0

20

40

_12

0

12

c
c
6t, 6 e t � e�t, s2
4.5 cm�s2, 9.0 cm�s2 t � 1

z

y

x

(0, 1, 0)

(2, 1, 0)

r	�t� � i � � sin �t j � � cos �t k
r �t� � �� 2 cos �t j � � 2 sin �t k

r�t� � 4 cos t i � 4 sin t j � �5 � 4 cos t�k 0 � t � 2�
1
3 i � �2�� 2� j � �2���k ��2

� t 2, t, 1 ��st 4 � t 2 � 1

� t 3 � 2t, 1 � t 4, �2t 3 � t��st 8 � 5t 6 � 6t 4 � 5t 2 � 1

st 8 � 5t 6 � 6t 4 � 5t 2 � 1��t 4 � t 2 � 1�2

12�173�2 x � 2y � 2� � 0

17. ,
, 

19. (a) About 3.8 ft above the ground, 60.8 ft from the athlete
(b) (c) from the athlete
21. (c) 

23. (a) (c) 

PROBLEMS PLUS N PAGE 900

1. (a) 
3. (a) to the right of the table’s edge, 
(b) (c) to the right of the table’s edge
5.
7. where , 

, 

CHAPTER 14

EXERCISES 14.1 N PAGE 912

1. (a) ; a temperature of with wind blowing at 
feels equivalent to about without wind.

(b) When the temperature is , what wind speed gives a wind
chill of ?  
(c) With a wind speed of , what temperature gives a wind
chill of ?  
(d) A function of wind speed that gives wind-chill values when the
temperature is 
(e) A function of temperature that gives wind-chill values when the
wind speed is 
3. ; the manufacturer’s yearly production is valued at $94.2
million when 120,000 labor hours are spent and $20 million in 
capital is invested.
5. (a) ; the surface area of a person 70 inches tall who
weighs 160 pounds is approximately 20.5 square feet.
7. (a) 25; a 40-knot wind blowing in the open sea for 15 h will 
create waves about 25 ft high.
(b) is a function of t giving the wave heights produced by
30-knot winds blowing for t hours.
(c) is a function of giving the wave heights produced by
winds of speed blowing for 30 hours.
9. (a) 1   (b) (c) 
11. (a) (b) ,
interior of a sphere of radius 2, center the origin, in the first octant
13.

15. , 

v�t� � �1 � ln t� i � j � e�t k

� v�t� � � s2 � 2 ln t � �ln t�2 � e�2 t a�t� � �1�t� i � e�t k

�21.4 ft �64.2 ft
�2e�t vd � e�t R

v � �R��sin �t i � cos �t j� a � ��2r

90�, v0
2��2t�

�0.94 ft �15 ft�s
�7.6� �2.13 ft

56�
r�u, v� � c � u a � vb a � �a1, a2, a3�

b � �b1, b2, b3 � c � �c1, c2, c3�

�27 �15�C
40 km�h �27�C

�20�C
�30�C 20 km�h

20 km�h
�49�C �35�C

�5�C

50 km�h
�94.2

�20.5

f �30, t�

f �v, 30� v
v
� 2 ��1, 1

3 ��x, y, z� � x 2 � y 2 � z 2 � 4, x � 0, y � 0, z � 0�

��x, y� � y � 2x�

x

y

x

y

y=2x

0

��x, y� � 1
9 x 2 � y 2 � 1� ���, ln 9 y

x0

≈+¥=11
9
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A30 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

17.

19.

21.

23. , plane parallel to -axis

25. , plane

27. , parabolic cylinder

��x, y� � �1 � x � 1, �1 � y � 1� y

x_1 10

1

_1

��x, y� � y � x 2, x � �1� y

x0 1_1

y=≈

��x, y, z� � x 2 � y 2 � z2 � 1� z

y

0

x

z � 1 � y x z

(0, 0, 1)

(0, _1, 0)

0

x y

4x � 5y � z � 10

0

z

y

x

(0, 0, 10)

(2.5, 0, 0)
(0, 2, 0)

z � y2 � 1 z

x y

29. ,
elliptic paraboloid

31. ,
top half of ellipsoid

33. 35. 37. Steep; nearly flat

39. 41.

43. 45. 

47. 49.

z � 9 � x 2 � 9y 2

x
y

z

(3, 0, 0) (0, 1, 0)

(0, 0, 9)

z � s4 � 4x 2 � y 2

x y

z

(0, 0, 2)

(1, 0, 0) (0, 2, 0)

�56, �35 11�C, 19.5�C

z

14

y
x

5

y

x

z

�y � 2x�2 � k y � �sx � k
y

x

0 1 2341234

y

x

0

_1

_2

1

2

y � ke�x y 2 � x 2 � k 2

y

x0
0

1 2 3

_1
_2

_3

y

x

0

0

1

1

2

2

3

3
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APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A31

51.

53.

55.

57.

59. (a) C   (b) II    61. (a) F   (b) I    
63. (a) B   (b) VI    65. Family of parallel planes    
67. Family of circular cylinders with axis the -axis 
69. (a) Shift the graph of upward 2 units
(b) Stretch the graph of vertically by a factor of 2
(c) Reflect the graph of about the -plane
(d) Reflect the graph of about the -plane and then shift it
upward 2 units
71.

f appears to have a maximum value of about 15. There are two
local maximum points but no local minimum point.

x 2 � 9y 2 � k
y

0 x

4321

y

x

z

z=4

z=3

z=2

z=1

y

0 x

0

_2 0 2 2 0 _2
y x

z

1.0

0.5z

0.0

4
0

x

_4

4

0
y

_4

x �k � 0�
f

f
f xy
f xy

0

20

0

_20

_40

y 50_5 x5

_5

z

73.

The function values approach 0 as x, y become large; as
approaches the origin, f approaches or 0, depending on the
direction of approach.
75. If , the graph is a cylindrical surface. For , the level
curves are ellipses. The graph curves upward as we leave the ori-
gin, and the steepness increases as c increases. For , the level
curves are hyperbolas. The graph curves upward in the y-direction
and downward, approaching the xy-plane, in the x-direction giving
a saddle-shaped appearance near (0, 0, 1).

77. 79. (b) 

EXERCISES 14.2 N PAGE 923

1. Nothing; if is continuous, 3.
5. 1    7. 9. Does not exist    11. Does not exist
13. 0    15. Does not exist 17. 2    
19. 21. Does not exist
23. The graph shows that the function approaches different num-
bers along different lines.
25. ;

27. Along the line 29. 31.

33. 35.

37. 39. 0    41.

43.

is continuous on 

EXERCISES 14.3 N PAGE 935

1. (a) The rate of change of temperature as longitude varies, with
latitude and time fixed; the rate of change as only latitude varies;
the rate of change as only time varies.
(b) Positive, negative, positive

3. (a) ; for a temperature of and wind
speed of , the wind-chill index rises by for each
degree the temperature increases. ; for a 
temperature of and wind speed of , the wind-chill
index decreases by for each the wind speed 
increases.
(b) Positive, negative   (c) 0

10

5

0

_5

_10

y2 0
_2

x

2

0

_2

z

�x, y�
��

c � 0 c � 0

c � 0

c � �2, 0, 2 y � 0.75x � 0.01

f f �3, 1� � 6 �
5
2

2
7

s3

h�x, y� � �2x � 3y � 6�2 � s2x � 3y � 6
��x, y� � 2x � 3y � 6�

y � x �2 ��x, y� � x 2 � y 2 � 1�
��x, y� � x 2 � y 2 � 4� ��x, y, z� � x 2 � y 2 � z 2 � 1�
��x, y� � �x, y� � �0, 0�� �1

_2
0

2
x_2

0
2y

z

_1

0

1
2

f � 2

fT ��15, 30� � 1.3 �15�C
30 km�h 1.3�C

fv��15, 30� � �0.15
�15�C 30 km�h

0.15�C km�h
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A32 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

5. (a) Positive   (b) Negative    
7. (a) Positive   (b) Negative    
9.
11. , 

13.

15. ,
17. ,
19. , 
21. ,

23. ,

25. , 

27. , 

29. , 
31. , , 
33. , ,

c � f, b � fx, a � fy
fx�1, 2� � �8 � slope of C1 fy�1, 2� � �4 � slope of C2

z

y

0

x

(1, 2, 8)

C¡

(1, 2)

2

16

4

z

y

0

x

(1, 2, 8)

C™

(1, 2)

2

16

4

_2
0

2x

0

2

y

_20

0

20

z

_2

f �x, y� � x 2y 3

_2
_20

2x

0

2

y

_20

0

20

z

fx�x, y� � 2xy 3

_2
0

2x
0

2

y

0

20

40

_2

z

fy�x, y� � 3x 2y 2

fx �x, y� � �3y fy �x, y� � 5y 4 � 3x
fx �x, t� � ��e�t sin �x ft �x, t� � �e�t cos �x
�z��x � 20�2x � 3y�9 �z��y � 30�2x � 3y�9

fx�x, y� � 1�y fy�x, y� � �x�y 2

fx�x, y� �
�ad � bc�y
�cx � dy�2 fy�x, y� �

�bc � ad�x
�cx � dy�2

tu�u, v� � 10uv�u2v � v 3�4
tv�u, v� � 5�u 2 � 3v 2��u2v � v 3� 4

Rp�p, q� �
q 2

1 � p2q4 Rq�p, q� �
2pq

1 � p2q4

Fx�x, y� � cos�e x� Fy�x, y� � �cos�e y�
fx � z � 10xy 3z4 fy � �15x 2y 2z4 fz � x � 20x 2y 3z3

�w��x � 1��x � 2y � 3z� �w��y � 2��x � 2y � 3z�
�w��z � 3��x � 2y � 3z�

35. , ,

37. , , 
, 

39.

41. 43. 45. , 

47. , 

49. , 

51. (a) (b) 
53. , , 
55. , ,

57. , , 
63. , 65.
67. 69.
71. 73. 83.

87. , 

93. No    95. 99.
101. (a) 

(b) , 

(c) 0, 0   (e) No, since and are not continuous.

EXERCISES 14.4 N PAGE 946

1. 3.
5.
7. 9.

11. 13. 15.

19. 6.3    21.

23.
25.
27.
29.
31. 33. 35.
37. ; decrease
39. 41. 2.3%    43.

�u��x � y sin�1�yz� �u��y � x sin�1�yz� � xyz�s1 � y 2z2

�u��z � xy 2�s1 � y 2z2

hx � 2xy cos�z�t� hy � x 2 cos�z�t�
hz � ��x 2y�t� sin�z�t� ht � �x 2yz�t 2� sin�z�t�

�u��xi � xi�sx1
2 � x2

2 � � � � � xn
2

1
5

1
4 fx�x, y� � y 2 � 3x 2y fy�x, y� � 2xy � x 3

�z

�x
� �

x

3z

�z

�y
� �

2y

3z
�z

�x
�

yz

e z � xy

�z

�y
�

xz

e z � xy
f 	�x�, t	�y� f 	�x � y�, f 	�x � y�

fxx � 6xy 5 � 24x 2y fxy � 15x 2y 4 � 8x 3 � fyx fyy � 20x 3y 3

wuu � v2��u2 � v2�3�2 wuv � �uv��u2 � v2�3�2 � wvu

wvv � u2��u2 � v2�3�2

zxx � �2x��1 � x 2�2 zxy � 0 � zyx zyy � �2y��1 � y 2�2

24xy 2 � 6y 24x 2y � 6x �2x 2y 2z 5 � 6xyz 3 � 2z�e xyz2

�e r��2 sin � � � cos � � r� sin �� 4��y � 2z�3, 0
6yz 2 �12.2, �16.8, �23.25 R 2�R 1

2

�T

�P
�

V � nb

nR

�P

�V
�

2n 2a

V 3 �
nRT

�V � nb�2

x � 1 � t, y � 2, z � 2 � 2t �2

_0.2

0.2

0

_1

0

1
y

1
0

_1

x

z

fx�x, y� �
x 4y � 4x 2y 3 � y 5

�x 2 � y 2 �2 fy�x, y� �
x 5 � 4x 3y 2 � xy 4

�x 2 � y 2 �2

fxy fyx

z � �7x � 6y � 5 x � y � 2z � 0
x � y � z � 0

400

200

0

y5 0 _5x
10

0
_10

z

0

2 x
0

2y

_1

0z

1

6x � 4y � 23 1
9 x �

2
9 y �

2
3 1 � �y

3
7 x �

2
7 y �

6
7 z; 6.9914

4T � H � 329; 129�F
dz � �2e�2x cos 2� t dx � 2�e�2x sin 2� t dt
dm � 5p4q3 dp � 3p5q2 dq
dR � � 2 cos � d� � 2�� cos � d� � �� 2 sin � d�

�z � 0.9225, dz � 0.9 5.4 cm2 16 cm3

��0.0165mg
1

17 � 0.059 � �1 � �x, �2 � �y
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APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A33

EXERCISES 14.5 N PAGE 954

1.

3. 

5.
7. ,

9. ,

11. ,

13. 62    15.

17. , ,

19. ,

21. 1582, 3164, 23.

25. 27.

29.

31. 33.

35. 37.
39. (a) (b) (c) 
41. 43. 
45. (a) ,

51.

EXERCISES 14.6 N PAGE 967

1. 3. 5. 
7. (a) 
(b) (c) 

9. (a) 
(b) (c) 

11. 13. 15. 

17. 19. 21.
23. 25. 
27. (b) 
29. All points on the line 
31. (a) 
33. (a) (b) (c) 

35. 39.
41. (a) (b) 

�2x � y� cos t � �2y � x�e t

��x�t� � y sin t�s1 � x 2 � y2

e y�z�2t � �x�z� � �2xy�z2 �
�z��s � 2xy 3cos t � 3x 2y 2 sin t

�z��t � �2sxy 3sin t � 3sx 2y 2cos t

�z��s � t 2 cos � cos � � 2st sin � sin �
�z��t � 2st cos � cos � � s2 sin � sin �

�z

�s
� e r�t cos � �

s

ss 2 � t 2
sin �	

�z

�t
� e r�s cos � �

t

ss 2 � t 2
sin �	

7, 2
�u

�r
�

�u

�x

�x

�r
�

�u

�y

�y

�r

�u

�s
�

�u

�x

�x

�s
�

�u

�y

�y

�s
�u

�t
�

�u

�x

�x

�t
�

�u

�y

�y

�t
�w

�x
�

�w

�r

�r

�x
�

�w

�s

�s

�x
�

�w

�t

�t

�x
�w

�y
�

�w

�r

�r

�y
�

�w

�s

�s

�y
�

�w

�t

�t

�y
�700 2�, �2�

5
144 , � 5

96 , 5
144

2x � y sin x

cos x � 2y
1 � x 4y 2 � y 2 � x 4y 4 � 2xy

x 2 � 2xy � 2x 5y 3

�
x

3z
, �

2y

3z

yz

e z � xy
, 

xz

e z � xy

2�C�s � �0.33 m�s per minute
6 m3�s 10 m2�s 0 m�s

� �0.27 L�s �1�(12s3) rad�s

�z��r � ��z��x� cos � � ��z��y� sin �
�z��� � ���z��x�r sin � � ��z��y�r cos �

4rs �2z��x 2 � �4r 2 � 4s 2 ��2z��x �y � 4rs �2z��y 2 � 2 �z��y

��0.08 mb�km � 0.778 2 � s3�2
�f �x, y� � �2 cos�2x � 3y�, 3 cos�2x � 3y��

�2, 3 � s3 �
3
2

�2xyz � yz 3, x 2z � xz 3, x 2y � 3xyz 2 �
��3, 2, 2 � 2

5

4 � 3s3

10
�8�s10 4�s30

23
42 2�5 s65 , �1, 8 �
1, �0, 1 � 1, �3, 6, �2 �

��12, 92 �
y � x � 1

�40�(3s3)
32�s3 �38, 6, 12 � 2s406

327
13

774
25

x � y � z � 11 x � 3 � y � 3 � z � 5

43. (a) (b) 

45. (a) (b) 
47. 49. , 

55. No 59.

63.
67. If and , then and are
known, so we solve linear equations for and .

EXERCISES 14.7 N PAGE 977

1. (a) f has a local minimum at (1, 1).
(b) f has a saddle point at (1, 1).
3. Local minimum at (1, 1), saddle point at (0, 0)
5. Minimum 
7. Saddle points at 
9. Maximum , minimum , 
saddle points at 
11. Minimum , saddle point at 
13. None    15. Minimum , saddle points at 
17. Minima , 
saddle points at , 
21. Minima , 
23. Maximum ,
minimum , saddle point at 
25. Minima , ,
saddle points , 
lowest points 
27. Maximum , 
minima , , 
saddle points , , ,
no highest or lowest point
29. Maximum , minimum 
31. Maximum , minimum 
33. Maximum , minimum 
35. Maximum , minimum 

37.

2x � 3y � 12z � 24
x � 3

2
�

y � 2

3
�

z � 1

12
x � y � z � 1 x � y � z � 1

�2, 3� 2x � 3y � 12

1

_1

0

1

2

1 2x 2

z

y

y

x0

2x+3y=12

xy=6

(3, 2)

f (3, 2)
Î

(�5
4 , �5

4 , 25
8 )

x � �1 � 10t, y � 1 � 16t, z � 2 � 12t
u � �a, b � v � �c, d � afx � bfy c fx � dfy

fx fy

f (1
3, �

2
3) � �

1
3

�1, 1�, ��1, �1�
f �0, 0� � 2 f �0, 4� � �30

�2, 2�, ��2, 2�
f �2, 1� � �8 �0, 0�

f �0, 0� � 0 ��1, 0�
f �0, 1� � f ��, �1� � f �2�, 1� � �1

���2, 0� �3��2, 0�
f �1, �1� � 3 f ��1, �1� � 3

f ���3, ��3� � 3s3�2
f �5��3, 5��3� � �3s3�2 ��, ��

f �0, �0.794� � �1.191 f ��1.592, 1.267� � �1.310
��0.720, 0.259�
��1.592, 1.267, �1.310�
f �0.170, �1.215� � 3.197

f ��1.301, 0.549� � �3.145 f �1.131, 0.549� � �0.701
��1.301, �1.215� �0.170, 0.549� �1.131, �1.215�

f �0, �2� � 4 f �1, 0� � �1
f ��1, 1� � 7 f �0, 0� � 4
f �3, 0� � 83 f �1, 1� � 0
f �1, 0� � 2 f ��1, 0� � �2

_3

_2

_1

0

_1 0 1
_2

2
4

x

y

z

(_1, 0, 0) (1, 2, 0)
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A34 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

39. 41. , 43.

45. 47. 49. Cube, edge length 
51. Square base of side 40 cm, height 20 cm    53.

EXERCISES 14.8 N PAGE 987

1.
3. No maximum, minimum 
5. Maximum , minimum 
7. Maximum , minimum 
9. Maximum , minimum 

11. Maximum , minimum 1

13. Maximum ,

minimum 

15. Maximum ,
minimum 
17. Maximum , minimum 
19. Maximum , 
minimum 

21. Maximum ,

minimum 

29–41. See Exercises 39–53 in Section 14.7.
43. Nearest , farthest 
45. Maximum , minimum 
47. (a) (b) When 

CHAPTER 14 REVIEW N PAGE 991

True-False Quiz
1. True    3. False    5. False    7. True    9. False
11. True

Exercises
1. 3.

5. 7. 

100
3 , 100

3 , 100
3(2, 1, �s5)(2, 1, s5)2�s3

c�124
38r 3� (3s3)

L 3�(3s3)

�59, 30
f �1, 1� � f ��1, �1� � 2

f ��2, 0� � �4f �0, �1� � 1
f ��2, �2, �1� � �9f �2, 2, 1� � 9

�2�s32�s3

s3

f ( 1
2, 1

2 , 1
2 , 1

2 ) � 2

f (� 1
2 , � 1

2 , � 1
2 , � 1

2 ) � �2

f (1, s2, �s2) � 1 � 2s2
f (1, �s2, s2) � 1 � 2s2

1
2

3
2

f (3�s2 , �3�s2 ) � 9 � 12s2
f ��2, 2� � �8

f (�1�s2, �1�(2s2)) � e 1�4

f (�1�s2, �1�(2s2)) � e�1�4

��1, �1, 2�( 1
2 , 1

2 , 1
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x y

z

1

1
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y

x_1
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y=_x-1

x210

y

2

1

y

x

1
2

3 4 5

0

9.
11. (a) , (b) by
Equation 14.6.9 (Definition 14.6.2 gives .)   
(c) 
13. , 

15. , 

17. , , 

19. , , 
21. , ,

, ,
, 

25. (a) (b) 

27. (a) (b) 

29. (a) 
(b) 
31.
33.
35.
37.
43. 45.
47. 49.
51. Minimum 
53. Maximum ; saddle points (0, 0), (0, 3), (3, 0)
55. Maximum , minimum 
57. Maximum , minima ,
saddle points 
59. Maximum ,
minimum 
61. Maximum 1, minimum 
63.
65.

PROBLEMS PLUS N PAGE 995

1. 3. (a) (b) Yes
7.

CHAPTER 15

EXERCISES 15.1 N PAGE 1005

1. (a) 288   (b) 144    3. (a) 0.990   (b) 1.151
5. (a) 4   (b) 7.
9. (a) (b) 11. 60    13. 3    
15. 1.141606, 1.143191, 1.143535, 1.143617, 1.143637, 1.143642

EXERCISES 15.2 N PAGE 1011

1. , 3. 222    5. 7. 18
9. 11. 13. 15. 0

2
3

�3.5�C�m �3.0�C�m � 0.35�C�m
�1.1�C�m

�0.25
fx � 32xy�5y 3 � 2x 2y�7 fy � �16x 2 � 120y 2��5y 3 � 2x 2y�7
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 2 � 2	 ln�	 2 � 
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f yz � lmxky l�1z m�1 � f zy f zz � m�m � 1�x ky lz m�2

z � 8x � 4y � 1
x � 1

8
�

y � 2

4
�

z � 1

�1

2x � 2y � 3z � 3
x � 2

4
�

y � 1

�4
�

z � 1

�6
x � 2y � 5z � 0

x � 2 � t, y � �1 � 2t, z � 5t
(2, 1

2 , �1), (�2, �1
2 , 1)

60x �
24
5 y �

32
5 z � 120; 38.656

2xy 3�1 � 6p� � 3x 2y 2� pe p � ep� � 4z 3� p cos p � sin p�
�47, 108
	2xe yz 2

, x 2z 2e yz 2

, 2x 2yzeyz 2


 �
4
5

s145�2, 	4, 9
2 
 �5

8 knot�mi
f ��4, 1� � �11
f �1, 1� � 1
f �1, 2� � 4 f �2, 4� � �64
f ��1, 0� � 2 f �1, �1� � �3

��1, �1�, �1, 0�
f (�s2�3, 1�s3) � 2�(3s3)

f (�s2�3, �1�s3) � �2�(3s3)
�1

(�3�1�4, 3�1�4
s2, �31�4 ), (�3�1�4, �3�1�4
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P(2 � s3), P(3 � s3)�6, P(2s3 � 3)�3

L2W 2, 1
4 L2W 2 x � w�3, base � w�3
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17. 19. 21.

23.

25. 51    27. 29. 2 31.
33.

35. 37. 0
39. Fubini’s Theorem does not apply. The integrand has an infinite
discontinuity at the origin.

EXERCISES 15.3 N PAGE 1019

1. 32    3. 5. 7. 9.
11. (a) (b)

13. Type I: ,
type II: ; 

15.

17. 19. 21. 0    23. 25.

27. 6 29. 31. 33. 0, 1.213; 0.713    35.
37.

39. 13,984,735,616�14,549,535    
41.

9 ln 2 1
2 (s3 � 1) �

1
12� 1

2e
�6 �

5
2
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y
x
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1
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x1
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5
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3
10

1
3 sin 1 4

3 �

0 x

y
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0 x

y

D
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D � ��x, y� � 0  y  1, y  x  1� 1

3

x
1
0 x

sx
�sx y dy dx � x

4
1 xsx

x�2 y dy dx� x
2

�1 x
y�2
y 2 y dx dy � 9

4

1
2 �1 � cos 1� 11

3
17
60

31
8

128
15

1
3

64
3

0

z

y

x

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

��2

43.

45.

47.

49. 51. 53. 55. 1
57. 59. 63.
65. 67.

EXERCISES 15.4 N PAGE 1026

1. 3.

5.

7. 9.
11. 13. 15.

17. 19. 21. 23.

25. 27.

29. 31. 33. 4.5951

35. 37. 39.

41. (a) (b) 

EXERCISES 15.5 N PAGE 1036

1. 3. , 5. 7. , 
9. , 11. 13.
15. if vertex is (0, 0) and sides are along positive axes
17.

19. , , if vertex is and sides are
along positive axes
21. , ; , 

x
1
0 x

1
x f �x, y� dy dx

x

y

0

y=x

(0, 1)

(1, 1)

x
1
0 x

cos�1 y
0 f �x, y� dx dy

x

y
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π
2

1

0

x
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0 x

2
e y f �x, y� dx dy y
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x=2
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1 2
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1
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0 x
4
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1
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4
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�
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2
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3� 4
3 �a 3

�2��3�[1 � (1�s2)] �8��3�(64 � 24s3)
1
2��1 � cos 9� 2s2�3

1800� ft3 2��a � b� 15
16

s��4 s��2

285 C 42k (2, 85
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23. , ; , 

25. , ,

, , 

27. (a) (b) 0.375   (c) 
29. (b) (i) 
(ii) (c) 2, 5
31. (a) (b) 

33. (a) , where D is the
disk with radius 10 mi centered at the center of the city
(b) , on the edge

EXERCISES 15.6 N PAGE 1040

1. 3. 5.
7. 9.
11. 13. 15. (a) (b) 

17.

19. 3.3213    23.

EXERCISES 15.7 N PAGE 1049

1. 3. 5. 7. 9. 11.

13. 15. 17. 19. 21.

23. (a) (b) 

25. 0.985
27.

29.

31.
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33.

35.

37. 39.

41.

43. 45.

47. (a) 

(b) , where

(c) 

49. (a) 

(b) 

(c) 

51. (a) (b) (c) 53.

55. (a) The region bounded by the ellipsoid 

(b) 

EXERCISES 15.8 N PAGE 1055

1. (a) (b)

3. (a) (b) 
5. Vertical half-plane through the -axis
7. Circular paraboloid
9. (a) (b) 
11.

13. Cylindrical coordinates: , , 
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15.

17. 19. 21. 23.
25. (a) (b) 
27. 29. 0    
31. (a) , where is the cone
(b) ft-lb

EXERCISES 15.9 N PAGE 1061

1. (a) (b)

3. (a) (b) 
5. Half-cone 7. Sphere, radius , center 
9. (a) (b) 
11.

13. 

15.

y
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x
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384� 8
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15 2��5 4
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17.

19.

21. 23. 25.

27. 29. (a) (b) (0, 0, 2.1)
31. (a) (b) 

33. (a) (b) 

35.

37. 39. 41.
43. 45.

EXERCISES 15.10 N PAGE 1071

1. 16 3. 5. 0
7. The parallelogram with vertices (0, 0), (6, 3), (12, 1), (6, �2)
9. The region bounded by the line , the y-axis, and 
11. , is one possible transformation,
where 
13. , is one possible transformation, 
where 
15. 17. 19. 2 ln 3
21. (a) (b) (c) 
23. 25. 27.

CHAPTER 15 REVIEW N PAGE 1073

True-False Quiz
1. True    3. True    5. True    7. True    9. False

Exercises
1. 3. 5. 7.
9.
11. The region inside the loop of the four-leaved rose in
the first quadrant
13. 15. 17. 19.

21. 23. 25. 27.

29. 176    31. 33.

35. (a) (b) 
(c) 
37. (a) (b) 
39. 41. 43. 0.0512    
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A38 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

45. (a) (b) (c) 

47. 49. 51. 0

PROBLEMS PLUS N PAGE 1077

1. 30    3. 7. (b) 0.90

13.

CHAPTER 16

EXERCISES 16.1 N PAGE 1085

1.

3.

5.

7. 9.

11. IV    13. I    15. IV    17. III    
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21.

23.

25.

27.

29. III    31. II 33.
35. (a) (b) 

EXERCISES 16.2 N PAGE 1096

1. 3. 1638.4    5. 7.

9. 11. 13. 15.
17. (a) Positive   (b) Negative    19. 45
21. 23. 1.9633    25. 15.0074
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12s14 �e 6 � 1� 2

5�e � 1� 35
3

6
5 � cos 1 � sin 1

3� �
2
3 2.5

�2.5

�2.5 2 .5
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APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A39

29. (a) (b) 

31. 33.

35. (a) ,

,

, where 

(b) 

37. , 39. 41.

43. (a) , (b) 
45. 47. (b) Yes    51.

EXERCISES 16.3 N PAGE 1106

1. 40    3.
5. Not conservative    7.
9.
11. (b) 16    13. (a) (b) 2
15. (a) (b) 77
17. (a) (b) 19.
21. It doesn’t matter which curve is chosen.
23. 25. No    27. Conservative
31. (a) Yes   (b) Yes   (c) Yes
33. (a) No   (b) Yes   (c) Yes

EXERCISES 16.4 N PAGE 1113

1. 3. 5. 12 7. 9. 11.

13. 15. 17. 19. 21. (c) 

23. if the region is the portion of the disk
in the first quadrant

27. 0

EXERCISES 16.5 N PAGE 1121

1. (a) (b) 3
3. (a) (b) 

5. (a) (b) 
7. (a) 
(b) 
9. (a) Negative   (b) 
11. (a) Zero   (b) curl F points in the negative -direction
13. 15. Not conservative    
17. 19. No

11
8 � 1�e

0 2.1

2.1

_0.2

F”r”      ’’

F{r(1)}

F{r(0)}

1

œ„2

172,704
5,632,705 s2 �1 � e�14� � 2�k, �4��, 0�

x � �1�m� xC x��x, y, z� ds

y � �1�m� x
C y��x, y, z� ds

z � �1�m� x
C z��x, y, z� ds m � x

C ��x, y, z� ds

�0, 0, 3��

Ix � k(1
2� �

4
3 ) Iy � k (1

2� �
2
3 ) 2� 2 7

3

2ma i � 6mbt j 0  t  1 2ma 2 �
9
2mb 2

�1.67 � 104 ft-lb �22 J

f �x, y� � x 2 � 3xy � 2y 2 � 8y � K
f �x, y� � ye x � x sin y � K

f �x, y� � x ln y � x 2y 3 � K
f �x, y� � 1

2 x 2y 2

f �x, y, z� � xyz � z 2

f �x, y, z� � ye xz 4 4�e

30

8� 2
3

1
3 �24� �

16
3

4� �8e � 48e�1 �
1

12 3� 9
2

�4a�3�, 4a�3��
x 2 � y 2 � a 2

0
ze x i � �xye z � yze x� j � xe z k y�e z � e x�
0 2�sx 2 � y 2 � z2

	�e y cos z, �e z cos x, �e x cos y 

e x sin y � e y sin z � e z sin x

curl F � 0
z

f �x, y, z� � xy 2z3 � K
f �x, y, z� � xe yz � K

EXERCISES 16.6 N PAGE 1132

1. : no; : yes
3. Plane through containing vectors , 
5. Hyperbolic paraboloid
7.

9.

11.

13. IV    15. II 17. III
19.
21.
23. , ,

, , 

25. , , , 

29. ,
, ,

31. (a) Direction reverses   (b) Number of coils doubles

P Q
�0, 3, 1� 	1, 0, 4 
 	1, �1, 5 


√ constant

z

y

x

2

_2

0

0

0

1
1u constant

_1

0
x

1

_1
0

y

z

u constant

√ constant

_1

0

1

1

_1
0

x1

_1

0
y

1

_1

0z

1

√ constant

u constant

x � u, y � v � u, z � �v
y � y, z � z, x � s1 � y 2 � 1

4 z 2

x � 2 sin � cos � y � 2 sin � sin �
z � 2 cos � 0  �  ��4 0  �  2�
[or x � x, y � y, z � s4 � x 2 � y 2, x 2 � y 2  2]

x � x y � 4 cos � z � 4 sin � 0  x  5, 0  �  2�

x � x, y � e�x cos �

20�101
�1

0

1

y

z

x

z � e�x sin � 0  x  3
0  �  2�
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A40 APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES

33. 35.

37. 39. 41.
43. 45.

47. 49. 4    

51. 53.

55. (a) 24.2055   (b) 24.2476    

57.

59. (b) 

(c) 

61. 63.

EXERCISES 16.7 N PAGE 1144

1. 49.09 3. 5. 7.

9. 11. 13.

15. 17. 19. 12    21. 4    

23. 25. 27. 0    29. 48    31.
33. 4.5822    35. 3.4895

37. ,
where projection of on -plane

39.

41. (a) (b) 

43. 45. 47.

EXERCISES 16.8 N PAGE 1151

3. 0 5. 0    7. �1    9.
11. (a) (b) 

(c) ,
,

17. 3

3x � y � 3z � 3
s3

2
x �

1

2
y � z �

�

3

�x � 2z � 1 3s14 s14�
4
15�35�2 � 27�2 � 1� �2��3�(2s2 � 1)
1
2 s21 �

17
4 [ln(2 � s21) � ln s17]

A�S�  s3 �R 2 13.9783

45
8 s14 �

15
16 ln[(11s5 � 3s70)�(3s5 � s70)]

2

0

�2

�2 �10 2 1 0

z

y x

x
2�

0 x
�

0 s36 sin4u cos2v � 9 sin4u sin2v � 4 cos2u sin2u du dv

4� 2a 2�� � 2�

900� 11s14 2
3 (2s2 � 1)

171s14 s21�3 364s2��3

���60�(391s17 � 1) 16�
713
180 �

4
3� 2� �

8
3

xxS F � dS � xxD P��h��x� � Q � R��h��z�� dA
D � S xz

�0, 0, a�2�
Iz � xx

S �x 2 � y 2 ���x, y, z� dS 4329s2��5

0 kg�s 8
3�a 3�0 1248�

80�
81��2

�2

5

0

�5

z

0
y

2
�2 2

0
x

x � 3 cos t, y � 3 sin t

_2

0

2

4

_2 0 2 2
0

_2

z

y x

z � 1 � 3�cos t � sin t�
0  t  2�

EXERCISES 16.9 N PAGE 1157

5. 7. 9. 0    11. 13.
15.
17. 19. Negative at , positive at 

21. in quadrants I, II; in quadrants III, IV

CHAPTER 16 REVIEW N PAGE 1160

True-False Quiz
1. False    3. True    5. False    
7. False    9. True    11. True

Exercises
1. (a) Negative   (b) Positive    3. 5.

7. 9. 11. 13. 0

17. 25. 27.

29. 33. 37. 39. 21

CHAPTER 17

EXERCISES 17.1 N PAGE 1172

1. 3.
5. 7.
9.
11.

13.
15. All solutions approach either 

or as .

17. 19.
21.

23. 25.

27. 29.

31. No solution

33. (b) , n a positive integer; 

35. (a) , any integer   

(b) and unless , then

(c) and unless , then

EXERCISES 17.2 N PAGE 1179

1.

3.

341s2�60 �
81
20 arcsin(s3�3)

13��20 P1 P2

div F � 0 div F � 0

6s10 4
15

110
3

11
12 � 4�e f �x, y� � e y � xe xy

�8� 1
6 (27 � 5s5) ���60�(391s17 � 1)

�64��3 �
1
2 �4

y � c1e3x � c2e�2x y � c1 cos 4x � c2 sin 4x
y � c1e 2x�3 � c2 xe 2x�3 y � c1 � c2 e x�2

y � e 2x�c1 cos 3x � c2 sin 3x�
y � c1e (s3�1) t�2 � c2e�(s3�1) t�2

P � e�t[c1 cos( 1
10 t) � c2 sin( 1

10 t)]
10

_10

_3 3

g

f

0 �� x l ��

y � 3e 2x � e 4x y � e�2x�3 �
2
3 xe�2x�3

y � e 3x�2 cos x � 3 sin x�
y � 1

7e
4x�4 �

1
7e

3�3x y � 5 cos 2x � 3 sin 2x

y � 2e�2x � 2xe�2x y �
e � 2

e � 1
�

e x

e � 1

� � n 2� 2�L2 y � C sin�n�x�L�
b � a � n� n

b � a � n�
c

d
� ea�b cos a

cos b
cos b � 0

c

d
� e a�b sin a

sin b

b � a � n�
c

d
� ea�b cos a

cos b
cos b � 0

c

d
� e a�b sin a

sin b

y � c1e 3x � c2e�x �
7

65 cos 2x �
4

65 sin 2x

y � c1 cos 3x � c2 sin 3x �
1

13e
�2x

2�32��39��29
2
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APPENDIX H ANSWERS TO ODD-NUMBERED EXERCISES    A41

5.

7.

9.
11. The solutions are all asymptotic

to as
. Except for , all 

solutions approach either 
or as .

13.
15.
17.

19.

21.
23.
25.

27.

EXERCISES 17.3 N PAGE 1187

1. 3. 5.
7.

13. ,

15.

EXERCISES 17.4 N PAGE 1192

1. 3.

5.

7. for 

9.

11.

y � e 2x�c1 cos x � c2 sin x� �
1

10 e�x

y � 3
2 cos x �

11
2 sin x �

1
2 e x � x 3 � 6x

y � e x(1
2 x 2 � x � 2)

3

_3

_3 8

yp

yp � 1
10 cos x �

3
10 sin x
ypx l �

�
x l ����

yp � �Ax � B�e x cos x � �Cx � D�e x sin x
yp � Axex � B cos x � C sin x
yp � xe�x �Ax 2 � Bx � C � cos 3x � �Dx 2 � Ex � F� sin 3x�
y � c1 cos(1

2 x) � c2 sin(1
2 x) �

1
3 cos x

y � c1e x � c2 xe x � e 2x

y � c1 sin x � c2 cos x � sin x ln�sec x � tan x� � 1
y � c1 � ln�1 � e�x ��e x � c2 � e�x � ln�1 � e�x ��e 2x

y � e x [c1 � c2 x �
1
2 ln�1 � x 2� � x tan�1x]

49
12 kgx � �

1
5 e�6 t �

6
5 e�tx � 0.35 cos(2s5 t)

c=30

c=25
c=20

c=15
c=10

0.02

_0.11

0 1.4

Q�t� � ��e�10t�250��6 cos 20t � 3 sin 20t� �
3

125

I�t� � 3
5 e�10t sin 20t

Q�t� � e�10t[ 3
250 cos 20t �

3
500 sin 20t]

�
3

250 cos 10t �
3

125 sin 10t

c0 �
�

n�0

x 3n

3nn!
� c0e x 3�3c0 �

�

n�0

xn

n!
� c0e x

c0 �
�

n�0

��1�n

2nn!
 x 2n � c1 �

�

n�0

��2�nn!

�2n � 1�!
 x 2n�1

� x � � 1c0 � c1 �
�

n�1

xn

n
� c0 � c1 ln�1 � x�

�
�

n�0

x 2n

2nn!
� e x 2�2

x � �
�

n�1

��1�n2252 � � � � � �3n � 1�2

�3n � 1�!
 x 3n�1

CHAPTER 17 REVIEW N PAGE 1193

True-False Quiz
1. True    3. True    

Exercises
1.

3.

5.

7.

9.

11. 13.
15. No solution

17.

19.
21. (c) (d) 

APPENDIXES

EXERCISES G N PAGE A12

1. 3. 5. 7.

9. 11. 13. 15.

17. 19. 21.

23. 25.

27.

29. ,

31. ,
, 

33. 35.

37. 39.

41. 43. 45.
47. , 

y � c1e x�2 � c2e�x�2

y � c1 cos(s3x) � c2 sin(s3x)
y � e 2x�c1 cos x � c2 sin x � 1�
y � c1e x � c2 xe x �

1
2 cos x �

1
2�x � 1� sin x

y � c1e 3x � c2e�2x �
1
6 �

1
5 xe�2x

y � �e 4x � e x ��3y � 5 � 2e�6�x�1�

�
�

n�0

��2�nn!

�2n � 1�!
 x 2n�1

Q�t� � �0.02e�10t�cos 10t � sin 10t� � 0.03
�17,600 mi�h2��k � 85 min

11
13 �

10
13 i12 � 7i13 � 18i8 � 4i

12 � 5i, 135i�i1
2 �

1
2 i

�1 � 2i�
3
2 i4i, 4

3s2 cos�3��4� � i sin�3��4���
1
2 � (s7�2)i

5{cos[tan�1(4
3)] � i sin[tan�1(4

3)]}
4cos���2� � i sin���2��, cos����6� � i sin����6�

1
2 cos����6� � i sin����6��

4s2 cos�7��12� � i sin�7��12��
1
4 cos���6� � i sin���6��(2s2)cos�13��12� � i sin�13��12��

�512s3 � 512i�1024

�(s3�2) �
1
2 i, �i�1, �i, (1�s2)��1 � i �

0

Im

Re

_i

0

Im

Re

i

1

�e 21
2 � (s3�2)ii

cos 3� � cos3� � 3 cos � sin2�

sin 3� � 3 cos2� sin � � sin3�
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Index

A43

absolute maximum and minimum values, 970,
975

absolute value, A6
absolutely convergent series, 756
acceleration of a particle, 887

components of, 890
as a vector, 887

addition of vectors, 816, 819
Airy, Sir George, 770
Airy function, 770
alternating harmonic series, 753, 756
alternating series, 751
Alternating Series Estimation Theorem, 754
Alternating Series Test, 751
angle(s),

between planes, 845
between vectors, 825, 826

angular momentum, 895
angular speed, 888
aphelion, 707
apolune, 701
approximation

linear, 941, 945
linear, to a tangent plane, 941
by Taylor polynomials, 792
by Taylor’s Inequality, 780, 793

Archimedes’ Principle, 1158
arc curvature, 877
arc length, 878

of a parametric curve, 672
of a polar curve, 691
of a space curve, 877, 878

area,
by Green’s Theorem, 1111
enclosed by a parametric curve, 671
in polar coordinates, 678, 689
of a sector of a circle, 689
surface, 674, 1038, 1128, 1130

argument of a complex number, A7
arithmetic-geometric mean, 726
astroid, 669
asymptote of a hyperbola, 698
auxiliary equation, 1167

complex roots of, 1169
real roots of, 1168

average rate of change, 886

average value of a function, 1003, 1051
axes, coordinate, 810
axis of a parabola, 694

basis vectors, 820
Bernoulli, John, 664, 778
Bessel, Friedrich, 766
Bessel function, 766, 770
Bézier, Pierre, 677
Bézier curves, 663, 677
binomial coefficients, 784
binomial series, 784

discovery by Newton, 791
binormal vector, 882
blackbody radiation, 801
boundary curve, 1146
boundary-value problem, 1171
bounded sequence, 721
bounded set, 975
brachistochrone problem, 664
Brahe, Tycho, 891
branches of a hyperbola, 698

tansformation, 1064
calculator, graphing, 662, 685. See also com-

puter algebra system
Cantor, Georg, 737
Cantor set, 737
cardioid, 682
Cassini, Giovanni, 689
CAS. See computer algebra system
Cauchy, Augustin-Louis, 1008
Cauchy-Schwarz Inequality, 831
center of gravity. See center of mass
center of mass, 1028, 1089

of a lamina, 1029
of a solid, 1047
of a surface, 1136
of a wire, 1089

centripetal force, 899
centroid of a solid, 1047
Chain Rule for several variables, 948, 

950, 951
change of variable(s)

in a double integral, 1023, 1065, 1068
in a triple integral, 1053, 1058, 1070

characteristic equation, 1167
charge, electric, 1027, 1028, 1047, 1184
charge density, 1028, 1047
circle of curvature, 883
circular paraboloid, 856
circulation of a vector field, 1150
cissoid of Diocles, 668, 687
Clairaut, Alexis, 931
Clairaut’s Theorem, 931
clipping planes, 850
closed curve, 1101
Closed Interval Method, for a function 

of two variables, 976
closed set, 975
closed surface, 1140
Cobb, Charles, 903
Cobb-Douglas production function, 904, 

934, 987
cochleoid, 710
coefficient(s)

binomial, 784
of a power series, 765
of static friction, 861

comets, orbits of, 708
common ratio, 729
Comparison Test for series, 746
complementary equation, 1173
Completeness Axiom, 722
complex conjugate, A5
complex exponentials, A11
complex number(s), A5

addition and subtraction of, A5
argument of, A7
division of, A6, A8
equality of, A5
imaginary part of, A5
modulus of, A5
multiplication of, A5, A8
polar form, A7
powers of, A9
principal square root of, A6
real part of, A5
roots of, A10

component function, 864, 1081
components of acceleration, 890
components of a vector, 817, 828

C1

RP denotes Reference Page numbers.
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A44 INDEX

composition of functions, continuity of, 922
computer algebra system, 662

for integration, 775
computer algebra system, graphing with,

function of two variables, 906
level curves, 910
parametric equations, 662
parametric surface, 1126
partial derivatives, 931
polar curve, 685
sequence, 719
space curve, 867
vector field, 1082

conchoid, 665, 687
conditionally convergent series, 757
conductivity (of a substance), 1144
cone, 694, 854

parametrization of, 1126
conic section, 694, 702

directrix, 694, 702
eccentricity, 702
focus, 694, 696, 702
polar equation, 704
shifted, 699
vertex (vertices), 694

conjugates, properties of, A6
connected region, 1101
conservation of energy, 1105
conservative vector field, 1085, 1106
constant force, 829
constraint, 981, 985
continued fraction expansion, 726
continuity

of a function, 865
of a function of three variables, 922
of a function of two variables, 920

contour curves, 907
contour map, 907, 933
convergence

absolute, 756
conditional, 757
interval of, 767
radius of, 767
of a sequence, 716
of a series, 729

convergent sequence, 716
convergent series, 729

properties of, 733
conversion, cylindrical to rectangular 

coordinates, 1052
cooling tower, hyperbolic, 856
coordinate axes, 810
coordinate planes, 810
coordinate system,

cylindrical, 1052
polar, 678
spherical, 1057
three-dimensional rectangular, 810

coplanar vectors, 837
Coriolis acceleration, 898
Cornu’s spiral, 676
cosine function, power series for, 782
critical point(s), 970, 980
critically damped vibration, 1182
cross product, 832

direction of, 834
geometric characterization of, 835
magnitude of, 835
properties of, 836

cross-section, of a surface, 851
curl of a vector field, 1115
curvature, 677, 879
curve(s)

Bézier, 663, 677
boundary, 1146
cissoid of Diocles, 687
closed, 1101
Cornu’s spiral, 676
dog saddle, 915
epicycloid, 669
equipotential, 914
grid, 1124
helix, 865
length of, 877
level, 907
monkey saddle, 915
orientation of, 1092, 1108
ovals of Cassini, 689
parametric, 660 865
piecewise-smooth,1088
polar, 680
serpentine, 137
simple, 1102
space, 864, 865
strophoid, 693, 711
swallotail catastrophe, 668
toroidal spiral, 867
trochoid, 667
twisted cubic, 867
witch of Maria Agnesi, 667

cusp, 665
cycloid, 663
cylinder, 851

parabolic, 851
parametrization of, 1126

cylindrical coordinate system, 1052
conversion equations for, 1052
triple integrals in, 1053

cylindrical coordinates, 1054

damped vibration, 1181
damping constant, 1181
decreasing sequence, 720
definite integral, 998

of a vector function, 875
del ( ), 960

De Moivre, Abraham, A9
De Moivre’s Theorem, A9
density

of a lamina, 1027
of a solid, 1047

dependent variable, 902, 950
derivative(s), 

directional, 957, 958, 961
higher partial, 930
normal, 1122
notation for partial, 927
partial, 926
of a power series, 772
second, 874
second directional, 968
second partial, 930
of a vector function, 871

determinant, 832
differentiable function, 942
differential, 943, 945
differential equation, 

homogeneous, 1166
linearly independent solutions, 1167
logistic, 727
nonhomogeneous, 1166, 1173
partial, 932
second-order, 1166

differentiation,
formulas for, RP5
formulas for vector functions, 874
implicit, 929, 952
partial, 924, 929, 930
of a power series, 772
term-by-term, 772
of a vector function, 874

directed line segment, 815
direction numbers, 842
directional derivative, 957, 958, 961

maximum value of, 962
of a temperature function, 957, 958
second, 958

directrix, 694, 702
displacement vector, 815, 829
distance

between lines, 847
between planes, 847
between point and line in space, 839
between point and plane, 839
between points in space, 812

distance formula in three dimensions, 812
divergence

of an infinite series, 729
of a sequence, 716
of a vector field, 1118

Divergence, Test for, 733
Divergence Theorem, 1153
divergent sequence, 716
divergent series, 729�
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INDEX A45

division of power series, 787
DNA, helical shape of, 866
dog saddle, 915
domain of a function, 902
domain sketching, 902
Doppler effect, 956
dot product, 824

in component form, 824
properties of, 825

double integral, 998, 1000
change of variable in, 1065, 1068
over general regions, 1012, 1013
Midpoint Rule for, 1002
in polar coordinates, 1021, 1022, 1023
properties of, 1005, 1017
over rectangles, 998

double Riemann sum, 1001
Douglas, Paul, 903
Dumpster design, minimizing cost of, 980

e (the number) as a sum of an infinite 
series, 781

eccentricity, 702
electric charge, 1027, 1028, 1047
electric circuit, analysis of, 1184
electric field (force per unit charge), 1084
electric flux, 1143
electric force, 1084
ellipse, 696, 702, A19

directrix, 702
eccentricity, 702
foci, 696, 702
major axis, 696, 707
minor axis, 696
polar equation, 704, 707
reflection property, 697
vertices, 696

ellipsoid, 852, 854
elliptic paraboloid, 852, 854
energy

conservation of, 1105
kinetic, 1105
potential, 1105

epicycloid, 669
epitrochoid, 676
equation(s)

differential (see differential equation)
of an ellipse, 696, 704
heat conduction, 937
of a hyperbola, 697, 698, 699, 704
Laplace’s, 932, 1119
of a line in space, 840, 841
of a line through two points, 842
linear, 844
logistic difference, 727
of a parabola, 694, 704
parametric, 660, 841, 865, 1123
of a plane, 843

of a plane through three points, 845
polar, 680, 704
of a space curve, 865
of a sphere, 813
symmetric, 842
van der Waals, 938
vector, 840
wave, 932

equipotential curves, 914
equivalent vectors, 816
error in Taylor approximation, 793
error estimate for alternating series, 754
estimate of the sum of a series, 742, 749, 

754, 759
Euler, Leonhard, 739, 745, 781
Euler’s formula, A11
expected values, 1035
exponential function(s),

integration of, 786, 787
power series for, 779

Extreme Value Theorem, 975

family
of epicycloids and hypocycloids, 668
of parametric curves, 664

Fibonacci, 715, 726
Fibonacci sequence, 715, 726
field

conservative, 1085
electric, 1084
force, 1084
gradient, 966, 1084
gravitational, 1084
incompressible, 1119
irrotational, 1118
scalar, 1081
vector, 1080, 1081
velocity, 1080, 1083

first octant, 810
first-order optics, 798
flow lines, 1086
fluid flow, 1083, 1119, 1142
flux, 1141, 1143
flux integral, 1141
foci, 696
focus, 694, 702

of a conic section, 702
of an ellipse, 696, 702
of a hyperbola, 697
of a parabola, 694

folium of Descartes, 711
force, 

centripetal, 899
constant, 829
resultant, 821
torque, 837

force field, 1080, 1084
forced vibrations, 1183

four-leaved rose, 682
Frenet-Serret formulas, 886
Fubini, Guido, 1008
Fubini’s Theorem, 1008, 1041
function(s), 902

Airy, 770
arc length, 877
average value of, 1003, 1051
Bessel, 766, 770
Cobb-Douglas production, 904, 934, 987
component, 864, 1081
composite, 922
continuity of, 920, 922
continuous, 865
differentiability of, 942
domain of, 902
gradient of, 960, 962
graph of, 904
harmonic, 932
homogeneous, 956
integrable, 1000
joint density, 1032, 1047
limit of, 917, 922
linear, 905
maximum and minimum values of, 970
of variables, 911
polynomial, 921
potential, 1085
probability density, 1032
range of, 902
rational, 921
representation as a power series, 770
of several variables, 902, 910
of three variables, 910
of two variables, 902
vector, 826

Fundamental Theorem of Calculus, 
higher-dimensional versions, 1159
for line integrals, 1099
for vector functions, 875

Galileo, 664, 671, 694
Gauss, Karl Friedrich, 1153
Gaussian optics, 798
Gauss’s Law, 1143
Gauss’s Theorem, 1153
geometric series, 729
geometry of a tetrahedron, 840
Gibbs, Joseph Willard, 821
gradient, 960, 962
gradient vector, 960, 962

interpretations of, 1066
gradient vector field, 1066, 1084
graph(s)

of equations in three dimensions, 811
of a function of two variables, 904
of a parametric curve, 660
of a parametric surface, 1136

n
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A46 INDEX

graph(s) (continued)
polar, 680, 685
of a sequence, 719

graphing calculator, 662, 685, A46
graphing device. See computer algebra system
gravitational field, 1084
great circle, 1063
Green, George, 1109, 1152
Green’s identities, 1122
Green’s Theorem, 1108, 1152

vector forms, 1120
Gregory, James, 774, 778
Gregory’s series, 774
grid curves, 1124

half-space, 911
harmonic function, 932
harmonic series, 732, 741

alternating, 753
heat conduction equation, 937
heat conductivity, 1144
heat flow, 1143
heat index, 924
Hecht, Eugene, 797
helix, 865
hidden line rendering, 850
higher partial derivatives, 930
homogeneous differential equation, 1166
homogeneous function, 956
Hooke’s Law, 1180
horizontal plane, 811
Huygens, Christiaan, 664
hydro-turbine optimization, 990
hyperbola, 697, 702

asymptotes, 698
branches, 698
directrix, 702
eccentricity, 702
equation, 698, 699, 704
foci, 697, 702
polar equation, 704
reflection property, 702
vertices, 698

hyperbolic paraboloid, 853, 854
hyperboloid, 854
hypersphere, 1051
hypocycloid, 668

i (imaginary number), A5
(standard basis vector), 820

ideal gas law, 938
image of a point, 1065
image of a region, 1065
implicit differentiation, 929, 952
Implicit Function Theorem, 953, 954
incompressible velocity field, 1119
increasing sequence, 720
increment, 945
independence of path, 1100
independent random variable, 1034

independent variable, 902, 950
inertia (moment of), 1030, 1047, 1098
infinite sequence. See sequence
infinite series. See series
initial point

of a parametric curve, 661
of a vector, 815, 1170

inner product, 824
integrable function, 1000
integral(s)

change of variables in, 1023, 1064, 1068,
1070

conversion to cylindrical coordinates, 1053
conversion to polar coordinates, 1022
conversion to spherical coordinates, 1058
definite, 998
double (see double integral)
iterated, 1006, 1007
line (see line integral)
surface, 1134, 1141
table of, RP6–10
triple, 1041, 1042

Integral Test, 740
integrand, discontinuous, 547
integration, 

formulas, RP6–10
partial, 1007
of a power series, 772
reversing order of, 1009, 1017
over a solid, 1054
term-by-term, 772
of a vector function, 871

intermediate variable, 950
intersection 

of planes, 845
of polar graphs, area of, 690
of three cylinders, 1056

interval of convergence, 767
inverse transformation, 1065
irrotational vector field, 1118
isothermal, 907, 914
iterated integral, 1006, 1007

(standard basis vector), 820
Jacobi, Carl, 1067
Jacobian of a transformation, 1067, 1070
joint density function, 1032, 1047

(standard basis vector), 820
Kepler, Johannes, 706, 891
Kepler’s Laws, 706, 891, 892, 896
kinetic energy, 1105
Kirchhoff’s Laws, 1184
Kondo, Shigeru, 781

Lagrange, Joseph-Louis, 982
Lagrange multiplier, 981, 982
lamina, 1027, 1029
Laplace, Pierre, 932, 1119
Laplace operator, 1119

Laplace’s equation, 932, 1119
law of conservation of angular 

momentum, 895
Law of Conservation of Energy, 1106
least squares method, 979
least upper bound, 722
Leibniz, Gottfried Wilhelm, 791
length

of a parametric curve, 672
of a polar curve, 691
of a space curve, 877
of a vector, 818

level curve(s), 907, 910
level surface, 911

tangent plane to, 964
limaçon, 686
limit(s), 

of a function of three variables, 922
of a function of two variables, 917
of a sequence, 716
of a vector function, 864

Limit Comparison Test, 748
Limit Laws, 

for functions of two variables, 920
for sequences, 717

linear approximation, 941, 945
linear combination, 1166
linear differential equation, 1166
linear equation of a plane, 844
linear function, 905
linearity of an integral, 1005
linearization, 941
linearly independent solutions, 1167
line(s) in the plane, equation of, through 

two points, 842
line(s) in space

normal, 965
parametric equations of, 841
skew, 843
symmetric equations of, 842
tangent, 872
vector equation of, 840, 841

line integral, 1087
Fundamental Theorem for, 1099
for a plane curve, 1087
with respect to arc length, 1090
for a space curve, 1092
work defined as, 1094
of vector fields, 1094, 1095

Lissajous figure, 662, 668
lithotripsy, 697
local maximum and minimum values, 970
logistic difference equation, 727
logistic sequence, 727
LORAN system, 701

Maclaurin, Colin, 745
Maclaurin series, 777, 778

table of, 785
magnitude of a vector, 818

i

j

k
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INDEX A47

major axis of ellipse, 696
marginal productivity, 934
marginal propensity to consume or save, 736
mass

of a lamina, 1027
of a solid, 1047
of a surface, 1136
of a wire, 1089

mass, center of. See center of mass
mathematical induction, 723
mathematical model. See model(s), 

mathematical
maximum and minimum values, 970
Mean Value Theorem for 

double integrals, 1076
method of Lagrange multipliers, 981, 982, 985
method of least squares, 979
method of undetermined coefficients, 1173,

1177
Midpoint Rule, 

for double integrals, 1002
for triple integrals, 1049

minor axis of ellipse, 696
Möbius, August, 1139
Möbius strip, 1133, 1139
model(s), mathematical, 

Cobb-Douglas, for production costs, 904,
934, 987

for vibration of membrane, 766
von Bertalanffy, 655

modulus, A6
moment

about an axis, 1029
of inertia, 1030, 1047, 1098
of a lamina, 1029
about a plane, 1047
polar, 1031
second, 1030
of a solid, 1047

monkey saddle, 915
monotonic sequence, 720
Monotonic Sequence Theorem, 722
motion of a projectile, 888
motion in space, 886
motion of a spring, force affecting

damping, 1181
resonance, 1184
restoring, 1180

multiple integrals. See double integral; 
triple integral(s)

multiplication of power series, 787
multiplier (Lagrange), 981, 982, 985
multiplier effect, 736

natural exponential function, power series 
for, 778

n-dimensional vector, 819
Newton, Sir Isaac, 791, 892, 896
Newton’s Law of Gravitation, 892, 1083
Newton’s Second Law of Motion, 892, 1180

Nicomedes, 665
nonhomogeneous differential equation, 

1166, 1173
nonparallel planes, 845
normal component of acceleration, 890, 891
normal derivative, 1122
normal line, 965
normal plane, 883
normal vector, 844, 882
nth-degree Taylor polynomial, 779
number, complex, A5

(origin), 810
octant, 810
one-to-one transformation, 1065
open region, 1101
optics

first-order, 798
Gaussian, 798
third-order, 798

orbit of a planet, 892
order of integration, reversed, 1009, 1017
ordered triple, 810
Oresme, Nicole, 732
orientation of a curve, 1092, 1108
orientation of a surface, 1139
oriented surface, 1139
origin, 810
orthogonal projection, 831
orthogonal surfaces, 969
orthogonal vectors, 826
osculating circle, 883
osculating plane, 883
Ostrogradsky, Mikhail, 1153
ovals of Cassini, 689
overdamped vibration, 1182

parabola, 694, 702
axis, 694
directrix, 694
equation, 694, 695
focus, 694, 702
polar equation, 704
vertex, 694

parabolic cylinder, 851
paraboloid, 852, 856
parallel planes, 845
parallel vectors, 817
parallelepiped, volume of, 837
Parallelogram Law, 816, 831
parameter, 660, 841, 865
parametric curve, 660, 865

arc length of, 672
area under, 671
slope of tangent line to, 669

parametric equations, 660, 841, 865
of a line in space, 841
of a space curve, 865
of a surface, 1123
of a trajectory, 889

parametric surface, 1123
graph of, 1136
surface area of, 1128, 1129
surface integral over, 1135
tangent plane to, 1127

parametrization of a space curve, 878
with respect to arc length, 879
smooth, 879

partial derivative(s), 926
of a function of more than three 

variables, 929
interpretations of, 927
notations for, 927
as a rate of change, 926
rules for finding, 927
second, 930
as slopes of tangent lines, 927

partial differential equation, 932
partial integration, 1007
partial sum of a series, 728
particle, motion of, 886
path, 1100
perihelion, 707
perilune, 701
perpendicular vectors, 826
piecewise-smooth curve, 1088
Planck’s Law, 801
plane region of type I, 1013
plane region of type II, 1014
plane(s)

angle between, 845
coordinate, 810
equation(s) of, 840, 843, 844
equation of, through three points, 845
horizontal, 811
line of intersection, 845
normal, 883
osculating, 883
parallel, 845
tangent to a surface, 939, 964, 1127
vertical, 902

planetary motion, 891
laws of, 706

planimeter, 1111
point(s) in space

coordinates of, 810
distance between, 812
projection of, 811

polar axis, 678
polar coordinate system, 678

conic sections in, 702
conversion of double integral to, 1021
conversion equations for Cartesian 

coordinates, 680
polar curve, 680

arc length of, 691
graph of, 680
symmetry in, 683
tangent line to, 683

polar equation, graph of, 680

O
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A48 INDEX

polar equation of a conic, 704
polar form of a complex number, A7
polar graph, 680
polar moment of inertia, 1031
polar rectangle, 1021
polar region, area of, 689
pole, 678
polynomial function of two variables, 921
position vector, 818
positive orientation

of a boundary curve, 1146
of a closed curve, 1188
of a surface, 1140

potential energy, 1105
potential function, 1085
power, 1110
power series, 765

coefficients of, 765
for cosine and sine, 782
differentiation of, 772
division of, 787
for exponential function, 782
integration of, 772
interval of convergence, 767
multiplication of, 787
radius of convergence, 767
representations of functions as, 771

principal square root of a complex 
number, A6

principal unit normal vector, 882
principle of superposition, 1175
probability, 1032
probability density function, 1032
product

cross, 832 (see also cross product)
dot, 824 (see also dot product)
scalar, 824
scalar triple, 836
triple, 836

projectile, path of, 668, 888
projection, 811, 828

orthogonal, 831
p-series, 741

quadratic approximation, 980
quadric surface(s), 851

cone, 854
cylinder, 851
ellipsoid, 854
hyperboloid, 854
paraboloid, 852, 853, 854
table of graphs, 854

quaternion, 821

radiation from stars, 801
radius of convergence, 767
radius of gyration, 1032
range of a function, 902
rational function, 921

Ratio Test, 758
Rayleigh-Jeans Law, 801
rearrangement of a series, 761
rectangular coordinate system, 811

conversion to cylindrical coordinates, 1052
conversion to spherical coordinates, 1057

recursion relation, 1189
reflection property

of an ellipse, 697
of a hyperbola, 702

region
connected, 1101
open, 1101
plane, of type I or II, 1013, 1014
simple plane, 1109
simple solid, 1153
simply-connected, 1102
solid (of type 1, 2, or 3), 1042, 1043, 1044

remainder estimates
for the Alternating Series, 754
for the Integral Test, 742

remainder of the Taylor series, 779
representation of a function, as a power 

series, 770
resonance, 1184
restoring force, 1180
resul tant force, 821
reversing order of integration, 1009, 1017
Riemann sums for multiple 

integrals, 1001, 1041
right-hand rule, 810, 834
Roberval, Gilles de, 671
rocket science, 988
roller derby, 1063
Root Test, 760
roots of a complex number, A10
rubber membrane, vibration of, 766
ruling of a surface, 851

saddle point, 971
sample point, 999
satellite dish, parabolic, 856
scalar, 817
scalar equation of a plane, 844
scalar field, 1081
scalar multiple of a vector, 817
scalar product, 824
scalar projection, 828
scalar triple product, 836

geometric characterization of, 837
secant vector, 872
second derivative, 874

of a vector function, 874
Second Derivatives Test, 971
second directional derivative, 968
second moment of inertia, 1030
second-order differential equation, 

solutions of, 1166, 1171
second partial derivative, 930

sector of a circle, area of, 689
sequence, 

bounded, 721
convergent, 716
decreasing, 720
divergent, 716
Fibonacci, 715
graph of, 719
increasing, 720
limit of, 716
logistic, 727
monotonic, 720
of partial sums, 728
term of, 714

series, 728
absolutely convergent, 756
alternating, 751
alternating harmonic, 753, 756, 757
binomial, 784
coefficients of, 765
conditionally convergent, 757
convergent, 729
divergent, 729
geometric, 729
Gregory’s, 774
harmonic, 732, 741
infinite, 728
Maclaurin, 777, 778
p-, 741
partial sum of, 728
power, 765
rearrangement of, 761
strategy for testing, 763
sum of, 729
Taylor, 777, 778
term of, 728
trigonometric, 765

series solution of a differential 
equation, 1188

set, bounded or closed, 975
shifted conics, 699
shock absorber, 1181
Sierpinski carpet, 737
simple curve, 1102
simple plane region, 1109
simple solid region, 1153
simply-connected region, 1102
Simpson, Thomas, 996
sine function, power series for, 782
sink, 1157
skew lines, 843
smooth curve, 879
smooth parametrization, 879
smooth surface, 1128
snowflake curve, 806
solid, volume of, 1042, 1043
solid angle, 1163
solid region, 1153
source, 1157
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INDEX A49

space, three-dimensional, 810
space curve, 864, 865, 866, 867

arc length of, 877
speed of a particle, 886
sphere

equation of, 813
flux across, 1141
parametrization of, 1125
surface area of, 1129

spherical coordinate system, 1057
conversion equations for, 1057
triple integrals in, 1058

spherical wedge, 1058
spring constant, 1180
Squeeze Theorem, for sequences, 718
standard basis vectors, 820
stationary points, 970
steady state solution, 1186
Stokes, Sir George, 1147, 1152
Stokes’ Theorem, 1146
strategy for testing series, 763
streamlines, 1086
strophoid, 693, 711
sum, 

of a geometric series, 730
of an infinite series, 729
telescoping, 732
of vectors, 816

surface(s)
closed, 1140
graph of, 1136
level, 911
oriented, 1139
parametric, 1123
positive orientation of, 1140
quadric, 851
smooth, 1128

surface area, 
of a parametric surface, 674, 1128, 1129
of a sphere, 1129
of a surface , 1037, 1038, 1130

surface integral, 1134
over a parametric surface, 1135
of a vector field, 1140

surface of revolution, parametric 
representation of, 1127

swallowtail catastrophe curve, 668
symmetric equations of a line, 842
symmetry in polar graphs, 683

and transformations, 1064, 1065
table of differentiation formulas, RP5
tables of integrals, RP6–10
tangent line(s), 

to a parametric curve, 669, 670
to a polar curve, 683
to a space curve, 873

tangent plane
to a level surface, 939, 964

to a parametric surface, 1127
to a surface , 940, 964
to a surface , 939

tangent plane approximation, 941
tangent vector, 872
tangential component of acceleration, 890
tautochrone problem, 664
Taylor, Brook, 778
Taylor polynomial, 779, 980

applications of, 792
Taylor series, 777, 778
Taylor’s Inequality, 780
telescoping sum, 732
temperature-humidity index, 912, 924
term of a sequence, 714
term of a series, 728
term-by-term differentiation and 

integration, 772
terminal point of a parametric curve, 661
terminal point of a vector, 815
Test for Divergence, 733
tests for convergence and divergence 

of series
Alternating Series Test, 751
Comparison Test, 746
Integral Test, 740
Limit Comparison Test, 748
Ratio Test, 758
Root Test, 760
summary of tests, 763

tetrahedron, 840
third-order optics, 798
Thomson, William (Lord Kelvin), 1109, 

1147, 1152
three-dimensional coordinate systems, 

810, 811
TNB frame, 882
toroidal spiral, 867
torque, 895
Torricelli, Evangelista, 671
torsion of a space curve, 885
torus, 1134
total differential, 944
total electric charge, 1029, 1047
trace of a surface, 851
trajectory, parametric equations for, 889
transfer curve, 899
transformation, 1064

inverse, 1065
Jacobian of, 1067, 1070
one-to-one, 1065

tree diagram, 932
trefoil knot, 867
Triangle Inequality for vectors, 831
Triangle Law, 816
trigonometric series, 765
triple integral(s), 1041, 1042

applications of, 1046
in cylindrical coordinates, 1053

over a general bounded region, 1042
Midpoint Rule for, 1049
in spherical coordinates, 1058, 1059

triple product, 836
triple Riemann sum, 1041
trochoid, 667
twisted cubic, 867
type I or type II plane region, 1013, 1014
type 1, 2, or 3 solid region, 1042, 1043, 1044

ultraviolet catastrophe, 801
underdamped vibration, 1182
undetermined coefficients, method of, 

1173, 1177
uniform circular motion, 888
unit normal vector, 882
unit tangent vector, 872
unit vector, 821

van der Waals equation, 938
variable(s)

dependent, 902, 950
independent, 902, 950
independent random, 1034
intermediate, 950

variables, change of. See change of variable(s)
variation of parameters, method of, 1177, 1178
vector(s), 815

acceleration, 887
addition of, 816, 818
algebraic, 818, 819
angle between, 825
basis, 820
binormal, 882
combining speed, 823
components of, 828
coplanar, 837
cross product of, 832
difference, 818
displacement, 829
dot product, 825
equality of, 816
force, 1083
geometric representation of, 818
gradient, 960, 962
, , and , 820

length of, 818
magnitude of, 818
multiplication of, 817, 819
n-dimensional, 819
normal, 844
orthogonal, 826
parallel, 817
perpendicular, 826
position, 818
properties of, 819
representation of, 818
scalar mulitple of, 817
standard basis, 820

z � f �x, y�

T �1T

F�x, y, z� � k
z � f �x, y�

kji
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A50 INDEX

vector(s) (continued)
tangent, 872
three-dimensional, 818
triple product, 837
two-dimensional, 818
unit, 821
unit normal, 882
unit tangent, 872
velocity, 886
zero, 816

vector equation 
of a line, 840, 841
of a plane, 844

vector field, 1080, 1081
conservative, 1085
curl of, 1115
divergence of, 1118
electric flux of, 1143
flux of, 1141
force, 1080, 1084
gradient, 1084
gravitational, 1084
incompressible, 1119
irrotational, 1118
line integral of, 1094, 1095
potential function, 1104

surface integral of, 1141
velocity, 1080, 1083

vector function, 864
continuity of, 865
derivative of, 871
integration of, 875
limit of, 864

vector product, 832
properties of, 836

vector projection, 828
vector triple product, 837
vector-valued function. See vector function

continuous, 865
limit of, 864

velocity field, 1083
airflow, 1080
ocean currents, 1080
wind patterns, 1080

velocity vector, 886
velocity vector field, 1080
vertex of a parabola, 694
vertices of an ellipse, 696
vertices of a hyperbola, 698
vibration of a rubber membrane, 766
vibration of a spring, 1180
vibrations, 1180, 1181, 1183

volume, 353
by double integrals, 998
of a hypersphere, 1051
by polar coordinates, 1024
of a solid, 1000
by triple integrals, 1046

wave equation, 932
wind-chill index, 903
wind patterns in San Francisco Bay area, 1080
witch of Maria Agnesi, 667
work (force), defined as a line integral, 1094
Wren, Sir Christopher, 674

-axis, 810
-coordinate, 810
-mean, 1035

-axis, 810
-coordinate, 810
-mean, 1035

-axis, 810
-coordinate, 810

zero vectors, 816

x
x
X

y
y
Y

z
z
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General Formulas

1. 2.

3. 4.

5. (Product Rule) 6. (Quotient Rule)

7. (Chain Rule) 8. (Power Rule)

Exponential and Logarithmic Functions

9. 10.

11. 12.

Trigonometric Functions

13. 14. 15.

16. 17. 18.

Inverse Trigonometric Functions

19. 20. 21.

22. 23. 24.

Hyperbolic Functions

25. 26. 27.

28. 29. 30.

Inverse Hyperbolic Functions

31. 32. 33.

34. 35. 36.
d

dx
�coth�1x� �

1

1 � x 2

d

dx
�sech�1x� � �

1

xs1 � x 2

d

dx
�csch�1x� � �

1

� x �sx 2 � 1

d

dx
�tanh�1x� �

1

1 � x 2

d

dx
�cosh�1x� �

1

sx 2 � 1

d

dx
�sinh�1x� �

1

s1 � x 2

d

dx
�coth x� � �csch2x

d

dx
�sech x� � �sech x tanh x

d

dx
�csch x� � �csch x coth x

d

dx
�tanh x� � sech2x

d

dx
�cosh x� � sinh x

d

dx
�sinh x� � cosh x

d

dx
�cot�1x� � �

1

1 � x 2

d

dx
�sec�1x� �

1

xsx 2 � 1

d

dx
�csc�1x� � �

1

xsx 2 � 1

d

dx
�tan�1x� �

1

1 � x 2

d

dx
�cos�1x� � �

1

s1 � x 2

d

dx
�sin�1x� �

1

s1 � x 2

d

dx
�cot x� � �csc2x

d

dx
�sec x� � sec x tan x

d

dx
�csc x� � �csc x cot x

d

dx
�tan x� � sec2x

d

dx
�cos x� � �sin x

d

dx
�sin x� � cos x

d

dx
�loga x� �

1

x ln a

d

dx
ln � x � �

1

x

d

dx
�ax � � ax ln a

d

dx
�e x � � e x

d

dx
�xn � � nxn�1d

dx
f �t�x�� � f ��t�x��t��x�

d

dx � f �x�
t�x� � �

t�x� f ��x� � f �x�t��x�
�t�x��2

d

dx
� f �x�t�x�� � f �x�t��x� � t�x� f ��x�

d

dx
� f �x� � t�x�� � f ��x� � t��x�

d

dx
� f �x� � t�x�� � f ��x� � t��x�

d

dx
�cf �x�� � c f ��x�

d

dx
�c� � 0
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Basic Forms

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Forms Involving 

21.

22.

23.

24.

25.

26.

27.

28.

29. y
du

�a 2 � u 2�3�2 �
u

a 2
sa 2 � u 2

� C

y
du

u 2
sa 2 � u 2

� �
sa 2 � u 2

a 2u
� C

y
du

usa 2 � u 2
� �

1

a
ln � sa 2 � u 2 � a

u � � C

y
u 2 du

sa 2 � u 2
�

u

2
 sa 2 � u 2 �

a 2

2
 ln(u � sa 2 � u 2 ) � C

y
du

sa 2 � u 2
� ln(u � sa 2 � u 2 ) � C

y
sa 2 � u 2

u 2 du � �
sa 2 � u 2

u
� ln(u � sa 2 � u 2 ) � C

y
sa 2 � u 2

u
du � sa 2 � u 2 � a ln � a � sa 2 � u 2

u � � C

y u 2
sa 2 � u 2 du �

u

8
 �a 2 � 2u 2� sa 2 � u 2 �

a 4

8
 ln(u � sa 2 � u 2 ) � C

y sa 2 � u 2 du �
u

2
 sa 2 � u 2 �

a 2

2
 ln(u � sa 2 � u 2 ) � C

sa 2 � u 2 ,  a � 0

y sec u tan u du � sec u � C

y csc2u du � �cot u � C

y sec2u du � tan u � C

y cos u du � sin u � C

y sin u du � �cos u � C

y au du �
a u

ln a
� C

y eu du � eu � C

y
du

u
� ln � u � � C

n � �1y un du �
un�1

n � 1
 � C,

y u dv � uv � y v du

TA B L E  O F  I N T E G R A L S

11.

12.

13.

14.

15.

16. ,

17.

18.

19.

20.

a � 0

y
du

u 2 � a 2 �
1

2a
ln � u � a

u � a � � C

y
du

a 2 � u 2 �
1

2a
ln � u � a

u � a � � C

y
du

usu 2 � a 2
�

1

a
sec�1 u

a
� C

y
du

a 2 � u 2 �
1

a
tan�1 u

a
� C

y
du

sa 2 � u 2
� sin�1 u

a
� C

y csc u du � ln � csc u � cot u � � C

y sec u du � ln � sec u � tan u � � C

y cot u du � ln � sin u � � C

y tan u du � ln � sec u � � C

y csc u cot u du � �csc u � C

R E F E R E N C E  PA G E  6
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Forms Involving 

30.

31.

32.

33.

34.

35.

36.

37.

38.

Forms Involving 

39.

40.

41.

42.

43.

44.

45.

46.

y sa 2 � u 2 du �
u

2
 sa 2 � u 2 �

a 2

2
 sin�1 u

a
� C

y
du

�u 2 � a 2�3�2 � �
u

a 2
su 2 � a 2

� C

y
du

u 2
su 2 � a 2

�
su 2 � a 2

a 2u
� C

y
u 2 du

su 2 � a 2
�

u

2
 su 2 � a 2 �

a 2

2
 ln � u � su 2 � a 2 � � C

y
du

su 2 � a 2
� ln � u � su 2 � a 2 � � C

y
su 2 � a 2

u 2 du � �
su 2 � a 2

u
� ln � u � su 2 � a 2 � � C

y
su 2 � a 2

u
du � su 2 � a 2 � a cos�1 a

� u � � C

y u 2
su 2 � a 2 du �

u

8
 �2u 2 � a 2� su 2 � a 2 �

a 4

8
 ln � u � su 2 � a 2 � � C

y su 2 � a 2 du �
u

2
 su 2 � a 2 �

a 2

2
 ln � u � su 2 � a 2 � � C

su 2 � a 2 , a � 0

y
du

�a 2 � u 2�3�2 �
u

a 2
sa 2 � u 2

� C

�
3a 4

8
 sin�1 u

a
� Cy �a 2 � u 2�3�2 du � �

u

8
 �2u 2 � 5a 2�sa 2 � u 2

y
du

u 2
sa 2 � u 2

� �
1

a 2u
sa 2 � u 2 � C

y
du

usa 2 � u 2
� �

1

a
ln � a � sa 2 � u 2

u � � C

y
u 2 du

sa 2 � u 2
� �

u

2
 sa 2 � u 2 �

a 2

2
 sin�1 u

a
� C

y
sa 2 � u 2

u 2 du � �
1

u
sa 2 � u 2 � sin�1 u

a
� C

y
sa 2 � u 2

u
du � sa 2 � u 2 � a ln � a � sa 2 � u 2

u � � C

y u 2
sa 2 � u 2 du �

u

8
 �2u 2 � a 2� sa 2 � u 2 �

a 4

8
 sin�1 u

a
� C

sa 2 � u 2 ,  a � 0

TA B L E  O F  I N T E G R A L S
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Forms Involving 

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62. y
du

u n
sa � bu

� �
sa � bu

a�n � 1�u n�1 �
b�2n � 3�
2a�n � 1� y

du

u n�1
sa � bu

y
u n du

sa � bu
�

2un
sa � bu

b�2n � 1�
�

2na

b�2n � 1� y
un�1 du

sa � bu

�
2

b�2n � 3� �u n�a � bu�3�2 � na y u n�1
sa � bu du�y un

sa � bu du

y
sa � bu

u 2 du � �
sa � bu

u
�

b

2
 y

du

usa � bu

y
sa � bu

u
du � 2sa � bu � a y

du

usa � bu

�
2

s�a
tan�1�a � bu

�a
� C,  if a � 0

y
du

usa � bu
�

1

sa
ln � sa � bu � sa

sa � bu � sa
� � C, if a � 0

y
u 2 du

sa � bu
�

2

15b 3 �8a 2 � 3b 2u 2 � 4abu�sa � bu � C

y
u du

sa � bu
�

2

3b 2 �bu � 2a�sa � bu � C

y usa � bu du �
2

15b 2 �3bu � 2a��a � bu�3�2 � C

y
u 2 du

�a � bu�2 �
1

b 3 	a � bu �
a 2

a � bu
� 2a ln 
 a � bu 
� � C

y
du

u�a � bu�2 �
1

a�a � bu�
�

1

a 2 ln � a � bu

u � � C

y
u du

�a � bu�2 �
a

b 2�a � bu�
�

1

b 2 ln 
 a � bu 
 � C

y
du

u 2�a � bu�
� �

1

au
�

b

a 2 ln � a � bu

u � � C

y
du

u�a � bu�
�

1

a
ln � u

a � bu � � C

y
u 2 du

a � bu
�

1

2b 3 [�a � bu�2 � 4a�a � bu� � 2a 2 ln 
 a � bu 
] � C

y
u du

a � bu
�

1

b 2 (a � bu � a ln 
 a � bu 
) � C

a � bu

TA B L E  O F  I N T E G R A L S
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Trigonometric Forms

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Inverse Trigonometric Forms

87.

88.

89.

90.

91. y u cos�1u du �
2u 2 � 1

4
 cos�1u �

us1 � u 2

4
� C

y u sin�1u du �
2u 2 � 1

4
 sin�1u �

us1 � u 2

4
� C

y tan�1u du � u tan�1u �
1
2 ln�1 � u 2� � C

y cos�1u du � u cos�1u � s1 � u 2 � C

y sin�1u du � u sin�1u � s1 � u 2 � C

y tannu du �
1

n � 1
 tann�1u � y tann�2u du

y cosnu du �
1

n
cosn�1u sin u �

n � 1

n y cosn�2u du

y sinnu du � �
1

n
sinn�1u cos u �

n � 1

n y sinn�2u du

y csc3u du � �
1
2 csc u cot u �

1
2 ln � csc u � cot u � � C

y sec3u du � 1
2 sec u tan u �

1
2 ln � sec u � tan u � � C

y cot3u du � �
1
2 cot2u � ln � sin u � � C

y tan3u du � 1
2 tan2u � ln � cos u � � C

y cos3u du � 1
3 �2 � cos2u� sin u � C

y sin3u du � �
1
3 �2 � sin2u� cos u � C

y cot2u du � �cot u � u � C

y tan2u du � tan u � u � C

y cos2u du � 1
2 u �

1
4 sin 2u � C

y sin2u du � 1
2 u �

1
4 sin 2u � C

TA B L E  O F  I N T E G R A L S

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

y cot nu du �
�1

n � 1
 cot n�1u � y cot n�2u du

y secnu du �
1

n � 1
 tan u secn�2u �

n � 2

n � 1
 y secn�2u du

y sin au sin bu du �
sin�a � b�u

2�a � b�
�

sin�a � b�u
2�a � b�

� C

y cscnu du �
�1

n � 1
 cot u cscn�2u �

n � 2

n � 1
 y cscn�2u du

�
sinn�1u cosm�1u

n � m
�

m � 1

n � m y sinnu cosm�2u du

y sinnu cosmu du � �
sinn�1u cosm�1u

n � m
�

n � 1

n � m y sinn�2u cosmu du

y un cos u du � un sin u � n y u n�1 sin u du

y un sin u du � �un cos u � n y un�1 cos u du

y u cos u du � cos u � u sin u � C

y u sin u du � sin u � u cos u � C

y sin au cos bu du � �
cos�a � b�u

2�a � b�
�

cos�a � b�u
2�a � b�

� C

y cos au cos bu du �
sin�a � b�u

2�a � b�
�

sin�a � b�u
2�a � b�

� C

92.

93.

94.

95. y un tan�1u du �
1

n � 1
 �un�1 tan�1u � y

un�1 du

1 � u 2 �, n � �1

y un cos�1u du �
1

n � 1
 �un�1 cos�1u � y

un�1 du

s1 � u 2
�, n � �1

y un sin�1u du �
1

n � 1
 �u n�1 sin�1u � y

un�1 du

s1 � u 2
�, n � �1

y u tan�1u du �
u 2 � 1

2
 tan�1u �

u

2
� C
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Exponential and Logarithmic Forms

96. 100.

97. 101.

98. 102.

99.

Hyperbolic Forms

103. 108.

104. 109.

105. 110.

106. 111.

107. 112.

Forms Involving 

113.

114.

115.

116.

117.

118.

119.

120.

y ln u du � u ln u � u � Cy ueau du �
1

a 2 �au � 1�eau � C

y
du

us2au � u 2
� �

s2au � u 2

au
� C

y
u2 du

s2au � u 2
� �

�u � 3a�
2

 s2au � u 2 �
3a 2

2
 cos�1� a � u

a � � C

y
u du

s2au � u 2
� �s2au � u 2 � a cos�1�a � u

a � � C

y
du

s2au � u 2
� cos�1�a � u

a � � C

y
s2au � u 2

u 2 du � �
2s2au � u 2

u
� cos�1� a � u

a � � C

y
s2au � u 2

u
du � s2au � u 2 � a cos�1� a � u

a � � C

y us2au � u 2 du �
2u 2 � au � 3a 2

6
 s2au � u 2 �

a 3

2
 cos�1�a � u

a � � C

y s2au � u 2 du �
u � a

2
 s2au � u 2 �

a 2

2
 cos�1� a � u

a � � C

s2au � u2 , a � 0

y csch u coth u du � �csch u � Cy sech u du � tan�1 � sinh u � � C

y sech u tanh u du � �sech u � Cy coth u du � ln � sinh u � � C

y csch2u du � �coth u � Cy tanh u du � ln cosh u � C

y sech2u du � tanh u � Cy cosh u du � sinh u � C

y csch u du � ln � tanh 1
2 u � � Cy sinh u du � cosh u � C

y eau cos bu du �
eau

a 2 � b2 �a cos bu � b sin bu� � C

y
1

u ln u
du � ln � ln u � � Cy eau sin bu du �

eau

a 2 � b 2 �a sin bu � b cos bu� � C

y un ln u du �
un�1

�n � 1�2 ��n � 1� ln u � 1� � Cy uneau du �
1

a
uneau �

n

a y un�1eau du
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